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Abstract While propensity score weighting has been shown to reduce bias in treatment

effect estimation when selection bias is present, it has also been shown that such weighting

can perform poorly if the estimated propensity score weights are highly variable. Various

approaches have been proposed which can reduce the variability of the weights and the risk

of poor performance, particularly those based on machine learning methods. In this study,

we closely examine approaches to fine-tune one machine learning technique [generalized

boosted models (GBM)] to select propensity scores that seek to optimize the variance-bias

trade-off that is inherent in most propensity score analyses. Specifically, we propose and

evaluate three approaches for selecting the optimal number of trees for the GBM in the

twang package in R. Normally, the twang package in R iteratively selects the optimal

number of trees as that which maximizes balance between the treatment groups being

considered. Because the selected number of trees may lead to highly variable propensity

score weights, we examine alternative ways to tune the number of trees used in the

estimation of propensity score weights such that we sacrifice some balance on the pre-

treatment covariates in exchange for less variable weights. We use simulation studies to

illustrate these methods and to describe the potential advantages and disadvantages of each

method. We apply these methods to two case studies: one examining the effect of dog

ownership on the owner’s general health using data from a large, population-based survey

in California, and a second investigating the relationship between abstinence and a long-

term economic outcome among a sample of high-risk youth.
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1 Introduction

In studies aimed at evaluating treatments or interventions in health settings, it is often

infeasible or impractical to consider random treatment assignment. In such observational

(non-experimental) studies, the pre-treatment characteristics of individuals who receive

treatment may be very different from those who do not receive treatment. If these pre-

treatment characteristics are also associated with the outcome of interest, estimates of the

treatment effect may be incorrect due to selection bias. A number of statistical methods

have been developed to account and adjust for selection bias and obtain unbiased treatment

effect estimates. Several of these methods, including regression adjustment, matching

methods and propensity score methods, rely on adjusting for group differences by using the

observed pre-treatment covariates available to the researchers. For example, propensity

score methods involve the estimation of the propensity score, an individual’s probability of

assignment to (or selection into) the treatment group, which is then used to balance the

treatment and control groups with respect to the observed pre-treatment characteristics.

The propensity score can be used to create balance by matching, weighting, or subclas-

sifying on the estimated propensity scores in the two groups which in turn allows for a

valid comparison and a more robust estimate of the treatment effect of interest. Here, we

focus on methods for fine-tuning the estimated weights which are equal to the inverse of

the estimated propensity scores when interest lies in average treatment effects across the

population and are commonly referred to as inverse-probability or propensity score

weights.

Though propensity score weighting can be used to reduce or eliminate bias when

estimating a treatment effect, it often comes at a price whereby the variance of the

treatment effect estimates increases due to a reduction in the effective sample size. This is

commonly referred to as ‘‘the variance-bias trade-off’’ that is at the core of many statistical

methodological problems. When using the inverse of the propensity scores as weights,

highly variable weights can lead to a few observations greatly influencing the estimated

treatment effect, which can result in low precision of the estimated treatment effects. The

primary cause of highly variable weights is poor overlap in pre-treatment characteristic

values between the two groups, so that only a few members of either group are repre-

sentative of the other group and thus, receive large weights. Large weights are more

common when there are many predictors as they can create more separation between

groups. Outliers values in the covariates and model mis-specification and extrapolation of

linear models into regions with sparse data can also lead to large weights. While this

variability issue is a concern regardless of the estimation method used to estimate the

propensity scores, in this paper we are particularly interested in the context of propensity

scores that are estimated using generalized boosted models (GBM) (McCaffrey et al.

2004). Numerous propensity score estimation approaches have been proposed ranging

from simple logistic regression modeling to machine learning approaches, including GBM.

These machine learning approaches provide alternatives to parametric estimation of

propensity scores as a way to minimize bias from incorrect assumptions about the form of

the model used (McCaffrey et al. 2004; van der Laan 2014; Imbens 2000; Robins et al.

2000). These methods eliminate reliance on a simple parametric logistic regression model

and do not require the researcher to determine which pre-treatment covariates and their

respective interactions should be included in the model. It has been shown that the

resulting weights from these approaches yield more precise treatment effect estimates and
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lower mean squared error than traditional logistic regression methods (Harder et al. 2010;

Lee et al. 2010; Pirracchio et al. 2015).

In this study, we examine ways to fine-tune GBM to select propensity scores that seek to

optimize the variance-bias trade-off that is inherent in most propensity score analyses. We

build from previous work in Golinelli et al. (2012) who investigated whether it is best to

optimize the balance or to settle for a less than optimal balance in hopes of reducing

variability. Those authors found that ‘‘every step toward better balance usually means an

increase in variance and at some point a marginal decrease in bias may not be worth the

associated increase in variance’’. Currently, the R package twang (Ridgeway 2016),

which uses GBM for propensity score estimation, selects the optimal number of trees

(described below in Sect. 2.2) as that which maximizes balance (as measured by a par-

ticular balance metric) between the treatment groups being considered. However, the

selected number of trees may lead to highly variable propensity score weights, which

would lead to a large design effect, and thus lower power to detect a true treatment effect.

In this paper, we propose and examine alternative ways to tune the number of trees for

GBM for estimation of propensity score weights such that we sacrifice some balance on the

pre-treatment covariates in exchange for less variable weights. Using simulation studies,

we illustrate these methods and describe the potential advantages and disadvantages of

each method. We apply these procedures to two case studies: one examining the effect of

dog ownership on the owner’s general health using data from a large, population-based

survey in California, and a second investigating the relationship between abstinence and a

long-term economic outcome among a sample of high-risk youth.

2 Propensity scores: use and estimation

2.1 Using propensity scores to obtain a treatment effect estimate

Let Yi denote the outcome of interest for individual i, Ti denote the treatment or inter-

vention, where Ti ¼ 0 or 1, and Xi denote the vector of available baseline/pre-treatment

covariates. Each individual has two potential outcomes: the Yi that would be observed if

the individual was assigned to treatment group 1 i.e. Ti ¼ 1 and the Yi that would be

observed if the individual was assigned to treatment group 0 i.e. Ti ¼ 0. However, only one

of these potential outcomes is observable for each individual. To rigorously define our

estimate of interest we define Y1i and Y0i to denote the potential outcomes when Ti ¼ 1 and

Ti ¼ 0, respectively. Using this notation, a common treatment effect of interest might be

the average treatment effect on the population (ATE):

ATE ¼ EðY1i � Y0iÞ ¼ EðY1iÞ � EðY0iÞ � s: ð1Þ

If Y1i and Y0i were observed for every individual, then EðY1iÞ and EðY0iÞ could simply be

estimated using n�1
Pn

i¼1 Y1i and n�1
Pn

i¼1 Y0i, respectively, where n is the number of

individuals. However, these are never both observed for the same individual. If one were to

instead use n�1
j

Pn
i¼1 YjiIðTi ¼ jÞ for j ¼ 0; 1, where nj is the number of individuals in

group j, to estimate these quantities, the obtained treatment effect estimate will be biased

unless treatment assignment and the potential outcomes are independent i.e. Ti ? Y1i; Y0i.
In an observational study, it is generally not appropriate to assume such independence.

Often, there are individual characteristics that may be associated with both treatment

assignment and the potential outcomes. For example, in a study examining the effect of
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dog ownership on general health, individual factors such as gender, age, marital status, and

socio-economic factors are likely associated with both the likelihood of owning a dog and

general health. While such factors cannot be ignored, if it is possible to identify this set of

factors, denoted by Zi, a subset of Xi, then it may be reasonable to make the assumption:

Ti ? Y1i; Y0i j Zi: ð2Þ

Under this assumption, methods that appropriately account for the differential distribution

of Zi within each treatment group will lead to valid estimation of the treatment effect

estimate (Rosenbaum and Rubin 1983b). This assumption is often referred to as the

assumption of no unmeasured confounders or the assumption of strong ignorability

(Robins et al. 2000).

The use of propensity scores is one method that allows for such valid estimation. The

propensity score is the probability of being in treatment group 1 given individual char-

acteristics, Zi: pi ¼ PðTi ¼ 1jZiÞ. Previous work in this area has shown that when

Assumption (2) holds and pi is known or can be consistently estimated, then

Ti ? Y1i; Y0i j pi

(Rosenbaum and Rubin 1984, 1983b; Hernán et al. 2000). A valid ATE estimate can then

be obtained by weighting using the propensity score:

dATE ¼
P

i:Ti¼1 Y1iWi
P

i:Ti¼1 Wi

�
P

i:Ti¼0 Y0iWi
P

i:Ti¼0 Wi
ð3Þ

where

Wi ¼
1=pi if Ti ¼ 1

1=ð1� piÞ if Ti ¼ 0:

�

ð4Þ

Similar logic can be used to develop a valid estimator for the average treatment effect on

the treated population (ATT), another commonly used estimate of the effect of the treat-

ment. As mentioned previously, although propensity score weights can reduce the potential

for bias by balancing the covariate distribution between the treatment and control groups,

that reduction comes at the cost of unequal weighting of observations. In general, a

weighted sample mean has greater variance than an unweighted sample mean of the same

size sample. If the weights are independent of the outcomes, the ratio of the variances of

weighted and unweighted means for group j ¼ 0; 1, for control and treatment, equals

Dj ¼ nj
Pnj

i¼1
W2

i

ð
Pnj

i¼1
WiÞ2

, which is typically referred to as the design effect (DEFF). Even though

propensity score weights are unlikely to be independent of the outcomes, the DEFF is

commonly used to assess the variability in the weights and potential impacts of weighting

on the precision of the treatment effect estimate. In addition to group specific design

effects, we also consider the weighted average DEFF,

D ¼ D1ð1� qÞ þ D0q ¼ n1
Pn1

i¼1 W
2
i

ð
Pn1

i¼1 WiÞ2
ð1� qÞ þ n0

Pn0
i¼0 W

2
i

ð
Pn0

i¼1 WiÞ2
q

where q ¼ n1=n, and we refer to ð
Pnj

i¼1 WiÞ2=ð
Pnj

i¼1 W
2
i Þ as the effective sample size in

treatment group j. In our numerical examples, we will examine both the DEFF and the

variance of the treatment effect estimate.
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2.2 Propensity score estimation

Because the propensity scores are unknown they must be estimated. There has been an

immense amount of work focused on developing methods to estimate propensity scores

(e.g., McCaffrey et al. 2004; van der Laan 2014; Breiman et al. 1984; Hill 2011; Imai and

Ratkovic 2014; Liaw and Wiener 2002). In practice, propensity scores are most commonly

estimated using parametric methods such as logistic regression. Standard implementation

using logistic regression involves beginning with a model that only includes main effects

for the observed pre-treatment characteristics and adding squared terms and interactions of

covariates to the model to improve the propensity estimates when sufficient balance is not

obtained. The resulting fits have been criticized for yielding highly variable weights and

unstable weighted means (Kang and Schafer 2007). Moreover, the model fitting process

can be time consuming especially with many covariates and highly disparate groups.

Consequently, authors have proposed generalized boosted models (GBM) and other

machine learning methods as promising alternatives to logistic regression for propensity

score estimation.

GBM is a nonparametric approach to model outcomes (binary, discrete, or continuous)

that allows for interactions among covariates and flexible functional forms for the

regression surface. It is also invariant to monotonic transformations of covariates. GBM

approximates the regression surface through a piecewise constant model, in which the

regression surface is constant over regions of the covariate space. The fitting algorithm

involves partitioning the covariate space and assigning values to constant functions in the

selected regions. Model building is automated through an iterative algorithm that adds

terms to maximize the likelihood conditional on the model chosen through the previous

iterations. Heuristically, GBM models an outcome as a sum of simple regression tree fits

and each iteration of the fitting algorithm adds an additional tree fit to the residuals of the

model from the previous iteration. Given the sum-of-trees formulation, the number of

iterations used in the fitting algorithm is commonly referred to as the ‘‘number of trees’’ in

the model. The GBM algorithm improves the fit to the data with each additional tree,

requiring an external criterion to select the number of trees that is optimal in a given

situation and controls between overfitting to the data and underspecification of the model.

In prediction applications, an external measure of fit estimated through cross-validation or

a holdout sample is used to select the number of trees. However, for propensity score

estimation, the balance of the covariates across treatment and control groups, that is, the

similarity in the weighted distributions of covariates from the two groups, is used to select

the optimal number of trees in the GBM. Intuitively, since weights derived from the true

propensity scores would achieve balance, a well-fitting estimate of the propensity score

should also achieve balance, given sufficient propensity score overlap between groups. For

more details on GBM for propensity score estimation, see McCaffrey et al. (2004) and

Burgette et al. (2015).

In this paper, we focus specifically on propensity score estimation using GBM. The R

package twang, an acronym of Toolkit for Weighting and Analysis of Nonequivalent

Groups, includes functions to estimate propensity scores using GBM. This package relies

on another R package, gbm (Ridgeway 2015), to fit the GBM and then uses user-selected

criteria to select an optimal number of trees.
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3 Methods to select the optimal number of trees in twang

3.1 Current method

The twang package uses covariate balance to select the number of trees for the GBM

models of propensity scores. Specifically, as implemented for propensity score estimation,

the GBM function selects the number of trees which minimizes the differences between the

two treatment groups as measured by one of four measures: the mean of the absolute

standardized bias (ASB), the maximum of the ASB, the mean of the Kolmogorov–Smirnov

(KS) statistic, and the maximum of the KS statistic. By definition, the ASB for a particular

covariate equals the absolute value of the covariate weighted mean in treatment group 1

minus the covariate weighted mean in treatment group 0 divided by the pooled sample

standard deviation. This measure is calculated separately for each covariate and the overall

balance measure used for tuning the GBM equals either the mean or the maximum of the

covariate-specific ASB values. For each covariate, the KS statistic equals the maximum

absolute difference in the propensity score weighted empirical cumulative distribution

functions of the treatment and control groups. Again, the statistic is calculated separately

for each covariate and aggregated across covariates by either the mean or maximum to

create the balance measure used in selecting the number of trees for the GBM model. In

this paper, we choose the number of trees which minimizes the maximum of the absolute

standardized bias as the one to provide information for the current twang method in our

simulations and case studies.

3.2 p value based method

One straightforward and relatively simplistic alternative to using one of the current twang
criteria to select the number of trees is to select the smallest number of trees such that there

are no statistically significant imbalances in the pre-treatment covariates after weighting,

provided that number is less than the number of trees selected by twang. We denote this

method by lettingM equal the number of covariates, m ¼ 1; . . .;M and t� equal the number

of trees selected by the current twang method, and define L as a grid of L equally spaced

points between 1 and t�. We define tpðctÞ as:

tpðctÞ ¼ minfl 2 L : plm [ ct 8mg

where plm denotes the p value for testing the significance in the weighted mean difference

for covariate m using weights obtained when the number of trees is equal to l. That is,

tpðctÞ is the smallest l such that the p values assessing balance associated with each

covariate are greater than ct. In our numerical examples, we consider two values for ct,

0.05 and 0.10 given these are commonly used thresholds for determining statistically

significant and moderately statistically significant findings. For a given sample, smaller

imbalances in covariates across groups will lead to p\0:10 more often than p\0:05, so
that larger values for ct put a greater price on imbalance and will tend to lead to GBM fits

using more trees.
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3.3 Absolute standardized bias based method

Another simple alternative for fine-tuning GBM is to select the smallest number of trees

such that the ASB for all covariates after weighting is below a prespecified threshold.

Therefore, we define taðcASBÞ as:

taðcASBÞ ¼ minfl 2 L : ASBlm\cASB 8mg

where ASBlm denotes the ASB for covariate m using weights obtained when the number of

trees is l. That is, taðcASBÞ is the smallest l such that the ASB associated with every

covariate is less than cASB. In our numerical examples, we consider two values for cASB,

0.10 and 0.20 which are commonly used thresholds for ASB in the literature.The 0.20

threshold is more liberal than the 0.10 threshold advocated by some authors as indicative of

good balance (Austin 2007, 2009; Austin and Stuart 2015; Normand et al. 2001; Hankey

and Myers 1971). Smaller values of cASB put a higher cost on imbalance and will tend to

yield GBM fits with more trees.

We note that we have chosen both the ASB and p value methods for consideration in

our evaluation because of their simplicity and intuitiveness for most applied practitioners

and policy makers. These are simple criteria that might naturally be considered by any

analyst or researcher who is trying to fine-tune twang when selecting the optimal iteration

to yield more stable weights at the cost of slight reductions in balance. Our goal is to study

the relative performance of these simpler methods versus a more complex method moti-

vated by mean-squared error (MSE) considerations, described in the next section, in order

to illustrate both their advantages and their disadvantages.

3.4 Mean squared error based method

The final criterion we consider for selecting the optimal number of trees in twang directly

considers both the possible bias and variance from a model with a given number of trees by

tuning the GBM to minimize an approximation to the mean squared error (MSE) of the

estimated treatment effect. We describe our approach first assuming a single covariate Xi is

available.

Consider the linear model for the potential control outcomes:

Y0i ¼ b0 þ Xiaþ ei ð5Þ

where EðeiÞ ¼ 0, ei ? Xi and ei are independent and identically distributed with variance

r2e . In addition, let the treatment effect be constant s, so that Y1i ¼ Y0i þ s, and the

observed data equal Yi ¼ b0 þ Xiaþ Tisþ ei. Let

~Yj ¼
P

i:Ti¼j Y1iWi
P

i:Ti¼j Wi

;

for j ¼ 0; 1, for the weights defined by (4) and ~X1, ~X0, ~e1 and ~e0 equal the corresponding

values for X and e. Let Dt, D
0
t , and D1

t be the design effect defined earlier overall (see Sect.

2.1), in treatment group 0, and in treatment group 1, respectively, using weights obtained

when the number of trees is t and note that
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E½D1
t =n1� þ E½D0

t =n0� ¼
E½Dt�

nqð1� qÞ :

The estimated additive treatment effect estimate, dATE ¼ ~Y1 � ~Y0 and the MSE for this

estimator is

E½ð ~Y1 � ~Y0 � sÞ2� ¼ E½ða ~X1 þ sþ ~e1 � ða ~X0 þ ~e0Þ � sÞ2�

¼ a2r2X
E½ð ~X1 � ~X0Þ2�

r2X
þ E½ð~e1 � ~e0Þ2�:

Because ei is independent of Xi0 for all i and i0 and E½e� ¼ 0, E½ð~e1 � ~e0Þ�2 ¼
r2eðE½D1

t =n1� þ E½D0
t =n0�Þ. For this simple linear model, R2 ¼ a2r2X=ða2r2X þ r2eÞ since

var ðY0Þ ¼ a2r2X þ r2e is the large sample coefficient of variation for a regression of Y0 on

X. For a given number of trees, we let Dt ¼ E½ð ~Xt1 � ~Xt0Þ2�=r2X , then the MSE for a given

number of trees can be written as:

MSEt ¼ var ðY0Þ R2Dt þ ð1� R2Þ E½Dt�
nqð1� qÞ

� �

: ð6Þ

Given any two tree selections, t1 and t2, one would select t2 over t1 if MSEt1 [MSEt2 or

var ðY0Þ R2Dt1 þ ð1� R2Þ E½Dt1 �
nqð1� qÞ

� �

[ var ðY0Þ R2Dt2 þ ð1� R2Þ E½Dt2 �
nqð1� qÞ

� �

Rearranging yields that t2 should be selected if

1\
ð1� R2Þ

R2

� � 1
nqð1�qÞ ðE½Dt1 � � E½Dt2 �Þ

Dt2 � Dt1

:

To use this formula to select the number of trees, estimates of R2, Dt, and E½Dt� for t ¼ t1
and t2 are needed. To obtain an estimate of E½Dt�, one can use the observed design effects

for the weights from each group for each model. To obtain estimates of Dt for t ¼ t1, t2,

one can use the ASB for covariate X for each model, which we denote, ASBtðXÞ. For R2, it

is not possible to directly estimate R2 from a regression of Y0 on X because Y0 is not

observed for the entire sample. However, one can estimate a and r2e from a regression of Y

on X using either the entire sample or the control group only, and r2X as the pooled sample

variance of X, and then estimate R2 from these two values: bR2 ¼ r2x=ðr2x þ r2eÞ. The
number of trees can then be selected as tmðY ;XÞ where:

tmðY ;XÞ ¼ min l 2 L : 1\
ð1� bR2Þ

bR2

" #
1

nqð1�qÞ ðDt� � DlÞÞ
ðASBlðXÞÞ2 � ASBt� ðXÞ2Þ

( )

: ð7Þ

We have explicitly included Y in our notation of tmðY ;XÞ to emphasize the use of outcome

information in this approach. Alternatively, if the outcomes are unavailable or if the analyst

desires to keep the design phase in which weights are estimated separate from the outcome

analysis phase to avoid any data snooping, then plausible values for R2 could be chosen

and used in this approach. For example, let R2
c denote a plausible R

2 value chosen based on

substantive knowledge. Then, the number of trees can be selected using this same
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approach, but without using outcome Y information, as tmðXÞ defined parallel to (7) but

with bR2 replaced by R2
c .

This approach can be extended to multiple covariates. In this case, Y0 ¼ b0 þ b0X þ e,

R2 ¼ r2E½Y jX�=ðr2E½Y jX� þ r2eÞ; and

Dt ¼ E ð
X

i:Ti¼1

Wib
0Xi=

X

i:Ti¼1

Wi �
X

i:Ti¼0

Wib
0Xi=

X

i:Ti¼0

WiÞ2
" #

=r2E½Y jX�;

where r2E½Y jX� ¼ b0RXb. We can estimate b as bb and r2e from a regression of Y on the

covariates and a treatment indicator or from a regression of Y on the covariates in the

control group. Let bRX equal the pooled sample estimate of the variance-covariance matrix

of the covariates and br2
E½Y jX� ¼ bb0bRX

bb, we can estimate R2 by

bR2 ¼ br2
E½Y jX�=ðbr2

E½Y jX� þ br2
eÞ ð8Þ

and ASBtðY j XÞ ¼ ð
P

i:Ti¼1 Wi
bb0Xi=

P
i:Ti¼1 Wi �

P
i:Ti¼0 Wi

bb0Xi=
P

i:Ti¼0 WiÞ=brE½Y jX�.

The number of trees can then be selected as tmðY ;XÞ where:

tmðY ;XÞ ¼ min l 2 L : 1\
ð1� bR2Þ

bR2

" #
1

nqð1�qÞ ðDt� � DlÞÞ
ðASBlðY jXÞÞ2 � ASBt� ðY jXÞ2Þ

( )

:

Alternatively, as in the single covariate setting, if analysts do not wish to use the

outcomes in the estimation of the propensity scores or the outcomes are unavailable, the

analyst can pose plausible values for R2. Also, since b cannot be estimated without an

outcome, analysts cannot estimate ASBtðY j XÞ. As an alternative one could use ASBðX�Þ
and ASBðXlÞ where X� and Xl are the baseline covariates with the most imbalance when

the number of trees is t� or l respectively, in the inequality for selecting t�. Similar to the

single covariate setting, we denote the resulting number of trees selected using this

approach as tmðXÞ. In our numerical examples, we examine the performance of both

tmðY ;XÞ and tmðXÞ.
As noted above, if the regression coefficients and residual variance are estimated using

the data, then outcome information, Y, is used to select the number of trees, and will

contribute to the estimation of the propensity score weights. Intuitively, this should help

improve the accuracy of the results as additional information contributes to the estimation

process. However, it creates the potential for the results of the treatment effect estimation

to influence the weight selection. This can be avoided by using plausible values for R2

rather than estimating it or by fitting the outcome regression model only to the control

cases, and using bounds for ASB for the unknown Dt values. In addition, the linear model

(5) with equal variances of e in the two groups is used as an approximation to construct the

inequality above. In general, this assumption might not be true. In fact, if (5) was the true

model, then propensity score weighting would not be necessary, as one could instead use

simple regression adjustment to obtain an unbiased estimate of the treatment effect. The

linear model is used to motivate the inequality, which will hopefully be sufficiently

accurate to provide a way of tuning the propensity score model to yield estimated treatment

effects with lower MSE than simply picking the model that yields the best covariate

balance. It is important to note that all of the alternative methods described here focus on
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potentially reducing the number of trees selected by twang; we do not focus on increasing
the number of trees.

4 Simulation study

We examined the performance of the proposed alternatives and compared each to the

existing approach used in twang in two simulation settings with n ¼ 300 and n ¼ 2000.

In setting (i), data were generated as:

X�Nð0; :64Þ
Z�Expð1:5Þ

p ¼ 1=½1þ expf�1:1ðX þ Z � 2=3Þg�
T ¼ 1ðU\pÞ; U�Unif ð0; 1Þ
Y ¼ 0:3X þ 0:3Z þ sT þ Nð0; r21Þ

where X and Z denote the pre-treatment baseline covariates, Y denotes the outcome, s ¼ 0

and r1 ¼ 2:5. In setting (ii), data were generated similarly with the exception that

r1 ¼ 0:7. The treatment effect of interest in our estimation procedures is s. In setting (i) the
R2 was 0.015 and in setting (ii) it was 0.166. Recall that an estimate of the R2 within each

simulation replication is what is used in the MSE-based approach to select tmðY;XÞ; this
value is set to 0.20 when implementing the tmðXÞ method. We specifically chose these two

simulation settings and sample sizes to illustrate the differences in these methods, describe

the advantages and disadvantages of each method, and demonstrate expected results under

certain conditions. For example, when R2 is very small and the ASB for all covariates after

using twang is low, and the sample size is relatively small, we would expect the MSE-

based method to substantially reduce the number of trees selected as optimal. When R2 is

moderate or large, we would not expect the MSE-based method to reduce trees compared

to the current twang methodology. When the sample size is large, we would generally not

expect the p value based method or the MSE-based method to substantially reduce trees

(unless R2 is very small). When the sample size is small, we would generally expect the p

value based method and the MSE-based method to reduce trees (unless R2 is moderate or

large). Since the ASB-based method depends only on the ASB, our expectations depend on

whether twang is initially able to achieve balance within the pre-determined threshold.

Within a particular setting, we would expect the ASB method to reduce trees more dra-

matically as the sample size increases.

Results are summarized in Tables 1 (n ¼ 300) and 2 (n ¼ 2000) across 1000 replica-

tions of each setting. Recall that tmðY;XÞ indicates the MSE-based method that uses

outcome information, tmðXÞ indicates the MSE-based method that does not use outcome

information, tað0:20Þ and tað0:10Þ indicate the ASB-based methods that use a 0.20 and

0.10 threshold, respectively, tpð0:05Þ and tpð0:10Þ indicate the p value based methods that

use a 0.05 and 0.10 threshold, respectively. These tables show the average number of trees

selected, the average maximum ASB, the standardized bias of the treatment effect estimate

(standardized using the standard deviation of the of Y in the control group), the stan-

dardized variance of the treatment effect estimate, the standardized MSE of the treatment

effect estimate, and the average design effect induced by the estimated propensity score

weights (design effect is 1 in the unweighted approach).
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We first describe the results when n ¼ 300 in Table 2. In setting (i), where R2 is very

small, the MSE-based approach, tmðY ;XÞ, greatly reduced the number of trees by 65%,

from 502 to 176, as expected. This leads to a design effect reduction from 1.22 to 1.10,

though the observed difference in variance of the treatment effect estimate is negligible.

Also as expected, the bias of the treatment effect estimate increases slightly using this

approach. Unfortunately, the MSE increases more than we would have expected as a result

of this increase in bias. In this setting, the other alternative methods reduce the number of

trees somewhat, but not substantially except for the p value based method with the 0.05

Table 1 Simulation study results with n ¼ 2000; maximum ASB, standardized bias, standardized var, and
standardized MSE all multiplied by 100, tmðY ;XÞ indicates the MSE-based method that uses outcome
information, tmðXÞ indicates the MSE-based method that does not use outcome information, tað0:20Þ and
tað0:10Þ indicate the ASB-based methods that use a 0.20 and 0.10 threshold, respectively, tpð0:05Þ and
tpð0:10Þ indicate the p value based methods that use a 0.05 and 0.10 threshold, respectively

Method n=2000

Setting (i) Setting (ii) Setting (i) Setting (ii)
# of Trees Maximum ASB

Unweighted – – 70.45 70.45

TWANG 926 924 12.57 12.68

tmðY ;XÞ 695 892 13.15 12.66

tmðXÞ 868 864 12.56 12.68

tað0:20Þ 317 319 18.89 18.90

tað0:10Þ 907 913 12.81 12.82

tpð0:05Þ 913 916 12.59 12.69

tpð0:10Þ 926 924 12.57 12.68

Standardized bias Standardized var

Unweighted 11.02 36.79 0.22 0.22

TWANG 2.03 6.98 0.28 0.23

tmðY ;XÞ 2.14 6.98 0.28 0.23

tmðXÞ 2.04 6.99 0.28 0.23

tað0:20Þ 3.15 10.45 0.26 0.21

tað0:10Þ 2.07 7.05 0.28 0.23

tpð0:05Þ 2.03 6.98 0.28 0.23

tpð0:10Þ 2.03 6.98 0.28 0.23

Standardized MSE Design effect

Unweighted 1.43 13.75 1 1

TWANG 0.32 0.72 1.26 1.26

tmðY ;XÞ 0.32 0.72 1.25 1.26

tmðXÞ 0.32 0.72 1.26 1.26

tað0:20Þ 0.36 1.30 1.18 1.18

tað0:10Þ 0.32 0.73 1.26 1.26

tpð0:05Þ 0.32 0.72 1.26 1.26

tpð0:10Þ 0.32 0.72 1.26 1.26
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threshold which reduces the trees by 25% from 502 to 378. This is not surprising given the

large ASB still present even after twang is used with 502 trees. In setting (ii), where R2 is

moderate, as expected, both MSE-based approaches do not dramatically reduce the number

of trees. The p value based approach with a 0.05 threshold reduces the number of trees the

most, but at a larger cost to bias.

We now describe the results when n ¼ 2000 in Table 1. Regardless of setting, the

MSE-based approaches do not dramatically reduce the number of trees, although as

expected the reduction is greater in setting (i) with the small R2. Similarly, both tp

methods do not reduce trees because with the large samples even small differences are

significant, which is one of the concerns with a tuning method that uses p values to

evaluate bias. The only method that results in a large reduction in trees is tað0:20Þ
because an ABS of 0.20 is much greater than the ABS achieved with twang. However,
because the variance of the estimated treatment effects is small, bias dominates and the

MSE for tað0:20Þ is larger than for any of the other methods. As might be expected with

a large sample, even small increases in bias due to imbalance dominate any reduction in

variance associated with a reduction in DEFF. Consequently, there is no benefit to

reducing trees by a large amount and the one method that does greatly reduce trees,

results in greater MSE than other methods.

5 Case studies

5.1 The effect of dog ownership on general health

We applied these proposed methods to investigate the effect of dog ownership on general

health. Several studies have found that owning and/or interacting with a pet (mostly a dog)

has benefits for the individual including mental health outcomes such as decreased anxiety

and physical health outcomes such as improved immune response (Wells 2009a, b;

McConnell et al. 2011). Our analysis used survey response data from the 2003 California

Health Interview Survey (CHIS 2003), a population-based, random-digit dial telephone

survey of California households. CHIS is the largest state-level health survey and is

designed to provide population-based estimates for the state of California, California

counties, and major ethnic groups. CHIS collected extensive information on health status,

health conditions, health-related behaviors, health insurance coverage and access to health

care services as well as demographic and socioeconomic information. Within each

household, an interview was conducted with a randomly selected adult (age 18 and over).

CHIS 2003 was conducted between August 2003 and February 2004. Interviews were

conducted in English, Spanish, Chinese, Vietnamese, and Korean. The demographic

characteristics of the CHIS sample (such as race, ethnicity, and income) are very similar to

those obtained from Census data, and additional research suggests that CHIS data are

representative of the California population (Lee et al. 2009; CHIS 2003). Detailed infor-

mation about the CHIS methodology is available elsewhere (Survey 2005; Ponce et al.

2004).

Our sample for analysis consisted of the 8526 adults who had a child in the home;

27.0% of these respondents owned a dog. Available individual characteristics included age,

gender, race/ethnicity, household size, marriage status, whether the individual received

TANF (Temporary Assistance for Needy Families), household annual income, whether the

individual worked full time, whether the individual had a spouse that worked full time,
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whether the individual lived in a house, and a rural/urban measure (1 = urban; 2 = 2nd

city; 3 = suburban; 4 = town and rural) for the individual’s address. General health status

of the individual was measured as the self-reported response to the question ‘‘Would you

say that in general your health is excellent, very good, good, fair or poor?’’ Responses were

coded from 1 to 5 with 5 indicating ‘‘Excellent.’’ Dog ownership was assessed with the

question ‘‘Do you have any dogs that you allow inside your home?’’

Our goal was to examine the effect of dog ownership on general health. However, since

individuals who own a dog are different from those who do not own in a dog in ways that

Table 2 Simulation study results with n ¼ 300; maximum ASB, standardized bias, standardized var, and
standardized MSE all multiplied by 100, tmðY ;XÞ indicates the MSE-based method that uses outcome
information, tmðXÞ indicates the MSE-based method that does not use outcome information, tað0:20Þ and
tað0:10Þ indicate the ASB-based methods that use a 0.20 and 0.10 threshold, respectively, tpð0:05Þ and
tpð0:10Þ indicate the p value based methods that use a 0.05 and 0.10 threshold, respectively

Method n = 300

Setting (i) Setting (ii) Setting (i) Setting (ii)
# of Trees Maximum ASB

Unweighted – – 70.02 70.01

TWANG 502 494 23.49 23.38

tmðY ;XÞ 176 446 40.55 23.44

tmðXÞ 452 445 23.62 23.52

tað0:20Þ 461 453 23.97 23.86

tað0:10Þ 501 493 23.50 23.39

tpð0:05Þ 378 369 25.38 25.35

tpð0:10Þ 445 436 24.17 24.08

Standardized bias Standardized var

Unweighted 11.56 36.49 1.36 1.46

TWANG 4.27 12.36 1.61 1.62

tmðY ;XÞ 5.78 12.39 1.60 1.60

tmðXÞ 4.31 12.46 1.60 1.60

tað0:20Þ 4.37 12.62 1.60 1.60

tað0:10Þ 4.27 12.36 1.61 1.62

tpð0:05Þ 4.62 13.42 1.56 1.56

tpð0:10Þ 4.40 12.74 1.59 1.59

Standardized MSE Design effect

Unweighted 2.69 14.77 1 1

TWANG 1.79 3.14 1.22 1.21

tmðY ;XÞ 1.93 3.13 1.10 1.21

tmðXÞ 1.78 3.15 1.21 1.21

tað0:20Þ 1.79 3.19 1.21 1.21

tað0:10Þ 1.79 3.14 1.22 1.21

tpð0:05Þ 1.78 3.36 1.19 1.18

tpð0:10Þ 1.79 3.21 1.20 1.20
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may also be associated with general health, differences in such individual characteristic

must be accounted for when examining the effect of dog ownership. Table 3 shows the

distribution of individual characteristics by ownership group; the groups differ significantly

on almost all covariates. While dog owners and non-owners do not appear to differ in

gender, younger individuals and non-Whites are less likely to own a dog. Dog owners tend

to have higher incomes and lower likelihood of receiving TANF. Dog owners are more

likely to be married, to work full time, to have a spouse that works full time, to live in a

house, and to live in a more rural area.

Table 4 shows the results of our analysis. Our treatment effect of interest was the

difference in general health between dog owners and non-dog owners. The unweighted

mean general health among dog owners was 3.84, while the unweighted mean general

health among non-dog owners was 3.57. The difference, 0.27, has a standard error of 0.02

and is statistically significant. After accounting for selection bias using twang, the esti-

mated treatment effect reduced to 0.04 with a standard error of 0.03 and was no longer

significant. Using twang removed differences in the means by balancing the groups on the

covariates (e.g. the maximum ASB was just 0.09 for twang and it was 0.85 unweighted),

but this reduction came at a cost of over a 50% increase in the standard error. This is the

type of situation where alternative methods for tuning the number of trees could potentially

be of value.

Interestingly, in this example, the MSE-based tmðX; YÞ method and both p value

methods tpð0:05Þ and tpð0:10Þ, selected the exact same number of trees as twang. For the

Table 3 Distribution of baseline covariates among those who do own a dog versus do not own a dog

Own a dog Do not own a dog ASB p value
Mean (SD) or % Mean (SD) or %
n = 2306 n = 6220

Age 38.9 (8.05) 36.51 (8.34) 0.29 \0.001

Male 37.3% 37.8% 0.01 0.660

Race \0.001

Latino 12.7% 36.6% 0.72 \0.001

Pacific Islander 0.3% 0.3% 0.01 –

American Indian or Alaska native 1.5% 1.4% 0.01 –

Asian 3.2% 11.8% 0.49 –

African American 3.2% 6.7% 0.20 –

White 76.6% 40.8% 0.85 –

Other 2.5% 2.4% 0.01 –

Household size 4.21 (1.26) 4.28 (1.38) 0.05 0.025

Married 78.9% 72.3% 0.15 \0.001

On TANF 2.9% 5.6% 0.13 \0.001

Household annual income 11.03 (1.03) 10.52 (1.39) 0.38 \0.001

Works full time 64% 61.6% 0.05 0.042

Spouse works full time 57.1% 49.2% 0.16 \0.001

Lives in a house 89.5% 64.4% 0.55 \0.001

Rural/urban 2.34 (1.08) 2 (1.07) 0.32 \0.001

Rural/urban: 1 = urban; 2 = 2nd city; 3 = suburban; 4 = town and rural i.e. higher is ‘‘more rural’’,

ASB absolute standardized bias
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p value methods, our large sample resulted in significant differences for at least one

covariate at the 0.10 and even the 0.05 level. Thus, these methods did not allow for a

reduction in trees. For the MSE-based method, even though we estimate the R2 used in the

tmðY ;XÞ method at just 0.18, because of the large sample, even a small increase in

imbalance in the covariates coming from fewer trees was too costly, in terms of increasing

our approximated MSE. Not surprisingly, the tmðXÞ approach performs similarly to

tmðY ;XÞ; this method assumes that R2 ¼ 0:20 (close to our estimated 0.18) and the

maximum ASB among all covariates was close to our estimate of E½Y j X�. In contrast, the

ASB-based methods tað0:20Þ and tað0:10Þ, which rely only on ASB of the covariates and

are invariant to sample size, yielded somewhat different results. Since the maximum ASB

using twang was 0.09, letting the maximum increase to 0.10, with tað0:10Þ had limited

effects on the estimated treatment effect or its standard error, even though the number of

trees fell by almost 1000. In our experience, it is common for the balance and treatment

effects to be similar across relatively large ranges for the number of trees. Allowing for

greater imbalance by using the tað0:20Þ rule had a greater impact on the estimated treat-

ment effect. However, even though the design effect decreased from 1.57 to 1.28, the

change in the standard error was negligible.

In summary, the similarity in performance for the MSE and p value based methods

compared to twang is expected given (a) the large sample size and (b) the degree of

imbalance in the baseline covariates. Both the R2 and ASB values result in the tmðY ;XÞ and
tmðXÞ methods allowing for no or little reduction in trees because the price in terms of

potential bias was too great.

Figure 1 displays the standardized bias for a subset of the methods for each covariate

and demonstrates that the weighted methods, except the ASB-based method with the 0.20

threshold, control the standardized bias and result in well-balanced groups. Here it can be

seen quite clearly that the ASB-based tree method allows for greater imbalance between

the treatment and control groups when compared to the other tree based methods. In doing

so, it provides a more dramatic reduction in variability of the propensity score weights and

therefore a smaller design effect but yet clearly at a potentially large cost to bias. With the

large sample size in this analysis, power may not be an issue and thus, it might not be

necessary to tolerate an increase in bias in exchange for more precise treatment effect

estimates.

Table 4 Treatment effect estimates using each approach with corresponding standard error, p value, design
effect, maximum ASB and number of trees for dog ownership study; tmðY ;XÞ indicates the MSE-based
method that uses outcome information, tmðXÞ indicates the MSE-based method that does not use outcome
information, tað0:20Þ and tað0:10Þ indicate the ASB-based methods that use a 0.20 and 0.10 threshold,
respectively, tpð0:05Þ and tpð0:10Þ indicate the p value based methods that use a 0.05 and 0.10 threshold,
respectively

Unweighted twang tað:20Þ tað:10Þ tmðY ;XÞ tmðXÞ tpð0:05Þ tpð0:10Þ

Case study: dog ownership

Estimate 0.27 0.04 0.06 0.03 0.04 0.03 0.04 0.04

SE 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03

p value \0:01 0.29 0.04 0.31 0.29 0.29 0.29 0.29

Design effect 1 1.57 1.28 1.53 1.57 1.56 1.57 1.57

Maximum ASB 0.85 0.09 0.19 0.10 0.09 0.09 0.09 0.09

Number of trees – 2684 274 1698 2684 2465 2684 2684
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5.2 Abstinence and long-term economic outcomes

In our second case study, we applied our proposed methods to investigate the relationship

between abstinence and a long-term economic outcome among a sample of high-risk youth

(Griffin et al. 2011). Here, it is of interest to understand whether youth who demonstrate

short-term successes after substance abuse treatment are less likely to experience adverse

long-term economic outcomes compared to those who do not demonstrate such short-term

successes (Kaestner 1990, 1994; Ringel et al. 2006, 2007; Register and Williams 1992).

Detailed information on this study may be found in Griffin et al. (2011). As might be

expected, one of the most challenging aspects of their analysis was controlling for the

observed differences in pre-treatment covariates between the youth who abstained from

using drugs versus those who used drugs. We utilize data from this case study to illustrate

the relative performance of our proposed methods on case study data where selection is

very strong and sample size is much smaller than in the dog ownership study.

The dataset for this case study includes 353 adolescent offenders in Los Angeles who

were adjudicated as delinquent and sent to one of seven residential group homes from

February 1999 to May 2000 (Morral et al. 2004). Youth data come from the baseline, 3, 6,

12, and 87-month follow-ups where each youth was interviewed using the Global

Appraisal of Individual Needs (GAIN), a structured clinical interview that collects infor-

mation on eight main topic domains (background, substance use, physical health, risk

behaviors, mental health, and environment, legal, as well as vocational factors) (Dennis

1999). Among the 353 youth in the dataset, 22% abstained from using drugs between

baseline and the 12-month follow-up. In this analysis, we aimed to balance the abstainers

and the drug users on four individual level characteristics: internal mental distress scale (a

Unweighted         TWANG         tp(0.05)         ta(0.20)          tm(Y,X)            tm(X)      

Standardized Bias

Age

Gender

Race: Latino

Race: Pacific Islander

Race: American Indian 
 or Alaska Native

Race: Asian

Race:  African American

Race: White

Race: Other

Household size

Married

On TANF

Household annual income

Works full time

Spouse works full time

Lives in a house

Rural/Urban

-0.6 0 0.6 0 0.6 0 0.6 0 0.6 0 0.6 0 0.6

Fig. 1 Standardized bias for each covariate in the dog ownership case study using twang, tpð0:05Þ,
tað0:20Þ, tmðY ;XÞ, and tmðXÞ
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count of past-year symptoms related to internalizing disorders including somatic, anxiety,

depression, traumatic stress and suicide/homicide thoughts), the social risk scale (a sum of

items indicating how many people (none, a few, some, most, all) the respondent hangs out

with socially are involved in drug use, getting drunk, fighting, illegal activities, school or

work, treatment, or are in recovery), the substance frequency scale (7-item scale that sums

days of use during the past 90 days for alcohol, marijuana, and other illicit drugs), and

number of days in the past 90 the youth was drunk or high for most of the day. As shown in

Table 5, youth who abstained from using drugs were significantly better on all four pre-

treatment measures. They had lower means on all four variables prior to weighting and the

differences were quite large for substance use variables with ABS of 1.0 and for social risk

with an ABS of greater than 0.6.

Our aim was to examine the effect of abstinence on an economic outcome at the

87-month follow-up. Thus, our outcome measure was total legitimate income which was

measured using responses to the question: ‘‘During the past 90 days, about how much

money did you receive from wages or salary from a legitimate job or business?’’. Table 6

shows the results of our analysis; here, we estimated the ATT (average treatment effect in

the treated) where our treatment effect of interest was the difference in total legitimate

income during the past 90 days between abstainers and drug users for youth like those who

abstained. The unweighted mean 90-day income among abstainers was $2992.30, while the

unweighted mean 90-day income among drug users was $1815.82. The unweighted

analysis results show that this difference was significant; that is, youth like those who

abstained earned significantly higher 90-day income in young adulthood than youth who

did not abstain. However, given the large differences in pre-treatment measures between

groups, concern existed that the estimated effect may be biased by selection. These results

show that twang was very successful at balancing the group, reducing the maximum ABS

form 1.0 to 0.05; however, achieving this balance required relatively large variability in the

weights with a DEFF of 1.74 and a standard error that is nearly 25% larger than that for the

unweighted analysis. Given the small ABS for twang and large DEFF there seems to be

potential for an alternative tuning method to yield a more accurate estimate.

All the alternative methods result in large reductions in the number of trees. Because

twang yields a maximum ABS of 0.05, we can reduce the number of trees by large

numbers and still have the maximum ABS below 0.20 or even 0.10 and the tað0:10Þ and
tað0:20Þ approaches reduce the number of trees by 73 and almost 90%, with corresponding

reductions in DEFF of 18 and 28% and standard errors of 10 and 14%, respectively.

Similarly because the sample size is so small even relatively large differences in covariate

means across groups are not significant, so both the tpð0:05Þ and tpð0:10Þ result in very

reduced numbers of trees (229 and 286, respectively, because large differences are required

for rejection at p ¼ 0:05) and substantially reduced DEFFs and standard errors.

Table 5 Distribution of baseline covariates among abstainers versus drug users

Abstainers Drug users ASB p value
Mean (SD) Mean (SD)
n = 84 n = 269

Internal mental distress scale 5.80 (4.7) 6.62 (5.6) 0.18 0.1790

Substance frequency scale 0.08 (0.1) 0.22 (0.2) 1.00 \0.001

Social risk scale 7.49 (4.6) 10.43 (4.9) 0.64 \0.001

Number of days drunk/high 8.15 (19.1) 27.41 (32.7) 1.01 \0.001
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For tmðXÞ, our assumption that R2 ¼ 0:20 turned out to be substantially larger than the

estimate which equaled 0.01; this method produced results similar to the p value based

methods. However, the tmðY ;XÞ approach used the estimated 0.01 value, which explains

why this method allows for a dramatic reduction in trees. In essence, this method is willing

to allow for more imbalance because the very low R2 indicates that these variables are not

strongly associated with the outcome, and are thus not likely to be confounders. Given this

low R2 and small sample size, the price in terms of design effect that is required in order to

obtain balance, as shown by twang, is not deemed worthwhile using the MSE approach.

The tmðY;XÞ approach essentially results in an estimate equal to the unweighted estimate.

The selection of a single tree by the tmðY ;XÞ method is simply an artifact of our grid

approach which defined L as a grid of L equally spaced points between 1 and t�.
This case study demonstrates one of the potential risks of developing the adjustment for

selection without use of the outcome information. The four selected pre-treatment variables

were identified as clear risk factors for later substance use and negative outcomes by

experts and the literature, but they turned out to be unrelated to outcomes measured

87 months later for the adolescents in this study. By relying on outcome information,

tmðY ;XÞ chooses to ignore the covariate imbalance and essentially return unweighted

results. The other approaches ignore the outcomes and choose a GBM model which yields

variable weights so as to balance the covariates and potentially unnecessarily degrade the

precision of the estimated effects.

6 Discussion

In this paper we consider the problem of the inherent variance-bias tradeoff in using

weighting methods to control for selection in observational studies: balancing covariates to

remove bias results in variable weights which may potentially reduce the precision of

estimated treatment effects. In the context of selecting the complexity of GBMs for the

probability of treatment, we examined several alternative approaches to select the number

of trees used in the GBM. One of our approaches aimed to explicitly consider both balance

in the covariates and the variability in the resulting weights and attempted to select a model

that would minimize the MSE of the estimated treatment effect. We also examined two

Table 6 Treatment effect estimates using each approach with corresponding standard error, p value, design
effect, maximum ASB and number of trees for abstinence study; tmðY ;XÞ indicates the MSE-based method
that uses outcome information, tmðXÞ indicates the MSE-based method that does not use outcome infor-
mation, tað0:20Þ and tað0:10Þ indicate the ASB-based methods that use a 0.20 and 0.10 threshold, respec-
tively, tpð0:05Þ and tpð0:10Þ indicate the p value based methods that use a 0.05 and 0.10 threshold,
respectively

Unweighted twang tað0:20Þ tað0:10Þ tmðY ;XÞ tmðXÞ tpð0:05Þ tpð0:10Þ

Case study: abstinence

Estimate 1176.48 1151.26 1357.08 1307.31 1177.8 1357.08 1361.71 1357.08

SE 417.93 516.51 445.36 465.55 417.98 445.36 439.78 445.36

p value 0.01 0.03 \0.01 0.01 0.01 \0.01 \0.01 \0.01

Design effect 1.00 1.74 1.25 1.42 1.00 1.25 1.21 1.25

Maximum ASB 1.01 0.05 0.18 0.10 1.00 0.18 0.24 0.18

Number of trees – 2797 286 743 1 286 229 286
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other approaches that focused specifically on the covariate balance by selecting the

smallest number of trees such that some specified threshold, in terms of its standardized

absolute value or statistical significance tests p values, was achieved. Although these latter

two alternatives do not explicitly account for variance when tuning the GBM, they are

straightforward and easy to implement without complex derivations. They are unlike the

approach which attempts to minimize MSE, which requires additional computations and

most importantly, requires either use of (a) the outcome data to estimate the strength of the

covariates in terms of outcome prediction or (b) an educated guess about the predictive

strength. All of the examined methods aim to reduce the variance of the propensity score

weights at the expense of a (hopefully) small amount of bias.

The results from the simulation study and two case studies show that the methods

generally work as expected in terms of reducing the number of trees, DEFF, MSE and

increasing bias. Surprisingly, it does not appear than any one method is superior for

multiple settings, when comparing to standard twang. When the sample size is large, a

change in the DEFF has less of an impact on the MSE of the treatment effect and thus,

increasing imbalance is generally more costly, and tuning GBM by any method other than

minimizing imbalance (the standard method of twang) is generally suboptimal. The MSE-

based method results essentially confirm this by consistently selecting a similar number of

trees as twang. Also with a large sample size, even small differences in group means are

significant and thus, the p value-based methods also perform similarly to twang. In
contrast, the ABS threshold method is completely insensitive to sample size and can

perform poorly with large samples as demonstrated by increased bias in setting (ii) for

tað0:20Þ in our simulation study with n ¼ 2000 and for the case study on pet ownership. On

the other hand, with small samples, the p value based methods will tend to underweight the

costs of imbalance because only large differences are significant and thus, for small

samples this method has a great risk of poor performance in terms of increases in bias.

With smaller samples, the MSE-based method allows both the imbalance and the pre-

dictive strength (R2) to drive the tree selection. When the predictive strength is very weak,

this method will likely indicate that an unweighted approach is optimal which is reasonable

given that this likely implies that the covariates being used in the propensity score model

are not confounders. However, as shown in the simulation results, this may be dangerous if

there is still some association between the covariates and the outcome, and a selection bias,

and may lead to an increase in bias that is not compensated by a substantial enough

reduction in variance.

The theory behind the MSE-based approach attempts to account for all the relevant

factors, adjusting the relative cost of DEFF and imbalance depending on the strength of the

covariate-outcome relationship and the sample size, and this is reflected in the number of

trees, the DEFF and the imbalance of the covariates in our simulation studies. However,

the MSE of tmðY;XÞ is generally not smaller than the MSE of the standard twang
approach. We expect that the primary reason for the surprising result is that the variance in

the estimated treatment effect is not sufficiently reduced by the method. We expect several

factors are at play. First, the DEFF is not fixed but varies, and hence the variance of the

weighted mean of the residuals is greater than fð1� R2ÞDtg=fnqð1� qÞg. Second, we
estimate R2 and the regression coefficients, and this adds to variability in the amount of

estimated imbalance, which increases the contribution of the imbalance to the variance of

the estimated treatment effect. Third, we use squared difference in weighted covariate

means from one sample to estimate D2, the expected value of this squared difference, and

this too increases the contribution of imbalance to the variance of the estimated treatment
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effects. Because of these factors the MSE-based method tends to not achieve the expected

reduction in variance but has closer to the expected increase in bias, and consequently the

MSE in the treatment effect is larger than expected. Our results suggest that improving on

the standard twang approach of tuning the model to minimize imbalance may be difficult

in practice, in part because increasing imbalance is costly in terms of both bias and

variance.

The implications from our findings are important to consider. While propensity score

weighting has been shown to reduce bias when estimating treatment effects, it also often

reduces power at the same time. In all cases, a certain reduction in power must be expected

due to the variability in the estimated weights. Our work highlights that there are poten-

tially meaningful ways to optimize propensity score machine learning methods to allow for

minimal bias and less variability. However, caution should be used, particularly with small

sample sizes. As discussed above, substantial improvement on the standard twang
approach of tuning the model to minimize imbalance may be difficult in practice. It is

important to note that the fine-tuning required by GBM is similar to the fine-tuning

inherent in almost all machine learning methods. We expect that the alternative approaches

we have explored in this paper may lend themselves nicely to other machine learning

methods such as LASSO, splines, the superlearner, or random forests (Tibshirani 1996;

Breiman 2001; van der Laan et al. 2007). Another alternative one might consider would be

weight trimming. However, Lee et al. (2011) demonstrated that weight trimming after use

of twang to obtain propensity score weights does not improve performance compared to

no trimming of twang weights. In fact, they found that in some cases weight trimming can

induce bias. In general, weight trimming cannot be optimal because trimming weights will

increase imbalance in the covariates to reduce variability in the weights and weight

trimming approaches generally do not account for the fact that the relative costs of

imbalance in the covariate and variability in the weights depends on R2 and the sample

size. Hence, like the ABS method, when the sample size or R2 is large weight trimming is

likely to perform poorly.

Our work should be considered along with its limitations. First, the use of outcome

information in one of the proposed MSE-based approaches should be carefully considered.

Some recent research has strongly cautioned against the use of outcome information in the

estimation of propensity score weights (Stuart et al. 2013; Rubin 2004; Rosenbaum 2010;

Hansen 2008). As described by Stuart et al. (2013), propensity score methods tend to be

conducted without use of the outcome variable in an effort to separate the design and

analysis stages of a study and allow for use of a single set of propensity scores for multiple

outcomes. However, others have argued that without the use of outcome information,

instrumental variables which are related to the treatment but not related to the outcome

may be included in the propensity score model and result in decreased precision (Brookhart

et al. 2006; Westreich et al. 2011). Second, our simulation study includes only a small

number of conditions which, although chosen to control features of the data which would

affect the performance of alternative approaches to balance bias and variance when tuning

the propensity score model, did not produce data with large design effects. The relative

performance of alternative methods may differ in settings with more variable weights, like

the case studies. However, by including the case studies we are able to demonstrate the

impact of the proposed alternatives in cases with more variable weights and in particular,

show that the MSE-based approach can guard against modeling with a large number of

instruments (abstinence example) which, as noted above, can degrade the accuracy of

estimated treatment effects. A third limitation of our work is our focus on the balance
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metric ASB; however, there are a number of other available metrics to assess balance

(Imbens and Rubin 2015). Additionally, while the data from our case studies produce

highly variable weights as demonstrated by the large design effects, our simulation study

does not appear to produce situations with highly variable weights. We expect that these

alternatives may perform differently in more extreme simulated data structures. Another

limitation of twang and our proposed approaches is that they can be computationally

intensive. Our alternatives rely on a grid search algorithm and thus can require long

amounts of processing time. Lastly, as with any propensity score approach, we require the

strong assumption that there are no unmeasured confounders. This assumption is impos-

sible to test in practice but one could (and should) consider sensitivity analyses to examine

how sensitive the observed findings might be to violations of this assumption (Griffin et al.

2013; Rosenbaum and Rubin 1983a; Higashi et al. 2005).
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Robins, J.M., Hernán, M.Á., Brumback, B.: Marginal structural models and causal inference in epidemi-
ology. Epidemiology 11(5), 550–560 (2000)

Rosenbaum, P.R.: Various practical issues in matching. In: Design of Observational Studies, pp. 187–195.
Springer, New York (2010)

Rosenbaum, P.R., Rubin, D.B.: Assessing sensitivity to an unobserved binary covariate in an observational
study with binary outcome. J. R. Stat. Soc. Ser. B (Methodol.) 45(2), 212–218 (1983a)

196 Health Serv Outcomes Res Method (2017) 17:175–197

123



Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal
effects. Biometrika 70(1), 41–55 (1983b)

Rosenbaum, P.R., Rubin, D.B.: Reducing bias in observational studies using subclassification on the
propensity score. J. Am. Stat. Assoc. 79(387), 516–524 (1984)

Rubin, D.B.: On principles for modeling propensity scores in medical research. Pharmacoepidemiol. Drug
Saf. 13(12), 855–857 (2004)

Stuart, E.A., Lee, B.K., Leacy, F.P.: Prognostic score-based balance measures can be a useful diagnostic for
propensity score methods in comparative effectiveness research. J. Clin. Epidemiol. 66(8), S84–S90
(2013)

Survey, C.H.I.: Technical Paper No. 1: The chis 2001 Sample: Response Rate and Representativeness. Ucla
Center for Health Policy Research, Los Angeles, CA (2003)

Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1),
267–288 (1996)

van der Laan, M.J.: Targeted estimation of nuisance parameters to obtain valid statistical inference. Int.
J. Biostat. 10(1), 29–57 (2014)

van der Laan, M.J., Polley, E.C., Hubbard, A.E.: Super learner. Stat. Appl. Genet. Mol. Biol. (2007). doi:10.
2202/1544-6115.1309

Wells, D.L.: Associations between pet ownership and self-reported health status in people suffering from
chronic fatigue syndrome. J. Altern. Complement. Med. 15(4), 407–413 (2009a)

Wells, D.L.: The effects of animals on human health and well-being. J. Soc. Issues 65(3), 523–543 (2009b)
Westreich, D., Cole, S.R., Funk, M.J., Brookhart, M.A., Stürmer, T.: The role of the c-statistic in variable

selection for propensity score models. Pharmacoepidemiol. Drug Saf. 20(3), 317–320 (2011)

Health Serv Outcomes Res Method (2017) 17:175–197 197

123

http://dx.doi.org/10.2202/1544-6115.1309
http://dx.doi.org/10.2202/1544-6115.1309

	Optimizing variance-bias trade-off in the TWANG package for estimation of propensity scores
	Abstract
	Introduction
	Propensity scores: use and estimation
	Using propensity scores to obtain a treatment effect estimate
	Propensity score estimation

	Methods to select the optimal number of trees in twang
	Current method
	p value based method
	Absolute standardized bias based method
	Mean squared error based method

	Simulation study
	Case studies
	The effect of dog ownership on general health
	Abstinence and long-term economic outcomes

	Discussion
	Funding
	References




