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Abstract Bed days is a potentially useful metric of efficiency in clinical studies

involving the hospital admission decision. However, this metric involves excess zeros,

possible overdispersion, and possible clustering (in multi-site studies). A random effects

negative binomial hurdle model can account for each of these issues. We extend this model

to include site-level correlation between the two component parts and implement best

linear unbiased prediction-type estimation with restricted maximum quasi-likelihood. This

approach offers computational advantages over maximum likelihood in a generalized

linear mixed model setting. Simulations show that the proposed approach performs well for

fixed effects and variance components under a plausible range of bivariate correlation. The

Emergency Department Community Acquired Pneumonia study motivates this work and

illustrates the methods.

Keywords Excess zeros � Overdispersion � Generalized linear mixed model � Maximum

likelihood � Best linear unbiased prediction (BLUP)-type estimation � Restricted maximum

quasi-likelihood

1 Introduction

Community-acquired pneumonia (CAP) is a common, costly, and often fatal illness with

more than 4 million episodes in the United States each year (Hsu et al. 2010). Providing
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quality and cost-effective care in patients with CAP has important economic and public

health implications. The direct medical care costs of treating pneumonia are almost $10

billion per year, with the cost of inpatient treatment being 20 times higher than that of

outpatient treatment (Fine et al. 2000; Niederman et al. 1998). Because inpatient cost is

comprised mainly of the cost of hospitalizations, reducing the admission rate of low risk

patients and reducing the length of stay (LOS) for inpatients with CAP could contribute

substantially to medical care cost savings and efficient health care utilization (Fine et al.

2000). Measures of efficiency of care include the probability of outpatient treatment and

LOS (Brown et al. 2003). An alternative measure of efficiency that includes both com-

ponents is ‘‘bed days’’, defined as zero for outpatients and LOS for inpatients, where LOS

is the difference between discharge and admission dates (Wang et al. 2002). Bed days has

problematic statistical characteristics, including excess zeros and possible overdispersion.

In addition, clustering may be present, as in multi-site studies or repeat hospitalizations.

Finite mixture models, including zero-inflated models and hurdle models, commonly

are used to allow for excess zeros. In a g-component Poisson mixture model, the number of

components must be estimated (Schlattmann et al. 1996; Wang et al. 1996). For bed days,

the number of components is known to be two, i.e., inpatients and outpatients. Although

the zero-inflated and hurdle models accommodate counts with excess zeros (Cunningham

and Lindenmayer 2005; Min and Agresti 2002; Ridout et al. 1998; Welsh et al. 1996), we

will not consider zero-inflated models here because the zero-inflated model presumes that

zeros can occur in both component distributions. Hurdle models have been used in eco-

nomic applications and health care services (Arulampalam and Booth 1997; Gurmu 1998;

Pohlmeier and Ulrich 1995). A hurdle model is a two-component mixture with a binomial

part (probability of passing the ‘‘hurdle’’) and a Poisson or negative binomial part. A hurdle

model is more appropriate than a zero-inflated model for the outcome of bed days, because

all patients are at risk for hospitalization when they present to a site (hospital), but zero bed

days occur only among outpatients.

The hurdle model has been extended to account for clustering (e.g., by site) using

maximum likelihood (ML) estimation in a generalized linear mixed model (GLMM)

framework. ML estimation integrates out random effects from the joint likelihood using

numerical approximations (Min and Agresti 2005). Although efficient, ML involves

intensive computing and may not converge. In addition, ML can give biased estimates of

variance components for random effects. An alternative method to estimate variance

components in the GLMM setting, best linear unbiased prediction (BLUP)-type estimation

with restricted maximum quasi-likelihood (REMQL), requires less integration and pro-

duces less biased estimates of variance components relative to ML (McGilchrist 1994;

McGilchrist and Yau 1995). Although the BLUP(REMQL) approach has been used to

estimate random effects in some finite mixture models (including zero-inflated models), it

has not been implemented for the random effects hurdle model. A Bayesian approach also

has been implemented to reduce small-sample bias and avoid asymptotic approximations

or estimation of functions of parameters (Neelon et al. 2010). However, the Bayesian

approach still is computationally intensive.

In this paper, we develop BLUP(REMQL) estimation for a correlated random effects

hurdle model. We consider Poisson and negative binomial hurdle models and allow the

binomial and count components to be correlated at the site level. In Sect. 2, we develop a

procedure to estimate the fixed effect parameters. Estimation of the variance components is

described in Sect. 3, and the scale parameter estimation is derived in Sect. 4. In Sect. 5, we

apply the method to analyze bed days in the multi-site Emergency Department Community

Acquired Pneumonia (EDCAP) study (Yealy et al. 2004, 2005). We describe a simulation
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study to investigate the validity of the proposed estimation procedure for the negative

binomial hurdle model in Sect. 6. Section 7 concludes with a discussion.

2 Hurdle model with correlated random effects

Let Yj (j = 1, 2, …, n) be the number of bed days for patient j, where the total number of

patients is n. Because the Poisson hurdle model is a special case of the negative binomial

hurdle model, we describe the negative binomial hurdle model here (Pohlmeier and Ulrich

1995).

PðYj ¼ 0Þ ¼ pj; ð1Þ

PðYj ¼ yjjyj [ 0Þ ¼ ð1� pjÞ �
f ðyjÞ

1� f ð0Þ ;

where pj indicates the conditional probability of not passing the hurdle (i.e., not being

hospitalized) given patient j is at risk for hospitalization and f is a negative binomial

distribution.

This model was extended by Min and Agresti (2005) to include random effects. Let

Yij ði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; niÞ be the number of bed days of patient j at site i, when

m is the number of sites, ni is the number of patients at site i, and the total number (n) of

patients is
P

i=1
m ni. Then, the negative binomial hurdle model with random effects is:

PðYij ¼ 0Þ ¼ pij; ð2Þ

PðYij ¼ yijjyij [ 0Þ ¼ ð1� pijÞ �
f ðyijÞ

1� f ð0Þ

¼ ð1� pijÞ
yij þ k � 1

yij

� �
tk
ijð1� tijÞyij

1� tk
ij

;

where pij indicates the conditional probability of not passing the hurdle given patient j at

site i is at risk for hospitalization, lij is the mean of the underlying negative binomial

distribution, yij! ¼ yij � ðyij � 1Þ � � � � � 1; tij ¼ ðk=k þ lijÞ, and k is the scale parameter

(which is equal to 1/dispersion parameter). Note that the probability (pij) can be modeled

by logistic regression and f(yij)/1 - f(0) can be regarded as a truncated negative binomial

distribution. When k goes to infinity, the negative binomial hurdle model reduces to the

Poisson hurdle model. In the regression setting, both logit(pij) and log(lij) are assumed to

depend on linear functions of covariates. Following notation for the two-component

mixture model in Wang et al. (2007), the linear predictors nij and gij are defined by

logitðpijÞ ¼ nij ¼ wT
ijaþ ui; ð3Þ

logðlijÞ ¼ gij ¼ xT
ijbþ vi;

where wij and xij; respectively, are vectors of covariates for the logistic and the negative

binomial distributions, and a and b are the corresponding vectors of coefficients. Here, ui

and vi denote site-level random effects (i ¼ 1; . . .;m), where rT
i ¼ ðui; viÞT is assumed to be

distributed as Nð0;DÞ (i.e., a random intercept model). Given the site-level random effects,

the two components (binomial part and negative binomial part) are assumed to be

independent.
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We introduce correlation between the binomial and count components through the

covariance matrix D of rT
i where

D ¼ r2
u qrurv

qrurv r2
v

� �

; i ¼ 1; 2; . . .;m ð4Þ

and q denotes a bivariate correlation between the random effects. In the case of uncor-

related random effects, q = 0, u and v are assumed to be independently distributed as N(0,

ru
2Im) and N(0, rv

2Im) respectively, where Im denotes an m 9 m identity matrix. In the

uncorrelated case, the logistic regression and negative binomial regression components can

be estimated separately. Estimation must be done jointly in the correlated case.

We adapt the framework of McGilchrist (1994) and McGilchrist and Yau (1995) to

develop BLUP(REMQL) estimation of the negative binomial hurdle model with random

effects and correlated components. The joint BLUP-type loglikelihood of Yij and ri can be

written as ‘ðy; rÞ ¼ ‘1ðyjrÞ þ ‘2ðrÞ, where

‘1ðyjrÞ ¼
Xm

i¼1

Xni

j¼1

½Iðyij ¼ 0ÞlogðpijÞ þ ð1� Iðyij ¼ 0ÞÞlogð1� pijÞ

þ ð1� Iðyij ¼ 0ÞÞflog
Cðyij þ kÞ

Cðyij þ 1ÞCðkÞ þ klogðtijÞ

þ yijlogð1� tijÞ � logð1� tk
ijÞg�;

‘2ðrÞ ¼constant� 1

2

Xm

i¼1

logðjDð/ÞjÞ þ rT
i Dð/Þ�1ri

h i
;

ð5Þ

and Ið�Þ represents a binary indicator function, y denotes a vector of yij, and

r ¼ ðrT
1 ; r

T
2 ; . . .; rT

mÞ. Here, ‘1ðyjrÞ is the loglikelihood function when the random effects are

conditionally fixed and ‘2ðrÞ indicates the penalty function for the conditional loglikelihood.

First, coefficients (a; b) in the linear predictors are estimated for fixed variance components

and fixed scale parameter by maximizing (5). Then, the variance component parameters

/ ¼ ðru; rv; q) can be estimated using REMQL estimating equations. The scale parameter

k, which is assumed to be given in estimation of the regression coefficients (a; b), also is

obtained and updated by maximizing a profile loglikelihood with the current estimates.

Estimation can be done iteratively via the Newton–Raphson (N–R) algorithm. Suppose

n ¼ Waþ Ru and g ¼ Xbþ Rv where h ¼ ðaT ; bT ; rTÞT is the vector of unknown

parameters of interest, and R is a design matrix for the random components. In the initial

step, coefficients in the linear predictor (a; b; r) are estimated given initial values h0 by

ĥ ¼ h0 þ V�1 o‘

oh
; V ¼ � o2‘

ohohT ; ð6Þ

where V denotes the negative second derivatives of the BLUP-type loglikelihood (‘) with

respect to h: Details of these derivations are given in Appendix 1. The inverse of the matrix

of negative second derivatives of the BLUP-type loglikelihood V�1 can be written as

Asymptotic variances of â and b̂ are obtained from the corresponding components V�a
and V�b of V�1:
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3 Variance component estimation

When the N–R algorithm was used to estimate linear predictors in Sect. 2, the variance

components were assumed to be known. Actually, they need to be estimated and updated in

each iteration of the N–R algorithm. The approximate REMQL estimators (/̂REMQL) of

variance components can be obtained by solving the REMQL estimating equation

(McGilchrist and Yau 1995) as follows:

tr A�1 oA

o/

� �

þ tr V�r
oA�1

o/

� �

þ rT r
oA�1

o/
¼ 0: ð7Þ

Note that

oD

oru
¼ 2ru qrv

qrv 0

� �

;
oD

orv
¼ 0 qru

qru 2rv

� �

;
oD

oq
¼ 0 rurv

rurv 0;

� �

; ð8Þ

and

oD�1

oru
¼ 1

r3
ur

2
vð1� q2Þ

�2r2
v qrurv

qrurv 0

� �

;

oD�1

orv
¼ 1

r2
ur

3
vð1� q2Þ

0 qrurv

qrurv �2r2
u

� �

;

oD�1

oq
¼ 1

r2
ur

2
vð1� q2Þ2

2qr2
v �ð1þ q2Þrurv

�ð1þ q2Þrurv 2qr2
u

 !

:

ð9Þ

After substituting with (8) and (9) in (7), the exact equations for the variance components

(ru, rv, q) are:

Xm

i¼1

½2r2
ur

2
vð1� q2Þ � 2r2

vvii;11 þ rurvqðvii;12 þ vii;21 þ 2uiviÞ � 2r2
uu2

i � ¼ 0;

Xm

i¼1

½�2r2
ur

2
vð1� q2Þ � 2r2

uðvii;22 þ v2
i Þ þ rurvqðvii;12 þ vii;21 þ 2uiviÞ� ¼ 0;

Xm

i¼1

½�2r2
ur

2
vqð1� q2Þ þ 2qr2

vvii;11 þ 2r2
uðvii;22 þ u2

i þ v2
i Þ � rurvð1þ q2Þðvii;12

þ vii;21 þ 2uiviÞ� ¼ 0;

ð10Þ

where vii denotes the 2 9 2 block matrix portion of V�r corresponding to ri and

vii ¼
vii;11 vii;12

vii;21 vii;22

� �

: The variance components can be estimated using the N–R

algorithm.

4 Scale parameter estimation

The estimation via the N–R algorithm in Sect. 2 assumed that the scale parameter k was

known. In practice, k is updated and estimated in each iteration in accordance with the

updated estimates of a; b; r; ru; rv and q by maximizing the profile loglikelihood function:
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‘k ¼
Xm

i¼1

Xni

j¼1

Iðyij ¼ 0ÞlogðpijÞ þ ð1� Iðyij ¼ 0ÞÞlogð1� pijÞ
�

þ ð1� Iðyij ¼ 0ÞÞ log
Cðyij þ kÞ

Cðyij þ 1ÞCðkÞ þ klogðtijÞ þ yijlogð1� tijÞ
�

�logð1� tk
ijÞ
oi
:

ð11Þ

The asymptotic variance of k̂ can be obtained by Varðk̂Þ ¼ ð� o2‘k

ok2 Þ�1; details are given in

Appendix 2.

5 Application to the EDCAP study

We illustrate the models by analyzing bed days in the 32-site EDCAP study (Yealy et al.

2004, 2005). EDCAP is a cluster-randomized trial in CT and PA to assess the effectiveness

and safety of 3 guideline implementation interventions of low (8 sites), moderate (12 sites),

and high (12 sites) intensity to increase the proportion of low risk patients who were treated

as outpatients. Risk was ascertained using a validated measure of pneumonia severity, the

Pneumonia Severity Index (PSI) (Yealy et al. 2005), with low risk defined as PSI B 3

without hypoxemia.

In the EDCAP study, we examine whether the distribution of bed days varies by

intervention arm and PSI risk class among 1,877 low risk patients with clinical and

radiographic evidence of pneumonia. Among eligible low risk patients, 57 % (n = 1,061)

were treated as outpatients and 43 % (n = 816) were treated as inpatients; 37 % of patients

had PSI = 1, 37 % of patients had PSI = 2, and 26 % of patients had PSI = 3 (Table 1).

Relatively fewer low risk patients at the low intensity intervention sites were treated as

outpatients (38 % vs. 62 % at the moderate intensity and 63 % at the high intensity

intervention sites).

Figure 1 shows the empirical distribution of bed days for patients in each PSI risk class

by intervention arm. The spikes at zero bed days represent outpatients; in each intervention

arm, the prevalence of outpatient care decreases with increasing risk class. The distributions

Table 1 Probability of outpatient, mean and median of inpatients and overall bed days by PSI risk class and
by intervention arm for 1,877 eligible low risk patients

n Pr (outpatient) Bed days

Inpatients mean (median) Overall mean (median)

PSI risk class

1 697 0.82 4.0 (3.0) 0.7 (0.0)

2 691 0.51 4.6 (4.0) 2.2 (0.0)

3 486 0.28 5.8 (4.0) 4.1 (3.0)

Intervention

Low 438 0.38 5.0 (4.0) 3.1 (2.0)

Mod 748 0.62 4.9 (4.0) 1.9 (0.0)

High 691 0.63 5.1 (4.0) 1.9 (0.0)

Overall 0.57 5.0 (4.0) 2.2 (0.0)
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at the moderate and high intensity intervention sites are right skewed; both had more

outpatients and fewer inpatient bed days than did the low intensity intervention sites.

In the modeling of bed days, the patient-level PSI risk class and the site-level inter-

vention arm were included as dummy variables; with PSI2 = 1 if PSI = 2; 0 else,

PSI3 = 1 if PSI = 3; 0 else, Mod = 1 if moderate intensity intervention; 0 else, and

High = 1 if high intensity intervention; 0 else. The Poisson/negative binomial hurdle

model with random effects is:

logitðpijÞ ¼ a0 þ a1 � PSI2þ a2 � PSI3þ a3 �Modþ a4 � Highþ ui;

logðlijÞ ¼ b0 þ b1 � PSI2þ b2 � PSI3þ b3 �Modþ b4 � Highþ vi;
ð12Þ

where (ui, vi)
T is assumed to be distributed as Nð0;DÞ when the covariance matrix D is

defined in (4) with i ¼ 1; . . .; 32.

Table 2 summarizes the ML and BLUP(REMQL) estimates for the random effects Poisson

hurdle model. The fixed effects estimates and standard errors (SE) are almost identical between

the two estimation methods for both components of the model. The estimated bivariate cor-

relation between the two components is low (-0.01 for ML; -0.04 for BLUP(REMQL)).

Fig. 1 Bed days by intervention arm and PSI risk class
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ML and BLUP(REMQL) estimates for the negative binomial hurdle model are shown in

Table 3. Except possibly for k, these estimates are quite similar to each other for both

components. The log odds ratio (log OR) of outpatient care decreases significantly with

increasing risk class, with log ORs of -1.47 and -2.51 for PSI2 and PSI3, respectively,

and increases significantly for the moderate and high intensity intervention sites, with log

ORs of 0.97 and 0.91, respectively. The scale parameter (k = 2.71) indicates significant

overdispersion relative to the Poisson distribution. The estimated bivariate correlation is

modest (-0.10). The P values for the PSI parameters in the count component of the model

are less significant in the negative binomial hurdle model than in the Poisson hurdle model,

due to the correction for overdispersion.

Figure 2 illustrates the better fit of the negative binomial hurdle model than the Poisson

hurdle model to the EDCAP data. To identify unusual sites based on the random effects

negative binomial hurdle model, the predicted site-level random effects are plotted for the

logistic and the negative binomial parts in Fig. 3. Site 25 appears to be unusual in that it is

a moderate intensity intervention site with a low predicted probability of treating low risk

patients as outpatients. In addition, Fig. 3 indicates that there is more site-level variation in

the logistic part (i.e., hospitalization decision) than in the negative binomial part (i.e.,

LOS).

6 Simulation study

We conducted simulation studies to compare the performance of the proposed

BLUP(REMQL) to ML in the correlated random effects negative binomial hurdle model

with a plausible range of bivariate correlations. We imitated the unbalanced cluster-ran-

domized structure of the EDCAP data and included patient-level (PSI1, PSI2, PSI3) and

Table 2 Correlated random effects Poisson hurdle model estimates based on (a) ML and
(b) BLUP(REMQL) estimation

Parameter (a) ML (b) BLUP(REMQL)

Estimate SE P value Estimate SE P value

Logistic part: Pr (outpatient)

Cons 0.80 0.24 \.01 0.79 0.25 \.01

PSI2 -1.49 0.13 \.001 -1.47 0.13 \.001

PSI3 -2.54 0.15 \.001 -2.51 0.15 \.001

Mod 0.98 0.29 \.01 0.97 0.30 \.01

High 0.93 0.29 \.01 0.91 0.30 \.01

ru 0.54 0.57

Poisson part: inpatient bed days

Cons 1.41 0.08 \.001 1.41 0.09 \.001

PSI2 0.09 0.05 .09 0.09 0.05 .09

PSI3 0.34 0.05 \.001 0.34 0.05 \.001

Mod -0.06 0.09 .49 -0.06 0.10 .51

High 0.02 0.09 .87 0.02 0.10 .87

rv 0.18 0.19

q -0.01 -0.04
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site-level covariates (Low, Mod, High). PSI1 and Low intensity intervention served as the

reference levels. For each of the m = 32 sites, ni patients were randomly generated from a

Poisson distribution. Based on the estimates in Table 3, a was specified as (0.8, -1.5,

-2.5, 1.0, 0.9), b was specified as (1.3, 0.1, 0.4, -0.1, 0.1), k = 2.6, ru = 0.6,

rv = 0.2, and q took one of the following values (-0.1, -0.3, -0.5, -0.7). We used

1,000 replications for each of the four simulated settings.

In Table 4, we summarized one randomly chosen simulated dataset to show how well

our simulated data replicated the EDCAP data structure summarized in Table 1. Figure 4

confirms that the cumulative distributions of observed and simulated bed days are almost

identical.

Results of the simulation studies (Table 5) verify the performance of the proposed

BLUP(REMQL) estimation in the negative binomial hurdle model. We report the average

bias, the bias relative to the true parameter (Percent), SE, mean square error (MSE), and

coverage probability (CP) of the 95 % confidence interval over 1,000 replications for each

value of q considered. The biases in the estimated fixed effects generally were small

(B3.0 %) for both ML and BLUP(REMQL) for both the logistic and negative binomial

components of the model for all values of q considered. The exceptions were somewhat

larger biases (4.0–8.5 %) in some of the ML and/or BLUP(REMQL) estimated site-level

parameters (i.e., Mod or High) in the negative binomial component when q = -0.5 or

-0.7. Biases in the estimated fixed effects generally (but not always) were smaller for ML

than for BLUP(REMQL). The SEs and the corresponding MSEs of the estimated fixed

effects were similar for ML and BLUP(REMQL), and the CPs were generally at least as

good, if not better, for BLUP(REMQL) relative to ML.

The BLUP(REMQL) estimates of the random effects (ru and rv) and q have much

smaller biases than the corresponding ML estimates; for example, the percent bias is 1.5 %

Table 3 Correlated random effects negative binomial hurdle model estimates based on (a) ML and
(b) BLUP(REMQL) estimation

Parameter (a) ML (b) BLUP(REMQL)

Estimate SE P value Estimate SE P value

Logistic part: Pr (outpatient)

Cons 0.80 0.24 \.01 0.79 0.25 \.01

PSI2 -1.49 0.13 \.001 -1.47 0.13 \.001

PSI3 -2.54 0.15 \.001 -2.51 0.15 \.001

Mod 0.98 0.29 \.01 0.97 0.30 \.01

High 0.93 0.29 \.01 0.91 0.30 \.01

ru 0.54 0.58

Negative binomial part: inpatient bed days

Cons 1.29 0.10 \.001 1.30 0.10 \.001

PSI2 0.12 0.09 .18 0.12 0.09 .18

PSI3 0.39 0.09 \.001 0.38 0.09 \.001

Mod -0.04 0.10 .68 -0.04 0.10 .68

High 0.03 0.10 .75 0.03 0.11 .77

k 2.56 0.26 \.001 2.71 0.26 \.001

rv 0.15 0.17

q -0.12 -0.10
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vs. 6.5 % for ru, 1.5 % vs. 11.0 % for rv, and 3.0 % vs. 63.0 % for q, Table 5a. However,

the BLUP(REMQL) estimate of the scale parameter (k) in the negative binomial com-

ponent has larger bias than the corresponding ML estimate (e.g., 8.8 % vs. 1.5 % in

Table 5a), and poorer CP (e.g., 0.90 vs. 0.96). Similar patterns were observed for the other

values of q.

In summary, these simulation results demonstrate that BLUP(REMQL) estimation in

the negative binomial hurdle model with correlated random effects performs well relative

to ML for the fixed effects and variance components considered, but not for the scale

parameter. All replications converged for BLUP(REMQL), while some did not converge

for ML (i.e., 10/1000 replications at q = -0.3; 26/1000 replications at q = -0.5; 91/1000

Fig. 2 Observed vs predicted
distribution of bed days by
intervention arm. Distributions
are predicted based on the
Poisson hurdle model (dots) and
negtive binomial hurdle model
(dashed line)
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Fig. 3 Site specific predicted
random effects for the logistic
and negative binomial parts of
the negative binomial hurdle
model for the low (open circle),
moderate (closed triangle), and
high (closed circle) intensity
intervention sites

Table 4 Probability of outpatient, mean and median of inpatients bed days, and mean and median of
overall bed days by PSI risk class and by intervention arm for one simulated dataset (N = 1,823)

n Pr (outpatient) Bed days

Inpatients mean (median) Overall mean (median)

PSI risk class

1 654 0.79 3.9 (4.0) 0.8 (0.0)

2 644 0.53 4.8 (4.0) 2.3 (0.0)

3 525 0.33 6.0 (5.0) 4.0 (3.0)

Intervention

Low 532 0.42 5.0 (4.0) 2.9 (2.0)

Mod 650 0.59 4.6 (4.0) 1.9 (0.0)

High 641 0.66 6.0 (5.0) 2.1 (0.0)

Overall 0.57 5.2 (4.0) 2.2 (0.0)

Fig. 4 Cumulative density
function of bed days by EDCAP
data (closed circle) and one
simulated dataset (open circle)
with q = -0.1
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replications at q = -0.7). BLUP(REMQL) ran in about 3/7 the time as ML for these

simulated data. We used the SAS procedure NLMIXED to fit the model with ML, and R to

obtain the BLUP(REMQL) estimates.

7 Discussion

We have proposed a BLUP(REMQL) approach to estimate a negative binomial hurdle

model with correlated random effects. We also illustrated the application of this model to a

potentially useful efficiency metric in health services studies, bed days. This model

appropriately accounts for excess zeros and overdispersion relative to the Poisson distri-

bution, and allows for site-level correlation between the binary and count components of

the model. This model gives an overall assessment of the effect on an intervention on two

aspects of care, e.g., admission and LOS in the EDCAP study. While the interventions in

EDCAP were designed to influence the admission decision and recommended processes of

care in the ED, there was no intervention to influence inpatient LOS. Our results confirmed

that the intervention was significantly associated with reduced hospitalization but not with

LOS. The small negative bivariate correlation indicates some tendency for shorter inpatient

LOS at sites with relatively low admission rates for low risk patients. Although not well-

illustrated by the EDCAP study, our proposed approach could give more efficient estimates

of random effects in a similarly-designed study with interventions that affected both

components of the model.

In this paper, we have accounted for correlated random effects at the site level that

could be associated with both the hospitalization decision and inpatient LOS. The EDCAP

intervention was limited to low-risk patients, so that the predominant factors driving the

hospitalization decision in these patients are site-level (e.g., practice patterns, guideline

compliance, quality and/or efficiency of care) rather than patient level characteristics. We

can extend this model to patient-level correlated random effects by defining a multivariate

normal distribution of random effects.

For the scenarios considered, our simulation study indicated that the BLUP(REMQL)

approach provides less biased estimates of variance components than ML, and estimates

similar to ML for the fixed effects. However, BLUP(REMQL) estimation yields somewhat

larger bias in the estimated scale parameter relative to ML. This issue requires further

investigation. BLUP(REMQL) estimation remains attractive because it ran faster than ML

for these data and had better convergence properties. For either BLUP(REMQL) or ML,

the choice of initial values affects convergence rates and computation time. To guarantee

the convergence and reduce computation time, we initialized parameter estimates by fitting

fixed effect hurdle models. Our simulations mimicked the structure of the EDCAP data and

that additional simulations would need to be done to assess the sensitivity of

(BLUP)REMQL to initial values.

We can implement ML simply using SAS. In the absence of generally available soft-

ware, adapted R code is required to obtain the BLUP(REMQL) estimates considered here.

A flexible alternative is Bayesian estimation, which can be implemented using WinBUGS

(Neelon et al. 2010).

In summary, the proposed BLUP(REMQL) estimation in these hurdle models appears to

be promising. The computational advantages may facilitate application of this approach to

more complex versions of these models, such as a 3-level model defined by patient,

medical provider, and site.
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Appendix 1: First and second derivatives of the joint BLUP-type loglikelihood

From the joint BLUP-type loglikelihood, we can obtain:

o‘

oa
¼ WT o‘1

on
;

o‘

ob
¼ XT o‘1

og
;

o‘1

ou
¼ RT o‘1

on
;

o‘1

ov
¼ RT o‘1

og
;

o‘

or
¼

o‘1

ou

o‘1

ov

0

@

1

AG� A�1r;

ð13Þ

where a 2m 9 2m matrix (G) satisfies
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The second derivatives of the joint BLUP-type loglikelihood are obtained as follows:
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Appendix 2: First and second derivatives of the profile loglikelihood

Following Lee et al. (2003), suppose AðkÞ ¼
P

yij [ 0 log
CðyijþkÞ

Cðyijþ1ÞCðkÞ ; and f ðsÞ ¼
# yij� s; 8i; j
� �

be the number of patients whose observed count is greater than or equal to

s, then the first and second derivatives of A(k) are derived as:
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Then, the first and second derivatives of ‘k can be expressed in terms of _AðkÞ and €AðkÞ:
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where

Bij ¼ logðtijÞ þ 1� tij and _Bij ¼
ð1� tijÞ2

k
: ð19Þ
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