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Abstract Ordinal variables are very often objects of study in health sciences. However,

due to the lack of dissemination of models suited for ordinal variables, users often adopt

other practices that result in the loss of statistical power. In this tutorial, different models

from the family of logistic regression models are introduced as alternatives to handle and

interpret ordinal outcomes. The models that were considered include: ordinal regression

model (ORM), continuation ratio model (CRM), adjacent category model (ACM), gen-

eralised ordered logit model, sequential model, multinomial logit model, partial propor-

tional odds model, partial continuation ratio model and stereotype ordered regression

model. By using the relationship of hospital length of stay in a public hospital in Mexico

with patient characteristics as an example, the models were used to describe the nature of

such relationship and to predict the length of stay category to which a patient is most likely

to belong. After an initial analysis, the ORM, CRM and ACM proved to be unsuitable for

our data due to the transgression of the parallel regression assumption. The rest of the

models were estimated in STATA. The results suggested analogous directionality of the

parameter estimates between models, although the interpretation of the odds ratios varied

from one model to another. Performance measurements indicated that the models had

similar prediction performance. Therefore, when there is an interest in exploiting the

ordinal nature of an outcome, there is no reason to maintain practices that ignore such

nature since the models discussed here proved to be computationally inexpensive and easy

to estimate, analyse and interpret.
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1 Introduction

Ordinal variables allow assigning numbers to classify characteristics of subjects into cat-

egories that are ordered in some meaningful way. There are two broad categories of ordinal

variables: the first is a discretised version of a continuous variable, which is split into

different intervals according to some specific criteria and where each interval corresponds

to a discrete category. For example, patients can be grouped according to their hospital

length of stay (LoS) into categories such as ‘‘short LoS’’, ‘‘medium LoS’’ and ‘‘long LoS’’.

The other type of ordinal variable is originated by an assessing process which evaluates an

indeterminate amount of information before providing a grade or score of the ordinal

variable (Anderson 1984). Examples of this type of ordinal variable are the Lansky score

(Lansky et al. 2006) and Barthel scale (Mahoney and Barthel 1965) to assess general well-

being and performance in daily living activities for children with cancer and geriatric

patients, the score systems for patient dependency at an intensive care unit (Flaatten et al.

2002) or the triage classification used in emergency departments.

Ordinal variables are very often objects of study. A classical approach is to create

models to describe them in relation to other variables by looking for rules of classification

based on data. In this context, there are a variety of models that can accommodate ordinal

variables, including the classical and well-established logistic regression models. However,

in practice, there is a very limited dissemination of the range of models that can be used.

Consequently, it is very common to use logistic models that are designed for nominal

variables (unordered categories) with ordinal variables (Keski-Rahkonen et al. 2003;

Takazawa et al. 2003; Newman et al. 2005; Mcelroy et al. 2002; Walston et al. 2002;

Mäntyselkä et al. 2003). Another common approach is to amalgamate adjacent categories

of the ordinal outcome into two broad categories and use standard binary logistic

regression (Bender and Grouven 1998). However, this often results in the loss of infor-

mation, description and statistical power (Ananth and Kleinbaum 1997; Armstrong and

Sloan 1989). Amalgamating adjacent categories could be acceptable if when estimating a

binary logistic regression (using the categories that one desire to combine), it is found that

all the slopes in the model are simultaneously equal to zero.

The purpose of this tutorial is to provide an introduction to models from the family of

logistic regression that are suitable for the analysis of ordinal data, putting particular

emphasis on understanding how each model can be used to answer different research

questions. The logistic regression models considered here are: the ordinal regression

model, continuation ratio model, adjacent category model, generalised regression model,

sequential model, multinomial logit model, partial proportional odds model, partial con-

tinuation ratio model and stereotype ordered regression model.

2 Data

The illustrative example of an ordinal outcome variable in this tutorial is a discretised

version of LoS, whereby patients were classified according to three categories: ‘‘short

LoS’’ (patients with LoS up to 3 days), ‘‘medium LoS’’ (patients with LoS from 4 to

11 days) and ‘‘long LoS’’ (patients with LoS from 12 days onwards). This classification

was made based on empirical observation and personal judgment. Figure 1 shows the

distribution of the continuous variable LoS, and its basic descriptive statistics are given in

Table 1. Figure 2 depicts the discretised version of LoS split into three categories, where in
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accordance with Fig. 1, the vast majority of patients have a short LoS and just few of them

experience a long LoS.

Potential predictor variables of a patient’s LoS category are described in Table 2. The

data were extracted from routine patient records in a general public hospital in Mexico.

The hospital belongs to the Secretariat of Health, is located in the heart of an urban area

and is open to the general population, making it the preferable option for people who

cannot afford private medical services or who are not affiliated to another healthcare

provider. It is a 148-bed second-level hospital, which means it offers outpatient walk-in

clinics and hospitalisations for basic medical specialties, such as adult medicine, paedi-

atrics, obstetrics and gynaecology, and general surgery. Hospitals that correspond to this

level of care have operating rooms and equipment suitable for performing surgery of low

and medium level of complexity.

The data correspond to almost 13,300 patient records from the years 2005 to 2009. The

variables ‘‘diagnosis’’ and ‘‘surgical procedure’’ originally contained, respectively, around

800 and 200 different ICD codes (International Classification of Diseases codes version 10

for diagnoses and version 9 for surgical procedures), which would complicate their

Fig. 1 Distribution of the LoS as continuous variable

Table 1 Descriptive statistics for LoS

Mean Std. Deviation Variance Minimum Maximum Skewness Kurtosis

3.97 4.55 20.77 0.50 196 4.31 34.73
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inclusion for further statistical analysis. To reduce the number of ICD codes of such

variables, we used hierarchical cluster methods based on the v2 dissimilarity measure

(Rezanková 2009). The diagnosis codes were grouped into five clusters using complete

linkage algorithm (Defays 1977), and the surgical procedure codes were grouped into four

main categories using Ward’s algorithm (Ward 1963). For more details, the reader is

referred to Guzman Castillo (2012). Tables 3 and 4 contain some examples of the most

common ICD codes for each diagnosis and surgical procedure category.

Fig. 2 Distribution of the LoS as discretised variable

Table 2 Description of variables

Variables Description

Gender Female is the reference category

Previous admissions Number of previous hospitalisations

Age Age of patient

Ward Ward of treatment: adult medicine and general surgery

Origin Area of arrival in hospital: accident emergency and outpatient clinic

Number of surgical procedures Total number of surgical procedures undergone

Diagnosis Main health problem or disease, cause of the hospitalisation

Surgical procedure Main surgical procedure

Length of stay Number of nights spent at hospital
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3 Models

Fullerton (2009) presented a classification of models for ordinal data based on how they

deal with the proportional odds assumption or parallel regression assumption. Most of the

models presented here can be thought as J - 1 simultaneous binary logistic regressions,

where J is the number of categories of the ordinal-dependent variable. The parallel

regression assumption means that the beta coefficients are equal across the simultaneous

regressions. Assuming the equality of slopes among categories allows interpreting the

models in the same way for all categories, making more parsimonious models.

The models that are based on that assumption are the ordinal regression model, the

continuation ratio model and the adjacent category model. However, there is a general

consensus that this assumption is quite stringent and the chance of all the dependent

variables in the model having identical slope coefficients is likely to be quite rare (Lall

et al. 2002). Consequently, other models have been presented in statistical literature as

alternatives.

The generalised ordered logit, the sequential and multinomial models have all slope

coefficients not delineated by the parallel regression assumption. One of the drawbacks of

these models is that they include many more parameters, as a result of setting free all

variables from parallel line constraints. Although it is very common to find that the parallel

regression assumption has been violated, usually not all the slope coefficients of the model

transgress the assumption.

The partial proportional odds model, partial continuation ratio and stereotype ordered

model are models that impose constraints for parallel lines only where they are needed, i.e.

Table 3 Some common diagnoses within each of the three diagnosis categories

Diagnosis category 1 Diagnosis category 2 Diagnosis category 3

Chronic cholecystitis Non-insulin-dependent diabetes mellitus Gastritis and duodenitis

Unspecified appendicitis Stroke Abscess of intestine

Acute appendicitis Gastrointestinal haemorrhage Ventral Hernia

Diarrhoea and gastroenteritis Hepatic failure Decubitus ulcer

Alcohol cirrhosis of liver Pleural effusion

Table 4 Some common surgical procedures within each of the four surgical procedure categories

Surgical procedure
category 1

Surgical procedure
category 2

Surgical procedure
category 3

Surgical procedure
category 4

Exploratory laparotomy Amputation of toe Appendectomy Peritoneal dialysis

Abdominal hysterectomy Irrigation of wound Cholecystectomy Repair of inguinal hernia

Fasciotomy Partial excision of
large intestine

Endoscopy of small
intestine

Aspiration of skin and
subcutaneous tissue

Open reduction of fracture Other incision of pleura Prostatectomy Umbilical herniorrhaphy

Exploratory laparotomy Other lysis of peritoneal
adhesions

Excision of
haemorrhoids

Circumcision
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some slope coefficients can be the same for all the J categories, while others can differ,

hence avoiding including unnecessary extra parameters in the model.

This selection of models is by no means comprehensive. In particular, one can find other

partially constrained models for the ordinal regression, the continuation ratio and the

adjacent category models (Cole and Ananth 2001; Hauser and Andrew 2006; Fullerton

2009).

Following this classification, the definition of the models in the next section has been

grouped into models that hold the parallel regression assumption for every independent

variable, for no independent variables and for some independent variables.

3.1 Parallel assumption for every independent variables

3.1.1 Ordinal regression model

The ordinal regression model (ORM), commonly known as the cumulative odds model

(Walker and Duncan 1967) or proportional odds model (Mccullagh 1980), was the first

model developed exclusively for ordinal outcomes. The ORM can be defined as a prob-

ability model:

ln
Prðy� jjxÞ
Prðy[ jjxÞ

� �
¼ sj � xb; j ¼ 1; . . .; J � 1;

where x is the vector of independent variables, bs are the slope coefficients, sj are the

thresholds, and J is the number of categories of the ordinal-dependent variable. The pre-

dicted probabilities of belonging to a certain category are defined as:

Pr y ¼ 1jxð Þ ¼ exp s1 � xbð Þ
1 þ exp s1 � xbð Þ ;

Pr y ¼ jjxð Þ ¼
exp sj � xb

� �
1 þ exp sj � xb

� �� exp sj�1 � xb
� �

1 þ exp sj�1 � xb
� � ; j ¼ 2; . . .; J � 1:

Pr y ¼ Jjxð Þ ¼ 1 � exp sJ�1 � xbð Þ
1 þ exp sJ�1 � xbð Þ ;

:

Furthermore, the ORM is often formulated as a latent variable model, defined as:

y0i ¼ xbþ �i:

yi ¼ j if sj�1 � y0i\sj; j ¼ 1; . . .; J;

where yi
0

is the latent variable ranging from ? to -?, and �i is the random error. The

thresholds s1 through sJ�1 are parameters to estimate, assuming that s0 = -? and

sJ = ?. In the context of LoS, the continuous latent variable yi
0

can be thought of as the

propensity of a patient to belong to a certain category. For example, the LoS category now

relies on the latent variable:

yi ¼ short if s0 � y0i\s1:

yi ¼ medium if s1 � y0i\s2:

yi ¼ long if s2 � y0i\s3:

Thus, when the latent variable crosses a threshold sj, the patient category changes.
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3.1.2 Continuation ratio model

A special type of ordinal model is the continuation ratio model (CRM) proposed by

Fienberg (1977) in which the categories represent levels, where the lowest level must occur

before the second, the second before the third and so forth until the highest level (Hilbe

2009). It can be thought as stages in some process through which an individual can

advance. A key characteristic of the process is that an individual must pass through each

stage (Long and Freese 2006). This special characteristic suits the nature of the patient

journey through the hospital where the patient can evolve from a short to a medium LoS

and so on. The CRM is defined as:

ln
Prðy ¼ mjxÞ
Prðy[mjxÞ

� �
¼ sm � xb; m ¼ 1; . . .; J � 1;

where m is the stage and J is the number of categories of the outcome variable. The

predicted probabilities are calculated by:

Pr y ¼ mjxð Þ ¼ exp sm � xbð ÞQm
j¼1 1 þ exp sj � xb

� �� �m ¼ 1; . . .; J � 1:

Pr y ¼ Jjxð Þ ¼ 1 �
XJ�1

j¼1

Prðy ¼ jjxÞ:

3.1.3 Adjacent category model

As the name indicates, the probability of interest in the adjacent category model (ACM) is

the adjacent probability: the probability of having a short LoS against the probability of

having a medium LoS or the probability of having a medium LoS against the probability of

having a long LoS. The ACM formulated by Goodman (1983) is defined as:

ln
Prðy ¼ mjx

Prðy ¼ mþ 1jxÞ

� �
¼ sm � xb; m ¼ 1; . . .; J � 1;

The predicted probabilities are calculated by:

Pr y ¼ mjxð Þ ¼
exp

PJ�1
j¼m sm � xbð Þ

� 	

1 þ
PJ�1

q¼1 exp
PJ�1

m¼q sm � xbð Þ
� 	h i m ¼ 1; . . .; J � 1:

Pr y ¼ Jjxð Þ ¼ 1 �
XJ�1

j¼1

Prðy ¼ jjxÞ

3.2 No parallel assumption for independent variables

3.2.1 Generalised ordered logit model

Described by Clogg and Shihadeh (1994), the generalised ordered logit model (GOLM)

allows the slope coefficients to differ for each of J-1 binary regressions as represented in

the following equation:ln
Prðy� jjx
Prðy[ jjx

� 	
¼ sj � xbj; for j ¼ 1 to J � 1:
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The predicted probabilities are calculated as:

Pr y ¼ 1jxð Þ ¼ exp s1 � xb1ð Þ
1 þ exp s1 � xb1ð Þ :

Pr y ¼ jjxð Þ ¼
exp sj � xbj

� �
1 þ exp sj � xbj

� �� exp sj�1 � xbj�1

� �
1 þ exp sj�1 � xbj�1

� � ; j ¼ 2; . . .; J � 1:

Pr y ¼ Jjxð Þ ¼ 1 � exp sJ�1 � xbJ�1ð Þ
1 þ exp sJ�1 � xbJ�1ð Þ

Notice that the equations for the GOLM are similar to the ORM. GOLM retains the

nature of the ORM by considering simultaneously the effects of a set of independent

variables across successive dichotomisations of the outcome (O’connell 2010), yet setting

free the slope coefficients bj to vary across the categories.

3.2.2 Sequential model

Also known as the unconstrained continuation ratio model, the sequential model (SeqM)

presented in (Kahn and Morimune 1979) and (Mare 1979) describes and ordinal outcome

as a sequence of decisions or steps. It can be expressed as:

ln
Prðy ¼ mjxÞ
Prðy[mjxÞ

� �
¼ sm � xbj; m ¼ 1; . . .; J � 1;

The predicted probabilities are calculated by:

Pr y ¼ mjxð Þ ¼
exp sm � xbj

� �
Qm

j¼1 1 þ exp sj � xbj
� �� �m ¼ 1; . . .; J � 1:

Pr y ¼ Jjxð Þ ¼ 1 �
XJ�1

j¼1

Prðy ¼ jjxÞ:

3.2.3 Multinomial logit model

Luce (1959) proposed the multinomial logit model (MNLM) as an extension of the binary

logistic regression model to handle polytomous outcomes, where the categories are no

longer considered as ordered and the effects of the independent variables are allowed to

differ for each outcome (Hilbe 2009). Although it was defined for nominal outcomes, it is

often used for ordinal data. The MNLM can be expressed as:

ln
Pr y ¼ mjxð Þ
Pr y ¼ bjxð Þ

� �
¼ xbmjb; m ¼ 1; . . .; J;

where b is the reference category or the comparison group. The predicted probabilities are

calculated by:

Pr y ¼ mjxð Þ ¼
exp xbmjb

� 	
PJ

j¼1 exp xbjjb
� 	 :

The MNLM relies on the assumption of independence of irrelevant alternatives (IIA)

(Luce 1959; Arrow 1963), where the odds do not depend on other alternative outcomes that
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are available. In other words, adding or deleting outcome categories does not affect the

odds among other outcomes. It is plausible to assume that the categories of LoS are

independent, because the odds of belonging to certain LoS category do not change if the

other two categories are omitted. Alternatively, the Hausman–McFaden test (Hausman and

Mcfadden 1984) and the Small–Hsiao test (Small and Hsiao 1985) can be used to evaluate

IIA. However, there is evidence suggesting that both tests often give inconsistent results

and provide little guidance to violations of the IIA assumption (Long and Freese 2006)

3.3 Parallel assumption for some independent variables

3.3.1 Partial proportional odds model

The partial proportional odds model (PPOM) formulated by Peterson and Harrell (Peterson

and Harrell 1990) imposes constraints for parallel lines only where they are needed. The

GOLM equation is now extended to accommodate the unconstrained parameters which

violated the assumption:

ln
Prðy� jjx
Prðy[ jjx

� �
¼ sj � xbþ Tcj

� �
; j ¼ 1; . . .; J � 1:

Here x is the vector containing the full set of independent variables. T is a vector

containing a subset of independent variables which violate the parallel assumption, and cj
are the regression coefficients associated with the variables in T. The predicted proba-

bilities of belonging to a certain category are defined as:

Pr y¼ 1jxð Þ ¼ exp s1 � xbþTc1ð Þð Þ
1þ exp s1 � xbþTc1ð Þð Þ :

Pr y¼ jjxð Þ ¼
exp sj� xbþTcj

� �� �
1þ exp sj� xbþTcj

� �� �� exp sj�1 � xbþTcj�1

� �� �
1þ exp sj�1 � xbþTcj�i

� �� � j¼ 2; . . .;J� 1:

Pr y¼ Jjxð Þ ¼ 1� exp sJ�1 � xbþTcJ�1ð Þð Þ
1þ exp sJ�1 � xbþTcJ�1ð Þð Þ

3.3.2 Partial continuation ratio model

The partial continuation model (PCRM) extends the equation for the CRM by adding

coefficients for those variables that violate the parallel assumption:

ln
Prðy ¼ mjxÞ
Prðy[mjxÞ

� �
¼ sm � xbþ Tcmð Þ; m ¼ 1; . . .; J � 1;

The predicted probabilities are calculated by:

Pr y ¼ mjxð Þ ¼
exp sm � xbþ Tcj

� �� �
Qm

j¼1 1 þ exp sj � xbþ Tcj
� �� �� �m ¼ 1; . . .; J � 1:

Pr y ¼ Jjxð Þ ¼ 1 �
XJ�1

j¼1

Prðy ¼ jjxÞ:
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3.3.3 Stereotype ordered regression model

The stereotype ordered regression model (SORM) can be thought of as imposing ordering

constraints on a multinomial model (Lunt 2005). It was proposed by Anderson (1984) in

response to the restrictive parallel regression assumption of the ORM. The model was

originally defined for ordinal variables originated by an assessing process, but it is not

restricted to this type of variables only. The SORM is defined as:

ln
Prðy ¼ mjxÞ
Prðy ¼ bjxÞ ¼ hm � hbð Þ � /m � /bð Þxb;

where hs are the intercepts and /s are scale factors associated with the outcome categories

and b is the reference category or the comparison group. The model allows the coefficients

associated with each independent variable to differ by a scale factor that depends on the

pair of outcomes on the left-hand side of the equation. Similarly, the hs allow different

intercepts for each pair of outcomes. If the relationship between the independent variables

and dependent variable is ordinal, then /1[/2[ ���[/J-1[/J.

Constraints need to be added to the model to make it identifiable: /1 = 1, /J ¼ 0,

h1 = 1 and hJ ¼ 0. The predicted probabilities of belonging to a certain category are

defined as:

Pr y ¼ mjxð Þ ¼ exp hm � /mxbð ÞPJ
j¼1ðexp hj � /jxb

� � :

The model presented here is known as a one-dimensional stereotype ordered regression.

Anderson (1984) also presents an extension of the equations to model ordinal variables that

are constructed by multiple domains. For example, the coronary heart disease risk score

(Wilson et al. 1998) classifies individuals according to their risk of having a coronary heart

disease event in the next 10 years. The score is constructed by adding the scores of

different risk factors (e.g. diabetes, cholesterol and blood pressure) indicating level or risk

(very low, low, moderate, high and very high)

4 Odds ratios and interpretation

The interpretation of the logistic regression models can be more manageable if it comes in

terms of odds ratios (ORs). The odds of an event occurring are defined as the probability of

an event occurring divided by the probability of that event not occurring. In terms of

logistic regression models, the odds ratio then compares the change in the odds that results

from a unit change in the predictor.

The models previously described differ in how an event (or non-event) is defined.

Table 5 summarises how the odds in each type of approach and models are interpreted.

The adjacent category, multinomial logit and stereotype ordered models are similar in

the sense they perform one by one comparison of the categories. For example, the adjacent

category model compares one category against the next higher category. Because the

MNLM ignores the ordering of the outcomes, it compares a given category against the

reference category. The SORM interpretation of the odds could be similar to the MNLM,

but when estimated using the default options of STATA, it compares the highest category

versus the lowest category.
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The odds ratios can be computed from the models’ parameter estimates by exponen-

tiating the b coefficient. When the odds ratio is greater than 1 (i.e. computed from positive

bs), it indicates that, as the predictor increases, the odds of the event occurring increase by

a factor of exp bð Þ, holding all the other variables constant. Conversely, a value lower than

1 (i.e. computed from negative bs) indicates that, as the predictor increases, the odds of the

event occurring decrease by a factor of exp bð Þ, holding all the other variables constant.

To facilitate the interpretation, when a predictor has a negative effect on the event

occurring, instead of calculating the odds of the event occurring, the odds of the event not

occurring can be computed by simply taking the inverse of the effect on the odds of the

event occurring i:e: exp bð Þ�1
� 	

. Alternatively, the models can be interpreted as per cent

change: as the predictor increases, the odds of the event occurring increase by

100 � exp bð Þ � 1½ �ð Þ%, holding all other the variables constant.

5 Model estimation

As in common practice, two-thirds of the LoS data set, named the training set, was

allocated for estimation purposes and the remaining third, named the validation set, was

used for testing (Dobbin and Simon 2011). All the models described above were fitted to

the training set using STATA. The first step is to evaluate the parallel assumption. We

fitted the ORM using ologit followed by the command brant which performs a Brant test.

This test compares the beta coefficients from J-1 binary logits and gives a list of which

variables are violating the parallel assumption. This was useful later to estimate the par-

tially constrained models (i.e. PPOM, PCRM and SORM) where constraints needed to be

imposed on those variables where the assumption is not violated. The commands ocratio
and adjcatlogit were used to estimate the CRM and ACM; the gologit command with the

npl option was used for GOLM; and the commands ucrlogit, mlogit and slogit were used

to estimate the SeqM, MNLM and SORM, respectively.

The PPOM was estimated using the gologit2 command with the autofit option to

impose constraints on the variables where the parallel assumption is not violated. Finally,

the PCRM was estimated using the seqlogit, but the constraints needed to be added

manually. See the appendix for the full STATA code and alternative commands for

estimation.

Table 5 Odds ratio interpretation for each logistic regression model

As the predictor increases by one unit, the odds of________________ increase, holding constant the effects
of the other predictors

ORM Being in a higher category versus a category m or lower

GOLM

PPOM

CRM Progressing to a higher category versus category m (given you have progressed
from the lowest)SEQ

PCRM

ACM Being in the next higher category versus being in a category m

MNLM Being in a category m versus the reference category

SORM Being in the highest category occurring versus the lowest category
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All the models were estimated through the procedure of maximum likelihood estima-

tion. Maximum likelihood estimates are the values of the parameters that have the

‘‘maximum likelihood’’ of generating the observed sample.

To compare the models discussed here, along with the log-likelihood, the Akaike

information criterion (AIC) and Bayesian information criterion (BIC) were calculated. A

model with a higher log-likelihood should be considered as a better-fitting model. Models

with the smaller absolute AIC and/or BIC values should be preferred.

In addition, model performance was measured through accuracy rates (per category and

overall performance) to express the percentage of times the patient membership (i.e.

observed category to which they belong) matches with the membership predicted by the

models discussed here. The predicted category was assigned using the highest probability

method (Anderson and Philips 1981), which allocates a patient to the category for which he

or she got the highest probability estimate.

Furthermore, an analysis of the residuals might be useful in identifying the data points

for which the models fit poorly. However, recent research conducted (Hosmer and

Lemeshow 2010) has highlighted the difficulties of defining what a large residual is in the

context of logistic models, as it highly depends on the type of data involved. Therefore, the

analysis of the residuals was left out of the scope of this tutorial.

6 Results

Table 6 gives the results of the Brant test. Notice that the v2 test, at the top of the table,

indicates that the null hypothesis, stating that the model parameters are equal across

categories (i.e. parallel regression assumption), can be rejected at the 0.0001 level. In

general, when statistical assumptions, such as the parallel regression assumption, are

broken as they are in this data set, models based on the parallel assumption for all the

independent variables cannot be accurately applied to the whole population (the parameters

of the model are said to be biased). In other words, it is not possible to draw conclusions

about the population, although valid estimates of the models can be generated. Conse-

quently, these models where the parallel assumption is imposed to all their independent

variables (ORM, CRM and ACM) were excluded from further analysis. Notice that not all

Table 6 Brant test for parallel
assumption

The results in bold correspond to
the coeffcients for all variables
being tested simultaneosly

x2 p[ x2 df

All 153.17 0 11

Female 19.23 0 1

Previous admissions 0.23 0.628 1

Outpatient clinic 2.57 0.109 1

General surgery ward 4.89 0.027 1

Diagnosis category 2 11.65 0.001 1

Diagnosis category 3 31.97 0 1

S. procedure category 2 2.47 0.116 1

S. procedure category 3 0.78 0.377 1

S. procedure category 4 5.82 0.016 1

Number of s. procedures 13.97 0 1

Age centred 1.84 0.175 1
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the variables violate the assumption. This should be taken into account when imposing

constraints to the partial models.

Table 7 displays the odds ratios estimates for the six remaining models. Notice that for

all models, gender, surgical procedure category 3 and number of surgical procedures to

undergo were not significant predictors of short to medium LoS. However, gender and

number of surgical procedures to undergo then became significant predictors of long LoS.

For example, it seems that gender might not be an initial factor when predicting whether a

patient will be more than 4 days hospitalised. But being female might increase the odds of

staying more than 12 days.

The first two columns of Table 7 display the parameter estimates for the GOLM. The first

column contrasts short LoS with categories medium and long LoS, and the second column

contrasts categories short and medium LoS with category long LoS. In terms of interpre-

tation, an OR C 1 indicates that higher values in the predictors make it more likely that the

patient belongs to an upper LoS category than the current one, while an OR\ 1 indicates

that higher values on the independent variable increase the likelihood of belonging to the

current category or to a lower one (Williams 2007). For example, the OR of diagnosis

category 2 (e.g. insulin-dependent diabetes mellitus, hepatic failure and stroke) is higher in

the first section, indicating that a patient with a diagnosis category 2 is more likely (2 times

more) to have a medium or long LoS rather than a short one. The OR of outpatient clinic is

less than 1, so to ease the interpretation, we take their inverse. The higher value in the second

column indicates that a patient who is referred to hospitalisation from the outpatient clinic is

more likely (4.2 times more) to have a short or medium LoS rather than a long one.

The next two columns of Table 7 display the odds ratios for the SEQM. The first

column contrasts short LoS with categories medium or long LoS, and the second column

contrasts category medium LoS with category long LoS. In terms of interpretation, an

OR C 1 indicates that higher values in the predictor make it more likely that the patient

progresses to an upper LoS category than the current one, while an OR\ 1 indicates that

higher values on the independent variable increase the likelihood of not progressing to the

next category. For example, the OR of diagnosis category 2 (e.g. insulin-dependent dia-

betes mellitus, hepatic failure and stroke) is higher in the first section, indicating that a

patient with a diagnosis category 2 is more likely (2 times more) to progress to a medium

or long LoS rather than a short LoS. The OR value of the coefficient of outpatient clinic is

higher in the first section (after taking the inverse), indicating that a patient who is referred

to hospitalisation from the outpatient clinic is more likely (3 times more) to have a short

LoS rather than a medium or long one.

The next model is the MNLM where short LoS is the reference category (i.e. STATA

usually picks the category with the highest frequency to be the reference category, but this

can be easily modified). A patient with a diagnosis category 3 is three times more likely to

have a short LoS rather than a medium LoS. A patient who is referred to hospitalisation

from the outpatient clinic is 5 times more likely to have a short LoS than a long one. A

patient undergoing a surgical procedure category 4 is 2.5 times more likely to have a long

LoS rather than a short one.

The next two models (PPOM and PCRM) have beta coefficients varying across the

categories only for those variables that violate the parallel assumption, i.e. gender, general

surgery ward, diagnosis category 2 and 3, surgical procedure category 4 and number of

surgical procedures to undergo. Thus, the parameter estimates for the rest of the variables

(i.e. constrained variables) are the same in both columns. In the PPOM, a patient under-

going a surgical procedure category 4 is almost 60 % more likely to have a longer LoS.

The odds of having a shorter LoS are three times higher for patients who are referred to
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hospitalisation from the outpatient clinic. Conversely, more specific comparisons can be

made for the variables which were set free of constraints: the higher coefficient of diag-

nosis category 2 (e.g. insulin-dependent diabetes mellitus, hepatic failure and stroke) in the

first column indicates that patient with a condition classified under that diagnosis category

is two times more likely to have a medium or long LoS rather than a short one.

The next model is the PCRM, from which estimates were almost identical to the PPOM.

It is just the interpretation which slightly changes. For example, a patient with a diagnosis

category 2 is two times more likely to progress to medium or long LoS.

The last two columns show the output for the SORM. The parameters can be interpreted

in terms of the odds of the reference category versus the first category. STATA usually

selects the last category (long LoS) as the reference category, but this can be easily

changed in the command line. For example, the odds of having a long LoS versus a short

LoS are twice as high for patients with a disease classified in the diagnosis category 2 (e.g.

insulin-dependent diabetes mellitus, hepatic failure and stroke), The odds of having a short

versus a long LoS are three times higher for patients who are referred to hospitalisation

from the outpatient clinic.

Table 8 displays the goodness of fit and performance measurement. The model that

represents the best fit according to the log-likelihood and AIC (by a negligible margin) is

the MNLM. However, in terms of BIC, the best model is the PPOM. The absolute lower

value of BIC could indicate a better fit or the presence of fewer parameters; it penalises

free parameters more strongly than AIC. The second part of the table shows the accuracy

rates on the validation set, giving an idea of how well the models do in predicting new

patients. The six models perform well in predicting patients with short LoS. However, the

models failed to predict any patient with a long LoS. Correct discrimination between

categories is only possible if categories are essentially different in terms of the predictors

(Ashby et al. 1986), which may suggest that collecting more data is appropriate for our

illustrative example. Only when more data are not available is it acceptable to combine

adjacent categories (e.g. medium and long LoS) and use conventional binary logistic

regression instead to improve classification performance.

7 Discussion

When choosing the most appropriate model, there are some main points to consider:

MNLM is a very popular model, and there is a wide selection of software on the market

available for its implementation, which is naturally an advantage. However, the biggest

Table 8 Comparative chart logistic regression models

Model Log-likelihood AIC BIC Accuracy rate

Short (%) Medium (%) Long (%) Overall (%)

GOLM -8959.0 17,966.0 18,145.7 86.6 48.5 0 70.6

SeqM -8955.2 17,958.3 18,138.1 80.6 60.6 73.6

MNLM -8954.2 17,956.4 18,136.2 86.6 48.5 0 70.6

PPOM -8963.8 17,963.5 18,098.3 86.6 48.5 0 70.6

PCRM -8966.7 17,969.5 18,104.3 80.6 60.6 73.6

SORM -8991.9 18,011.8 18,116.6 86.7 48.2 0
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drawback of the MNLM is that it ignores the clearly ordinal nature of the data which

hinders the ability to assess effect directionality and progression (Cliff 1996).

The models based on the parallel assumptions are the only ones that strictly maintain the

ordinality of the outcomes (Mccullagh 1980). The rest of the models only retain the ordinal

nature of the outcome to some extent (except for the MNLM that completely ignores the

ordinal nature). Another advantage of the models based on the parallel assumption is their

parsimony compared to most of the models presented here. However, the parallel

assumption is rarely fulfilled and these models cannot be applied. SORM is another par-

simonious model and easy to analyse, but it has been frequently associated with highly

biased estimates and dubious identifiability when more than four outcome categories are

involved (Holtbrugge and Schumacher 1991). The partially constrained models have less

parameter than the fully unconstrained models. Both AIC and BIC take into account

parsimony when evaluating the model goodness of fit. For our particular case, the more

parsimonious models did not outperform those models with more parameters.

Furthermore, the choice of model should depend on the research question: if the main

goal is classification and prediction, it is not imperative to select a model that preserves

ordinality but to find which minimises cost of misclassification. For example, when cat-

egories are ordered, misclassification to an adjacent category should be always preferred to

misclassification to a more extreme one (Ashby et al. 1986). There is strong evidence that

suggests the MNLM outperforms ordinal models under a variety of circumstances

(Campbell et al. 1991). For our illustrative example, more data need to be collected if any

of these models were to be used for prediction and classification purposes. If collecting

more data is not feasible, combining adjacent categories (e.g. medium and long LoS) and

using conventional of binary logistic regression instead might be acceptable.

However, if the main goal is to understand the nature and direction of the predictor

effects by exploiting the ordinal nature of the outcome, one should pick the model that best

interprets the event of interest under study, especially in our case where there was little

difference in terms of goodness of fit and performance between the six models.

The ACM, MNLM and SORM provide one by one comparison of categories. These

models can be of particular use when hospitals plan their resources around a specific type

of patients like short stays. It might be the case that patients with short and medium LoS

are no different in terms of the level of care they need. Therefore, planners might be more

interested in identifying factors for those patients who might have a long LoS. These three

models allow direct comparisons with that category.

The ORM, GOLM and PPOM reveal the likelihood of moving in a certain direction (the

patient moves towards either longer LoS or shorter LoS). They are very useful in identi-

fying trends in the odds, and for the illustrative example shown here, understanding patient

progression regarding to their LoS category, either upward or downward, brought more

valuable information than comparing against a fixed category (e.g. MNLM or SORM).

The CRM, SeqM and PCRM reveal the likelihood of moving in certain direction

assuming that patients must have pass through lower categories. This might be particularly

useful if there is an interest in understanding patient pathways at hospital.

8 Conclusion

This tutorial presents a synthesised review of nine different models from the family of

logistic regression for the analysis of ordered outcomes. The three first models ORM, CRM

and ACM are developed under a strong assumption (i.e. the parallel regression assumption)
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that is rarely fulfilled. Accordingly, other models are presented as viable alternatives,

including GOLM, SEQM, MNLM, PPOM, PCRM and SORM. During model validation,

performance measurements indicated that the six models had analogous performance when

predicting new data. Moreover, the direction of the effects estimates were very similar

between models, although the interpretation of the odds ratios varied from one model to

another.

Consequently, other factors should be taken into account when choosing the most

appropriate model, such as simplicity, number of model parameters or software avail-

ability. Most importantly, the choice should be based on the user’s research question and

event under study. The models presented here have proved to be computationally inex-

pensive and easy to estimate, analyse and interpret. Therefore, there is no reason to

maintain frequently used practices, such as using nominal models or binary regression

models, on combined adjacent categories.
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