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Abstract Methods for estimating average treatment effects (ATEs), under the assump-

tion of no unmeasured confounders, include regression models; propensity score (PS)

adjustments using stratification, weighting, or matching; and doubly robust estimators (a

combination of both). Researchers continue to debate about the best estimator for outcomes

such as health care cost data, as they are usually characterized by an asymmetric distri-

bution and heterogeneous treatment effects,. Challenges in finding the right specifications

for regression models are well documented in the literature. Propensity score estimators are

proposed as alternatives to overcoming these challenges. Using simulations, we find that in

moderate size samples (n = 5,000), balancing on PSs that are estimated from saturated

specifications can balance the covariate means across treatment arms but fails to balance

higher-order moments and covariances amongst covariates. Therefore, unlike regression

model, even if a formal model for outcomes is not required, PS estimators can be ineffi-

cient at best and biased at worst for health care cost data. Our simulation study, designed to

take a ‘proof by contradiction’ approach, proves that no one estimator can be considered

the best under all data generating processes for outcomes such as costs. The inverse-

propensity weighted estimator is most likely to be unbiased under alternate data generating

processes but is prone to bias under misspecification of the PS model and is inefficient
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compared to an unbiased regression estimator. Our results show that there are no ‘magic

bullets’ when it comes to estimating treatment effects in health care costs. Care should be

taken before naively applying any one estimator to estimate ATEs in these data. We

illustrate the performance of alternative methods in a cost dataset on breast cancer

treatment.

Keywords Propensity score � Non-linear regression � Average treatment effect �
Health care costs

JEL classification C01 � C21 � I10

1 Introduction

Most analyses of economic behavior and the consequences of changes of health policy

investigate the effect of a treatment or policy on an outcome of interest for a population of

interest1 using observational data. This is either because of the absence of experimentation

or because of the reliance on ‘‘natural’’ experiments or quasi experimental designs.

However, assignment to treatment or to a policy is typically not random but is instead

based on several confounding factors that may also affect outcomes. When all of these

confounding factors are observed as variables in the data, the estimation problem can be

characterized as ‘‘unconfoundedness’’ or ‘‘exogeneity’’ or ‘‘selection on observables’’

(Rosenbaum and Rubin 1983; Heckman and Robb 1985). A large literature exists on

methods that can be used to control for such confounding, including regression methods,

propensity score (PS) methods, combinations of both (doubly robust) estimators, and non-

parametric matching methods.2 Imbens and Wooldridge (2009) provide a comprehensive

review of these methods. Although the asymptotic theories behind most of these methods

are well established in the literature, their finite sample performance is only beginning to

emerge. In particular, finite sample properties of these estimators remain unknown for

outcomes with a data generating process typified by the non-linearities commonly found in

health care costs or expenditures. In essence, such non-linearities imply that the treatment

effects under such data generating processes are heterogeneous in the population. Many

other outcomes in economics carry similar features: earnings (Dehajia and Wahba 1999),

income (Jalan and Ravallion 2003), and a variety of marketing outcomes, such as sales

(Rubin and Waterman 2006). Our discussion will extend readily to these outcomes as well.

The growing literature that studies the finite sample properties of alternative estimators

for treatment effect under exogeneity has focused on linear (in X’s) specifications of the

outcomes model. Frölich (2000) compares one-to-one pair matching with local polynomial

estimators in simulations where outcomes are dependent on only one covariate and finds

local linear estimators are better. Abadie and Imbens (2006) show that both estimators have

1 Average treatment effect (ATE) and other mean treatment effect parameters are quintessential compo-
nents of such evaluations (Heckman and Robb 1985; Heckman 1990, 1992; Heckman and Smith 1998;
Dehejia 2005). If the target is the whole population, it is often referred as the ATE. If the issue is the effect
of the treatment on those treated, it is called the treatment on treated. If the issue is the effect of treatment for
those not on treatment, it is called the treatment on the untreated.
2 Throughout this paper we will only focus on selection biases generated via observed confounders. The
bias generated because the levels of unobserved factors influencing outcomes are different for the treated
and untreated groups is called the hidden selection bias. We assume away hidden selection bias and will not
address the issues that arise when hidden bias in present.
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biases that do not disappear in large samples, under the standard N1/2 normalization, when

the number of covariates increases. They propose a nonparametric bias-adjustment that

renders matching estimators N1/2-consistent. Zhao (2004) compares PS matching methods

with covariate matching estimators and finds no clear winner, although he infers that

‘‘when the sample size is too small, PS matching does not perform well compared with

other matching estimators’’. Zhao (2008) studies sensitivity of PS methods to their spec-

ifications though Monte Carlo experiments and finds that, under exogeneity, treatment

effect on the treated are not sensitive to the specifications. Millimet and Tchernis (2009)

find that over-specifying the PS estimator does not impart much of a penalty in terms of

inconsistency and inefficiency.

When non-linearities exist, the performances of covariate matching and PS estimators

will depend on balancing the entire distribution of X’s across treatment arms and not just

balancing mean of the X’s, which is sufficient under linear data generating processes. As

Frölich (2004) discovers, when comparing finite sample properties of matching and

weighting estimators in estimating the average treatment effect (ATE) on outcomes with

varying degrees of non-linearities, the weighting estimator is the ‘‘worst of all’’ (in terms of

mean square error) and ‘‘it is far worse than pair matching.’’ However, Busso et al. (2009)

points out that Frölich’s results may be driven in part by the fact that Frölich (1) uses true

PSs versus estimated PSs [the use of the latter being more efficient (Hirano et al. 2003)],

(2) does not normalize the weights, and (3) studies outcomes with very small variances,

even when varying degrees of non-linearities are present. Busso et al. (2009) relaxes these

assumptions and finds that a suitable version of the weighting estimator ‘‘performs at least

as well as and usually better that all PS matching estimators considered in Frölich (2004)’’.

The use of PS based estimators demands added scrutiny in the presence of nonlinearities

in outcomes, just as linear regression models continue to undergo scrutiny under such data

generating processes. The central role of the PS lies in its balancing property, such that the

potential outcomes under each treatment become independent of treatment assignment

conditional on the propensity score (e(X)). Consequently, PSs can help reduce the

dimensionality of the matching problem that plagues regression estimators (Lu and

Rosenbaum 2004). Furthermore, it may also imply that for outcome data generated via

non-linear processes, the asymptotic approximations for the mean treatment parameter

generated in finite samples are more accurate with the scalar PS than for multidimensional

X (Imbens 2004). Such an implication, however, requires further consideration. The bal-

ancing property of PSs suggests that the conditional joint distribution of the observed

covariates X given e(X) is the same for treated (D = 1) and control (D = 0) subjects (i.e.,

X
‘

D | e(X)) (Rosenbaum and Rubin 1983; Zhao 2004). However, the nonparametric

convergence rates for the marginal distribution of X across the two treatment groups

conditional on e(X) will be faster than the nonparametric convergence rates for the joint

distribution of X. Additionally, the rate of convergence for the equality of the conditional

higher order moments of X may be slower than for the equality in the conditional means of

X. If the outcome generating process is purely linear in X and parameters, then convergence

in mean X’s is sufficient to enjoy the dimension reduction advantages of PSs, even in finite

samples.3 In contrast, for non-linear data generating processes it is often necessary to

obtain convergence in the higher order moments and also in the entire joint distribution of

X in order to achieve the balancing property adequately. If PS estimators can achieve such

3 Such results have been established in the literature by Rosenbaum (1987), Rubin and Thomas (1996),
Rosenbaum (2002) and Angrist and Hahn (2004).
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a balance in finite samples, then only can they lead to accurate approximation for the mean

treatment effect parameters (Rubin 1997).

Moreover, the convergence rate for the joint distribution of X across treatment groups

usually slows down with the increased dimensionality of X. Ironically, this implies that the

dimensionality of X should also affect the performance of PS estimators in finite samples,

when outcomes are generated via non-linear processes.4

The primary goal of this paper is to study the proposition that there is no single

estimator that is appropriate for all data generating processes typical of health care costs

data. However, due to the enormous variety of possible processes, it is next to impossible

to test this proposition directly. Instead, we employ a set of simulation designs that can

prove this proposition by contradiction. That is, if our simulation results contradict the

alternative to this proposition (that there exists one such estimator that applies to all data

generating processes), then they provide evidence of proof for the proposition.

We proceed by briefly reviewing three classes of estimators relevant for modeling

health care costs: regression estimators, PS-based estimators5 (Rosenbaum and Rubin

1983), and doubly robust (DR) estimators (a combination of the previous two methods)

(Robins et al. 1995; Scharfstein et al. 1999; Bang and Robins 2005) (Sect. 3). We then

provide Monte-Carlo evidence on finite sample performance of these estimators in mod-

eling such outcomes and estimating mean treatment effect parameters, such as the ATE

(Sect. 4). And finally, we highlight the role of misspecification and also over-specification

of the PS estimator and its impact on treatment effect estimation (Sect. 4). To illustrate the

corresponding results, we apply the alternative estimators to an empirical example of the

costs of breast cancer treatments in Sect. 5. Section 6 concludes with the discussion of our

findings.

To our knowledge, this is the first head-to-head comparison of regression estimators, PS

estimators, and doubly-robust estimators for estimating treatment effects on outcomes such

as health care costs. We begin in the next section describing the potential outcomes

framework, standard in the treatment effect literature, in order to highlight the selection

biases that make the application of these estimators necessary.

2 The potential outcomes framework

The concept of the potential outcomes framework dates back to Neyman (1923) and has

been used by others in economics (Roy 1951; Quandt 1972) and statistics (Rubin 1974;

Holland 1986). Each individual (we suppress individual level subscript for clarity) can

conceptually have two potential outcomes,6 YT and YS, corresponding to whether the

individual receives treatment or not. In order to compare the estimators we discuss below,

we write the data generating process for the potential outcomes by:

4 This concern extends to randomization too. Optimal sample sizes for a randomized experiment are often
based on effect sizes and their variances. However, randomization may require larger sample sizes for the
joint distribution of the covariates to converge across treatment arms, a point that is underappreciated in the
design of experiment literature.
5 The propensity score is the probability of being treated conditional on the observed confounders, X, that is
Pr(D = 1|X = x).
6 We limit our discussion to a binary treatment option, but the extension to multiple treatments and
multidimensional treatments is straightforward.
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YT ¼ lTðXÞ þ UT

YS ¼ lSðXÞ þ US

ð1Þ

where l(.) represents a general form of non-linear data generating mechanisms as a

function of the observed covariates X = (X0, X1,…, Xk) that includes a vector of ones (X0).

UT and US are random errors, with E(Uj) = 0, j = T, S.

The average treatment effect (DATE) parameter for the population is the difference in

potential outcome if all patients are treated rather than not treated:

DATE ¼ EX E YT � YSjXð Þf g ¼ EXflTðXÞ � lSðXÞg ð2Þ

Similarly, the Effect on the Treated (DTT) parameter is the mean difference in potential

outcome if only those patients who actually receive treatment had not received the treat-

ment. Denote D to be an indicator = 1 if T is received and = 0 if S is received. Therefore,

DTT is given by:

DTT ¼ EXjD¼1 E YT jD ¼ 1;Xð Þ � E YSjD ¼ 1;Xð Þf g
¼ EXjD¼1 E YT jD ¼ 1;Xð Þ � E YSjD ¼ 0;Xð Þf g ð3Þ

where the second equality follows from the ‘‘unconfoundedness’’ or the ‘‘selection on

observables’’ assumption. This implies that all of the selection into receiving treatment is

entirely driven by the observed covariates, and that the receipt of treatment is independent

of the potential outcomes with and without treatment, if the observed covariate levels are

held constant. Formally, this assumption is written as YT, YS

‘
D | X, where

‘
denotes

statistical independence.

Note that, in contrast to linear data generating processes for (1), the treatment effect for

each individual depends on the levels of one’s own X’s but not on U’s. This implies that the

treatment effects are essentially heterogeneous in the population. Therefore, the ATE and

the effect of the treated require averaging over the population distribution of X, as in EX(.).

In most situations, each individual is only observed in state T or state S, but never both at

any point in time. Therefore, the observed outcome (Y) becomes (Fisher 1935; Cox 1958;

Quandt 1972, 1988; Rubin 1978):

Y ¼ DYT þ ð1� DÞYS: ð4Þ

Consequently, the difference in the sample averages of the outcome variable between the

treated and untreated groups may fail to provide a consistent estimate for either DATE or

DTT because

EðY jD ¼ 1Þ � EðY jD ¼ 0Þ ¼ EðYT jD ¼ 1Þ � EðYSjD ¼ 0Þ
¼ EXjD¼1ðlTðXÞÞ � EXjD¼0ðlSðXÞÞ 6¼ DATE; 6¼ DTT ð5Þ

The last inequalities follow because the distribution of the observed covariates may not

be independent of the treatment group, i.e., E(X|D) = E(X). Thus, bias is generated

because the levels of observed factors (X) influencing outcomes are different for treated

and untreated groups and is called the overt selection bias (Rosenbaum 1998).

The primary method of addressing overt biases in observational studies is to adjust for

observed information that affects outcomes and selection into treatment. These adjustment

methods can be referred to as the methods of matching because they try to match or

balance the levels of observed covariates between the treated and the untreated groups

(Rosenbaum 1998). However, only a subset of these estimators is officially denoted as

‘‘matching estimators’’ in the economics literature (Imbens 2004).
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Regression methods attempt to estimate conditional regression functions lT(x) and

lS(x). Once these are estimated consistently, estimators for mean treatment effects are

readily generated by comparing EX l̂TðXÞf g and EX l̂SðXÞf g computed based on varying

distributions of X. However, one particular concern that plagues estimation of conditional

regression functions is the dimensionality of X. This is especially true in non-linear data

generating processes, where the nonparametric convergence rate for the mean function

over the empirical distribution of X’s can be very slow, and therefore, in finite samples, can

often produce a poor approximation for the mean treatment effect parameter of interest

(Imbens 2004).

Propensity score methods have been proposed and used as alternatives for estimating

these effects. The PS is defined as e(X) = Pr(D = 1 | X), where YT, YS

‘
D | e(X)

following the proof provided by Rosenbaum and Rubin (1983). Consequently, conditional

on this scalar PS, all of the selection bias generated by differences in observed covariate

values between the treated and untreated groups can be removed. Alternatively, if one

matches an untreated subject with a treated subject sharing the same PS, then averaging

over similarly matched cohorts of subjects will remove all overt selection bias, and the

difference in the outcomes between these two groups will reflect the effect of treatment for

that group. Thus, finding matches across the specific distributions of PSs and then aver-

aging differences in outcomes between the matched treated and untreated subjects provides

the estimators for the mean treatment effect parameters. There are a variety of ways

through which the balancing property of PSs are used in practice, including weighting by

the reciprocal of PSs, blocking on PSs, regression on PSs, and matching on PSs.

In the next section, we describe some of the commonly used estimators of ATE (the

primary parameter of interest for this paper) that are commonly employed to model health

care costs, presumably generated under non-linear processes.

3 Alternative estimators

3.1 Regression estimators

There is a large literature since the 1960s that addresses skewness in outcome data (e.g.,

cost or other) and appropriate non-linear covariate adjustment methods (Box and Cox

1964; Duan et al. 1983; McCullagh and Nelder 1989; Mullahy 1998; Blough et al. 1999;

Manning and Mullahy 2001). For health care costs and expenditures, denoted by Y hereon,

it is typical to find a small number of patients with expenditures much larger than the

median patient, which leads to large skewness and kurtosis on the right hand side of the

cost distribution. The inapplicability of a linear model for this distribution, both in terms of

bias and efficiency, has been consistently demonstrated. Econometricians have historically

relied on logarithmic or other Box–Cox transformations of Y, followed by regression of the

transformed Y on X using ordinary least squares (OLS) regression, to overcome the

skewness, with some hope that such a transformation will also reduce problems of het-

eroscedasticity and kurtosis (Box and Cox 1964). The main drawback of transforming Y is

that the analysis does not result in a model for l(x) in the original scale, a scale that in most

applications is the scale of interest. In order to draw inferences about the mean l(x) or any

functional thereof in the natural scale of Y, one has to implement a retransformation from

the scale of estimation to the scale of interest. This involves the distribution of the error

terms in the scale of estimation (Duan 1983; Duan et al. 1983; Manning 1998). The
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retransformation is complicated in the presence of heteroscedasticity on the scale of

estimation (Manning 1998; Mullahy 1998).

To avoid such problems of retransformation, biostatisticians and some economists have

focused on the use of generalized linear models (GLM) with quasi-likelihood estimation

(Wedderburn 1974). In a GLM approach, a link function relates l(x) to a linear specifi-

cation xTb of covariates. The retransformation problem is eliminated by transforming l(x)

instead of Y. Moreover, GLMs allow for heteroscedasticity (in the raw-scale) through a

variance structure relating VarðY jX ¼ xÞ to the mean, correct specification, which results

in efficient estimators and may correspond to an underlying distribution of the outcome

measure (Crowder 1987). For example, following the work of Blough et al. (1999), the

most common GLM used for modeling heath care expenditures is the Gamma-Log link

model, where the mean function l(x) is related to the linear predictor g, with a log link and

a gamma variance structure (with its constant coefficient of variation property) assumed for

modeling heteroscedasticity,

ðMethod C1Þ logðlðXÞÞ ¼ g and VarðYjXÞ ¼ / � ðlðXÞÞ2 ð6Þ
Estimation is carried out with a Fisher scoring algorithm without full reliance on the

gamma distribution. The use of such GLM models is increasingly becoming popular in

modeling health care costs data (Bao 2002; Killian et al. 2002; Bullano et al. 2005; Ershler

et al. 2005; Hallinen et al. 2006).

However, there is often no theoretical guidance as to what should be the appropriate link

function or variance function for the data at hand. One approach to this problem is to

employ a series of diagnostic tests for candidate link and variance function models, e.g.,

the Pregibon Link test (Pregibon 1980) or the modified Hosmer–Lemeshow test (Hosmer

and Lemeshow 1995). These tests are diagnostic for misspecification, but they do not

provide any guidance on how to fix those problems. Some tests, such as the modified Park

test (Manning and Mullahy 2001), can be employed conditional on the appropriate spec-

ification of the link function but may be imprecise and contingent on certain strong

assumptions.

Basu and Rathouz (2005) propose a semi-parametric method to estimate the mean

model l(x) and the variance structure for Y given X, concentrating on the case where Y is a

positive random variable. Following the work of McCullagh and Nelder (1989) and Blough

et al. (1998), they use a mean function l(x) related to the linear predictor, xTb, with a

Box–Cox link,7

ðMethod C2Þ g ¼ ðlk � 1Þ=k; if k 6¼ 0

logðlÞ; if k ¼ 0:

�

ð7Þ

where the link parameter is estimated directly from the data (Wooldridge 1992). Addi-

tionally, similar to the link function, a family hðli; h1; h2Þ ¼ h1l
h2

i of variance functions

indexed by (h1, h2) is used, where the variance parameters are also directly estimated from

the data. All parameters in the model, given by the parameter vector c = (bT, k, h1, h2)T,

are estimated simultaneously using an additional set of estimating equations following a

Fisher scoring algorithm yielding estimator ĉ: Hence, it is named the Extended Estimating

Equations (EEE) estimator. The predicted mean in this model is obtained by

7 This is the Box–Cox transformation of the mean conditional on the covariates, not the Box–Cox trans-
formation of the outcome variable.
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l̂ðxÞ ¼ ðxT b̂ � k̂þ 1Þ1=k̂:

The flexible estimation method they propose has three primary advantages: (1) it helps to

identify an appropriate link function and jointly suggests an underlying model for the error

distribution for a specific application, (2) the proposed method itself is a robust estimator when

no specific distribution for the outcome measure can be identified, i.e., their approach is semi-

parametric in that, while they employ parametric models for the mean and variance of(Y|X),

they do not employ further distributional assumptions or full likelihood estimation methods,

and (3) their method makes it easy to decouple the scale of estimation for the mean model,

determined by the link function, from the scale of interest for the scientifically relevant effects,

as found in some the health economics literature. That is, regardless of what link function is

estimated from the data, treatment effects, such as the ATE, on any scale, can be obtained.

At the extreme, one could use a fully non-parametric estimator. The advantage of such

an estimator is that it can more accurately approximate the conditional regression functions

if there is substantially more complex form of non-linearity present.8 However, its dis-

advantage lies mainly in finite samples where a few influential observations may lead the

estimator to over-fitting (Seifert and Gasser 1996). More importantly, the advantages of

non-parametric curve fitting diminish with the dimensionality of X’s. Consequently, the

role of PS becomes important as described below.

3.2 Propensity score based estimators

The first part of a PS estimator is the estimation of PS. The propensity score e(X) is

estimated from a model for the likelihood of treatment, such as a logistic regression model,

log½eðXÞ=f1� eðXÞg� ¼ Xh; and then uses various methods that effectively match treated

and untreated subjects based on the estimated propensity score êðXÞ or on Xĥ:
There are several methods by which estimated PS can be used to achieve a balance of

observed covariates, including blocking, conditioning, weighting, or matching.

3.2.1 Stratifying by quintiles of PS

This is one of the most commonly used methods in health services research (Austin 2008).

Here, the empirical distribution of the estimated PS across the entire sample (including

treated and untreated subjects) is divided into quintiles. Indicator variables for the first four

quintiles are then used as covariates, along with the treatment indicator and the interactions

between them, in an OLS regression (Rosenbaum and Rubin 1983; Rubin 1997; Little and

Rubin 2000),

ðMethod P1Þ Y ¼ g0 þ e and g0 ¼ a0 þ a1 � Dþ
X4

j¼1

a2j � IQj
þ a3j � D � IQj

� �
ð8Þ

where IQj
is the indicator for the jth quintile.

3.2.2 Inverse weighting with PS

In this method, the difference in weighted average of the outcomes between treatment and

untreated group gives a consistent estimate of the ATE, where the weights are proportional

8 See Fan (1992, 1993), Hastie and Loader (1993), and Fan et al. (1997).
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to the inverse of the estimated PSs (Rosenbaum 1998; Hirano et al. 2003). Hirano et al.

claim that this approach would also give an efficient estimate of ATE under all data

generating processes, although they provide empirical evidence of this claim only in the

context of linear models. We follow their proposed method and estimate the ATE as

ðMethod P2Þ D̂ ¼
XN

i¼1

Di

êðXiÞ

 !�1

�
XN

i¼1

Di � Yi

êðXiÞ
�

XN

i¼1

1� Di

1� êðXiÞ

 !�1

�
XN

i¼1

ð1� DiÞ � Yi

1� êðXiÞ

ð9Þ

Note that this estimator is similar to the Horvitz–Thompson estimator (1952). Also, note

that unlike Frölich (2004), we have used the normalized version of the reweighted esti-

mator that is used by Hirano et al. (2003) and Busso et al. (2009).

3.2.3 Matching with PS

There is a large literature on matching PSs to control for bias due to observable variables

(Imbens 2004). Matching estimators are also non-parametric in nature, but unlike the

weighting estimators shown above, matching estimators are less sensitive to parametric

specification of PS (Zhao 2004). Because the number of available matching estimators is

quite large, we select two of the most commonly used matching estimators in practice:

(Method P3) Kernel-based (using the Epanechnikov kernel) matching estimator, and

(Method P4) Local-linear regression based matching estimator that uses a tricube

kernel.The basic idea of matching based on PSs involves (Zhao 2004):

dðek; elÞ\e) d0ðprobðXijekÞ; probðXijelÞÞ\e0; ð10Þ

where d and d0 are distance metrics in the mathematical sense. According to this theory, if

exact matching is impossible (which is often so in most finite sample cases) and matching

is on some neighbourhood (e) of e, then the distribution of X is still approximately the same

for the treated sample and the untreated sample within the neighbourhood. In non-linear

outcome generation settings, this approximation must extend to the entire joint distribution

of X’s, a concern that drives our simulations below.

Either the kernel-based or local-linear regression based matching estimator follows the

general expression:

D̂ ¼
XN

i¼1

Ŷ1i � Ŷ0i

� �
; where Ŷki ¼ IðDi ¼ kÞ � Yi þ IðDi ¼ 1� kÞ �

X

j2P1�k

Wði; j; eÞ � Yj;

k ¼ 0; 1:

ð11Þ

Here, P1-k represent the set of individuals for whom D = 1 - k, and W(i, j) represent the

weights that a specific kernel or the local linear regression computes based on bandwidth e.
Therefore, Ŷ1i is just observed Yi if subject i had received treatment and is a weighted

average of Yj among all treatment recipients if subject i had not received treatment. We use

a bandwidth of 0.06 for the kernel-based matching estimator and a central band of N*0.25

for the local-linear regression-based matching estimator. The bandwidth controls the

amount by which the data are smoothed. Large values of bandwidth will lead to large

amounts of smoothing, resulting in low variance but high bias. Small values of bandwidth

Health Serv Outcomes Res Method (2011) 11:1–26 9
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will lead to less smoothing, resulting in high variance but low bias. This trade-off is a well

known dilemma in applied nonparametric econometrics. Since our primary focus in this

paper is bias, we have kept the bandwidths low. In practice, however, much effort needs to

be made in selecting bandwidth, including cross-validation exercises. We defer this work

to the future.

3.3 Estimators based on combinations of regression and propensity scores

Using simulations, Rubin (1973) found that if the model used for model-based covariate

adjustment is correct, then model-based adjustments may be more efficient than PS

matching. However, if the regression model is substantially incorrect, model-based adjust-

ments may not only fail to remove overt biases, they may even increase bias, whereas PS

matching methods are fairly consistent in reducing overt biases. Similarly, methods based on

weighing the data with estimated PSs may be inconsistent if the model used to estimate the

PSs is misspecified. Rubin concludes that the combined use of PS matching along with

model-based covariate adjustment is the superior strategy to implement in practice, being

both robust and efficient. Unfortunately, this approach is almost never followed. Moreover,

almost all studies that explore the performance of PS methods combined with covariate

adjustment use traditional linear models and sometimes employ the assumption of a normal

error as well (Rubin and Thomas 1992, 1996; Lunceford and Davidian 2004).

Recently, DR estimators, which rely on the combination of propensity matching and

covariate adjustments (Robins et al. 1995; Scharfstein et al. 1999; Bang and Robins 2005),

have been developed. These estimators are consistent for l(x) whenever at least one of the

two models (covariate adjustment or PS) is correct. This class of estimators is referred to as

DR because it can protect against misspecification of either the covariate adjustment model

or the PS model.

However, newer work (Kang and Schafer 2007) on comparing alternative strategies of

addressing missing data reveals that although DR methods perform better than simple

inverse-probability weighting, they are sensitive to misspecification of the propensity

model when some estimated propensities are small. In addition, none of the DR methods

the authors employ improve upon the performance of simple regression-based prediction of

the missing values. To date, these methods have not been tried on costs data. We imple-

ment the Scharfstein et al. (1999) and the Bang and Robins (2005) versions of DR esti-

mator, as they are represented as sequential regression estimators and form natural analogs

to the regression estimators mentioned above. The basic formulation of this DR estimator

is as follows:

lðXÞ ¼ gðg00Þ where

g00 ¼ b0 þ b1 � Dþ XTbX þ c1 � D � êðXÞ�1 þ c2 � ð1� DÞ � ð1� êðXÞÞ�1

and VarðYjXÞ ¼ hðXÞ ð12Þ

Compared to the covariate adjustment model in Model C1–C2, the linear predictor in

Eq. 12 contains two additional covariates that are the inverses of a subject’s estimated PS.

Following this generic formulation, we study two different DR estimators mirroring the

covariate adjustment methods in Model C1–C2:

(Method R1) log-GLM-DR—DR estimator with GLM Gamma model with log link—

Here the model is same as in (6) but now g = g00.
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(Method R2) EEE-DR—DR estimator with EEE regression—Here the model is same as

in (7) but now g = g00.

Note that the alternative methods presented here are neither an exhaustive set of

available methods nor do they represent newer methods that are emerging (e.g., local-

linear ridge regressions). Our choice of these estimators was primarily driven by their

popularity within health services research and the medical literature.

For any method, an estimate for the incremental effect of a binary treatment variable

D is obtained using the method of recycled predictions (Oaxaca 1973; Manning et al.

1987). In this method, l̂ðxi; eðxiÞÞ is predicted using estimated model parameters from

covariate adjustment or PS/DR methods. We average the predictions l̂ðxi; di ¼ 1; êðxiÞÞ
across all individuals i (i = 1, 2,…,N). Here, xi and di are the values of X and D for the ith
observation. Note that we have set di = 1 for all i. We then assign the value of 0 to D for

all individuals as if they are not treated and average the predictions l̂ðxi; di ¼ 0; êðxiÞÞ
across these individuals. Here the hat (^) on l̂ indicates that the regression parameters have

been estimated. The difference in the mean (l̂) between the two scenarios gives us the

estimated ATE, D̂:

D̂ ¼ N�1
XN

i¼1

fl̂ðxi; di ¼ 1; êðxiÞÞ � l̂ðxi; di ¼ 0; êðxiÞÞg ð13Þ

4 Monte-Carlo evidence

In this section, we develop a Monte Carlo simulation study in two parts. The first part

establishes whether balancing on estimated PS achieves convergence beyond the mean X’s

in a moderate sample size of 5,000, a sample size typical of most health and other eco-

nomic applications.

The second part generates outcomes under four different non-linear data generating

processes using the same design points to study how covariate adjustment versus PS

methods perform in approximating the true D. In reality, it is impossible to simulate the

vast range of plausible data generating processes here. Since our primary goal is to

illustrate that alternative PS methods, very much like alternative regression methods,

may perform poorly under certain non-linear data generating processes, we focus on

only four data generating processes. Under these four processes, one or more of the

covariate adjustment methods represents a misspecified estimator. Similarly, for the PS

matching methods P1–P4, the estimator specified to estimate the PS could either be

misspecified or correctly specified. Additionally, for the doubly robust methods R1–R2,

both, none, or either of the covariate adjustment method or the propensity estimator

could be misspecified.9 We use a relatively modest dimension of three covariates to

illustrate our points. The empirical example in Sect. 6 illustrates the effect of a larger

dimension of X.

9 To maintain the focus of this paper and also due to space constraints, we delegate the comparison of
consistency of these estimators to future work.
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4.1 First set of simulations

4.1.1 Design

We design a simulation to study whether conditioning on estimated PS not only results in

equality of the mean of the covariates across the two treatment groups but also achieves

equality on the higher order moments and the joint distribution of these covariates across

treatment groups. We simulate the joint distribution of three covariates X = {X1, X2, X3},

where X1 is a binary covariate. We generated 1,000 replicate samples of 5,000 each for the

vector X� ¼ fX�1 ;X2;X3g following

X�1 �Uniformð0; 1Þ;X1 ¼ ðX�1 [ 0:5Þ;
X2� 0:62 � X�1 þ 2 � Uniformð0; 1Þ; and

X3� 0:42 � X�1 þ 2 � Uniformð0; 1Þ:
The correlations between them are given by q1�2 ¼ 0:25; q1�3 ¼ 0:18; q23 ¼ 0:06; where

CorrðXj;Xj0 Þ ¼ qjj0 : These correlations are in line with the typical correlations observed

between covariates in a cost regression.10 Using these covariates, we then define treatment

choice (D = 0.1) using a logit index model where D * Bernoulli(p), and

logitðpÞ ¼
�
0þ lnð1:5Þ � X1 þ lnð0:5Þ � X2 þ lnð0:5Þ � X3 þ lnð1:5Þ � X1 � X2½ � þ lnð2:0Þ
� X2

2

� �
þ lnð1:75Þ � X2

3

� ��
ð14Þ

The coefficients in (14) are fixed arbitrarily so that approximately 70% of the population

receives treatment.11

We estimate the PS, e(X), in each replicate sample based on a logistic regression of D

using the same specification as in (14) so that the PS estimator is not misspecified. We

estimate the mean of X and standard deviation of X for each treatment group when they

share the same PSs rounded to two decimal places. Similarly, we estimate the correlation

between any two X’s for each treatment group when they share the same PSs rounded to

one decimal place. Results are averaged over 1,000 replicate samples.

4.1.2 Results from the first set of simulations

Figure 1a reports the densities of estimated PS by treatment group and shows that the

densities exist over the same regions for both treatment groups. Figure 1b–d report

connected plots of the means, standard deviations, and correlations among the X’s by

treatment status conditional on the estimated PS. Conditional on the estimated PS, we

find that the X’s have almost identical means in both treatment groups. However, they do

not have identical standard deviation or correlations, with the biggest discrepancies

arising at the upper end of the estimated PSs. This implies that in many practical

instances, PSs may fail to remove imbalances in the joint distribution of covariates

across treatment groups. To what extent this limitation would affect estimation of

10 For example, in our empirical example, we found that the correlation between indicator nonwhite and
covariate representing percentage under poverty level was about 0.25, between Charlson’s comorbidity
index scores and indicator high payment for services was about 0.18, and a myriad number of correlations
that exist in the range of 0.05–0.15.
11 This is also in line with our empirical example where 75% of the breast cancer patients get mastectomy.
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treatment effects would depend on the degree of non-linearity in the data-generating

model for a particular study population.

Our initial simulation exercise motivates our interest in a more formal study of these

issues and the next set of simulations.

4.2 Second set of simulations

4.2.1 Design

We use the same design points for the data on covariates and treatment receipt described

above. We do not use the exact specification that generated the treatment choice data for

estimating the PSs because in an actual analysis the analyst would never know the true

functional form of the model that generates choices. Instead, using logistic regression, we

estimate a saturated model that includes all second-order polynomials of X and the one-

way interactions among them and that closely approximates a non-parametric estimator.

Although this is an over-specified model given our data, it should not produce systematic

biases in the prediction of PSs. We also estimate an unsaturated model, where only the

main effects of X are use. This, therefore, represents a misspecified PS estimator.
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Fig. 1 Initial simulation results (averaged over 1,000 replicates): a Distribution of PSs by treatment groups;
b mean X’s by treatment status over estimated PS; c Std. deviation of X’s by treatment status over estimated
PS; d correlation between X’s by treatment status over estimated PS
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Therefore, in all, we study 14 estimators corresponding to methods C1–C2 and two ver-

sions of P1–P4 and R1–R2 based on varying the model estimating the PSs between the

unsaturated and the saturated models.

All of the four outcome data-generating processes (DGP) we consider belong to the

gamma distribution (shape = 2.0), which corresponds to a skewed bell-shaped distribu-

tion. The population mean for each DGP is scaled to be 1. Higher order moments for each

DGP reflect typical characteristics of expenditure data that we see in practice. We highlight

some of these similarities in Table 1. The DGPs also differ in their degrees of non-linearity

between their mean and X’s through different link functions and non-linear functional

forms. The degrees of non-linearity are the main factors determining the performance of

the alternative estimators. They are designed to generate a priori hypotheses for estimator

performance as described below. The four mean functions are given as:

D1 EðY jD;XÞ ¼ ð100þ 800 � Dþ 250 � X1 þ 250 � X2 þ 50 � X3Þ2:5

D2 EðY jD;XÞ ¼ 2:5þ 0:2 � D� 2 � pðXÞð Þ�4

D3 EðY jD;XÞ ¼ expð0:05þ 0:25 � expðX1=2Þ þ 0:1 � 1þ ðX1 � X3Þ=25ð Þ3�0:05 �
D � ðX1 þ X3 þ 2Þ2 � 0:2 � D � X2=ð11þ expðX3ÞÞÞ

D4 EðY jD;XÞ ¼ 0:4þ 0:266 � D� 0:4 � pðXÞ þ 25 � D � pðXÞð Þ�1:

Here, p(X) is given as the expit(.) of the linear predictor in (14). Y is scaled to have a mean

of 1. The coefficients are chosen so that the absolute standardized ATE, where absolute

ATE is divided by the standard deviation of Y, is 1 under each DGP.

Table 1 Characteristics of data generating processes used for simulations

DGPs Descriptives for simulated observed outcomes

Mean SD Skewness Kurtosis ATE

DGP1 1 1.10 2.00 9.00 1.10

DGP2 1 1.60 4.88 52.5 -1.60

DGP3 1 0.85 2.10 9.96 -0.85

DGP4 1 1.45 9.10 369 -1.45

Data Empirical similarity of DGPs to real expenditure distributions: descriptives

Mean SD Skewness Kurtosis

Total prescription
expenditures among US
elderlya

1 1.23 2.40 10.9

1-year costs for patients
with myocardial
infarctionb

1 1.30 4.89 57

5-year costs for breast
cancer patients
(OPTIONS)c

1 0.94 2.62 12.4

Total expenditures among
US patients with any
positive expenditurea

1 2.7 13.1 389

a 2008 MEPS (www.meps.ahrq.gov); b Basu et al. (2006); c Current empirical example
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A priori, we expect the EEE (Method C3) to be a consistent estimator under DGP D1

and potentially unbiased even in finite samples. Consequently, we expect all PS-based

estimators and also DR estimators to be consistent under DGP1, although the EEE method

should be the most efficient compared to the alternatives under this DGP. For DGPs 2, 3, or

4, however, it is not clear a priori whether any of the regression estimators will be

consistent. Even though PS-based methods, which do not depend on identifying appro-

priate functional forms for a DGPs, should be consistent, it is not clear if they will carry

biases in finite samples, as the treatment effects vary over higher-order moments and

covariances of X’s. A priori, one might expect a DR estimator using a flexible regression,

such as the EEE, to exhibit less bias under misspecification than the other estimators. For

estimation of treatment effects, we truncate an estimate of PS greater than 0.95 to 0.95.

Overall, the varying degrees of non-linearity of the mean function with respect to X sets up

to establish the proof by contradiction that no one estimator may be appropriate under all

DGPs.

In order to study these issues, we generate 1,000 replicate samples of 5,000 each under

each data generating process (DGP hereon). For each replicate data set j (j = 1,2,…,1,000)

and under each of 14 different estimators (k = 1,2,…,14), we estimate the average treat-

ment effect (ATE, hereon) D̂jk computed using (13), and the root mean square error

RMSEjk

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1 �

P
i yijk � l̂ijkðxÞ
� �2

q
: We report the percent mean bias (and 95% CI)

in estimating D under each method that is given by ðEjðD̂jkÞ � DTrueÞ � 100=DTrue: (A

normal theory 95% CI calculated using the standard deviation of D̂jk across j.) We also

report the relative root mean square error for each method (except for the matching

estimators) relative to the inverse-propensity weighting method (Method P3) where the PSs

are estimated using the saturated model: RRMSEkð Þ ¼ Ej RMSEjk

� �
=Ej RMSEjk�
� �� �

; where

k* represents Method P3 under saturated PS specification.

4.2.2 Results from the second set of simulations

Table 1 reports the descriptive statistics for our DGPs and associated ATE. Figure 2

illustrates the density of outcome Y from each DGP, where Y is scaled to have mean 1 in

D
en

si
tie

s

0 2 4 6 8 10

Y (Scaled to have E(Y)=1)

DGP D1
DGP D2
DGP D3
DGP D4
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Fig. 2 Probability densities of
Y under each data generating
process, where Y was scaled so
that E(Y) = 1 in each case
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each case. All DGPs show substantial skewness and kurtosis on the right hand side of the

distribution, typical of most costs datasets.

Table 2 Simulation results for DGP 1 and DGP 2

Methods % Bias (ATE) Se (% bias) 95% CI (%bias) RRMSE

For DGP 1

Regression estimators

C1: log-link GLM 11.8a 0.95 (9.9,13.6) 0.94

C2: EEE 0.0 0.91 (-1.8,1.7) 0.90

PS estimators /w saturated PS model

P1: PS stratification 1.4 1.15 (-.8,3.7) 0.91

P2: PS weighting 0.0 1.69 (-3.3,3.3) 1.00 (ref)

P3: PS matching (kernel) 0.9 1.15 (-1.4,3.1) –

P4: PS matching (LLR) 0 1.46 (-2.9,2.8) –

R1: GLM-DR -0.2 2.77 (-5.6,5.2) 0.95

R2: EEE-DR 0.0 1.18 (-2.3,2.3) 0.90

PS estimators /w unsaturated PS model

P1: PS stratification 1.5 1.15 (-.8,3.7) 0.91

P2: PS weighting 1.8 0.98 (-.2,3.7) 1.00

P3: PS matching (kernel) 1.3 1.08 (-.9,3.4) –

P4: PS matching (LLR) 0.1 1.41 (-2.6,2.9) –

R1: GLM-DR -33.2a 11.08 (-54.9,-11.5) 0.93

R2: EEE-DR 0.0 1.18 (-2.3,2.3) 0.90

For DGP 2

Regression estimators

C1: log-link GLM -56.0a 2.64 (-61.2,-50.8) 0.65

C2: EEE -13.9 10.02 (-33.5,5.7) 0.68

PS estimators /w saturated PS model

P1: PS stratification -22.1a 10.38 (-42.5,-1.8) 0.64

P2: PS weighting -1.2 21.01 (-42.4,40) 1.00 (ref)

P3: PS matching (kernel) -130.2a 60.06 (-247.9,-12.5) –

P4: PS matching (LLR) -126.3 67.48 (-258.5,6.0) –

R1: GLM-DR . . (.,.) .

R2: EEE-DR . . (.,.) .

PS estimators /w unsaturated PS model

P1: PS stratification -27.7a 9.71 (-46.8,-8.7) 0.65

P2: PS weighting -49.8a 9.62 (-68.7,-31) 0.91

P3: PS matching (kernel) -133 55.6 (-242,-24.1) –

P4: PS Matching (LLR) -128 64.96 (-255.3,-0.7) –

R1: GLM-DR 1.1 20.34 (-38.8,41) 0.63

R2: EEE-DR 61.2 41.03 (-19.2,141.6) 0.72

GLM generalized linear model; EEE Extended Estimating Equations estimator; PS propensity score;
LLR local linear regression; DR doubly robust

a 95% CI for Bias does not include 0; % Bias (ATE) = ðEðD̂kÞ � DTrueÞ � 100=DTrue; RRMSE relative
RMSE with respect to PS weighting using saturated PS model
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4.2.2.1 Results for DGP1 (Table 2) Regression methods: As expected, we find that the

EEE method (C2) is unbiased while the log-GLM (C1) method is not.

Saturated model for PS: All of the PS-based methods produce unbiased estimates of

ATE; however, they appear to be inefficient compared to C2. The EEE-DR (R2) produces

unbiased estimates of ATE but has approximately 1.3 times higher standard errors for ATE

compared to C2. The log-GLM-DR (R1) produces unbiased estimates, upholding its DR

feature, although it is even more inefficient than EEE-DR.

Unsaturated model for PS: Misspecification of propensity model does not affect any of

the PS-based methods under this DGP and all the approaches produce unbiased estimates

of ATE. The log-GLM-DR (R1) produces biased results as it becomes ‘‘doubly mis-

specified’’ under this data-generating mechanism.

EEE (C2) clearly outperforms other estimators for DGP D1.

4.2.2.2 Results for DGP2 (Table 2) Regression methods: Log-GLM (C1) is biased. EEE

(C2) produces a 14% bias that is not significant.

Saturated model for PS: PS-method P2 (inverse probability weighting (IPW)) produces

unbiased estimates of ATE; however, estimates from P1, P3, and P4 are biased. The DR

methods have difficulty converging under this DGP.

Unsaturated model for PS: Even P2 produces biased estimates of ATE.

The IPW (P2) estimator with PS estimated from a saturated model appears to be the best

choice for DGP D2.

4.2.2.3 Results for DGP3 (Table 3) Regression methods: Both C1 and C2 regression

estimators produce biased estimates of ATE.

Saturated model for PS: All PS methods, P1–P4, and also the doubly-robust methods,

R1 and R2, produce unbiased estimates of ATE, with P1 or P3 being the most efficient.

Unsaturated model for PS: P1–P4 estimators still produce unbiased estimates, but the

DR estimators do not. In DR estimators, the biases from the regression models and the

misspecified PS estimator seem to reinforce each other.

Under this DGP, either the PS stratification estimator (P1) or the kernel-based matching

estimator (P4) produces the best results when the PS estimates came from the saturated

model.

4.2.2.4 Results for DGP4 (Table 3) Regression methods: Both regression estimators,

log-GLM (C1) and EEE (C2), produce biased estimates of ATE.

Saturated model for PS: P1, P3, and P4 estimators are also biased in estimating ATE;

however, the inverse-probability weighted estimator, P2, is unbiased. The GLM-DR (R1)

produces biased results, indicating that properly specified PS estimates may fail to uphold

the DR property when combined with an overly biased regression estimator. In contrast,

the EE-DR model produces unbiased results and also is more efficient compared to P2

(41% reduction in RMSE).

Saturated model for PS: All PS-based estimators and the DR estimator produce biased

results.

The EE-DR model using estimated PS from a saturated model is the most desirable

estimator under this DGP.
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Table 3 Simulation results for DGP 3 and DGP 4

Methods % Bias (ATE) Se (% bias) 95% CI (% bias) RRMSE

For DGP 3

Regression estimators

C1: log-link GLM -11.7a 3.59 (-18.7,-4.6) 1.00

C2: EEE -7.6a 3.46 (-14.4,-0.8) 0.98

PS estimators /w saturated PS model

P1: PS stratification -0.5 5.41 (-11.1,10.1) 0.99

P2: PS weighting -0.2 6.39 (-12.7,12.4) 1.00 (ref)

P3: PS matching (kernel) -0.4 5.40 (-11,10.2) –

P4: PS matching (LLR) -0.2 6.37 (-12.7,12.3) –

R1: GLM-DR 9.5 7.05 (-4.3,23.4) 0.99

R2: EEE-DR 6.0 6.54 (-6.9,18.8) 0.98

PS estimators /w unsaturated PS model

P1: PS stratification 0.1 5.26 (-10.3,10.4) 0.99

P2: PS weighting -1.9 4.46 (-10.7,6.8) 1.00

P3: PS matching (kernel) -0.1 5.13 (-10.1,10) –

P4: PS Matching (LLR) 0.2 6.34 (-12.3,12.6) –

R1: GLM-DR 19.5a 8.73 (2.4,36.6) 0.99

R2: EEE-DR 7.2 5.98 (-4.5,18.9) 0.98

For DGP 4

Regression estimators

C1: log-link GLM -57.0a 2.55 (-62,-52) 0.68

C2: EEE 21.1 10.75 (0.4,42.1) 0.70

PS estimators /w saturated PS model

P1: PS stratification -44.8a 11.62 (-67.6,-22.0) 0.70

P2: PS weighting -0.3 58.97 (-115.9,115.2) 1.00 (ref)

P3: PS matching (kernel) -36.5 12.02 (-60,-12.9) –

P4: PS matching (LLR) -8.9 23.7 (-55.4,37.5) –

R1: GLM-DR -34.6a 9.28 (-52.8,-16.4) 0.67

R2: EEE-DR 0.2 15.56 (-25.3,35.7) 0.69

PS estimators /w unsaturated PS model

P1: PS stratification -46.3a 11.30 (-68.5,-24.2) 0.70

P2: PS weighting -58.8a 13.32 (-84.9,-32.7) 0.89

P3: PS matching (kernel) -45.9 10.38 (-66.3,-25.6) –

P4: PS matching (LLR) -13.4 23.92 (-60.3,33.5) –

R1: GLM-DR -56.3a 8.02 (-72.1,-40.6) 0.67

R2: EEE-DR -6.5 17.53 (-40.9,27.8) 0.65

GLM generalized linear model; EEE Extended Estimating Equations estimator; PS propensity score;
LLR local linear regression; DR doubly robust

a 95% CI for Bias does not include 0; % Bias (ATE) = ðEðD̂kÞ � DTrueÞ � 100=DTrue

RRMSE relative RMSE with respect to PS weighting using saturated PS model
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4.3 Summary of simulation results

Our simulations reveal several key features about the use of PSs to estimate treatment

effects in data generated via non-linear DGPs. It is well known that traditional regression

methods may misspecify the link function (such as log-link GLM) and may not always

capture the underlying data generating mechanism. To overcome these limitations, the

EEE regression method provides quite a bit of flexibility by estimating a link parameter for

a power family of link functions from the data and thus can guide the functional form best

suited for the data at hand. However, even the EEE is not the answer for all non-linear data

generating mechanisms (as we see in the case of DGPs D2–D4). Propensity scores provide

an alternative approach to overcome some of the limitations of functional form inherent in

regression methods, although these approaches are also sensitive to specification of the PS

estimator. More importantly, we find that even when PSs are generated from a correctly

specified model, PS-based methods may produce biased estimates of ATE under alternate

DGPs. As our simulations show, a different estimator came out to be the best under each of

the four DGPs.

Below is a summary of the main results from our simulations:

1. Stratifying by quintiles of estimated PS or matching on them using the kernel-based

matching estimator or local-linear regression can be a more efficient alternative to the

IPW estimator for a variety of non-linear DGPs. However, like the EEE method, they

are not guaranteed to provide unbiased estimates under all types of non-linear DGPs.

The local linear regression matching estimator is found to be more robust compared to

stratification.

2. The IPW estimator is the most robust PS-based method. It is most likely to be unbiased

as long as there is no misspecification in the estimation of the PSs.

3. If an unbiased regression estimator exists, it will usually be more efficient than the

IPW estimator.

4. Doubly robust estimators are sensitive to both misspecifications of the PS estimators

and also to the regression methods. Misspecification in one of them is often

compensated by correctly specifying the other method, but this double robustness

comes at an expense of efficiency. Efficiency of DR estimators lie somewhere in

between the regression methods and the IPW estimator. Generally, EEE-DR performs

better than the GLM-DR with a log link since EEE provides additional flexibility in

modeling the data.

We now illustrate the application of these estimators in estimating the ATE between

two treatment options amongst breast cancer patients.

5 Empirical example

Breast cancer is the second leading cause of cancer death in women in the United States.

With advances of screening and early detection, most cases of breast cancer are diag-

nosed in the early stages, when chances of survival are excellent (Rias et al. 2000).

However, the costs associated with treatment of patients with breast cancer are sub-

stantial. Local therapies for early-stage breast cancer include breast-conserving surgery

with radiation (BCSRT) and mastectomy. Large clinical trials that studied the efficacy of

these treatments found that BCSRT and mastectomy are equivalent in terms of long-term

survival (National Institutes of Health Consensus Conference (1991)). These results have
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increased the relevance of comparing costs across alternative treatments for early-stage

breast cancer.

Several cost studies have compared surgical treatments for early-stage breast cancer.

These studies indicate that BCSRT may be more expensive than mastectomy, but evidence

is not conclusive (Norum et al. 1997; Desch et al. 1999; Given et al. 2001; Barlow et al.

2001; Warren et al. 2002). Most have used OLS regression to model costs; however, Given

et al. (2001) used log-OLS regression, although without dealing with issues of retrans-

formation. Polsky et al. (2003) evaluated breast cancer treatments using PSs but found the

5-year incremental cost estimate between BCSRT and mastectomy ($14,054, 95% CI,

$9,791–$18,317) to be similar to that estimated via OLS regression ($13,775, 95% CI,

$9,853–$17,697).

5.1 Data

Our data consisted of a 5% random sample from the Center for Medicare and Medicaid

Services national claims database of all Medicare beneficiaries. The data were collected as

part of the Outcomes and Preferences in Older Women Nationwide Survey (OPTIONS)

project (Hadley et al. 1992), and were used by other researchers (Hadley et al. 2003; Polsky

et al. 2003). The dataset was constructed by the OPTIONS team in four steps: (1) Medicare

claims for persons with a breast cancer diagnosis or relevant surgery procedure codes for

calendar years 1992–1994 were obtained. (2) Additional exclusions were applied to make

BCSRT and mastectomy (MST) be considered equivalent from the clinical point of view

for all women in the sample (Hadley et al. 2003; Polsky et al. 2003). Cases for which breast

cancer was not the primary diagnosis were deleted. (3) Surgeons identified in the dataset

were surveyed to verify study eligibility of the patients. (4) Additional exclusions were

applied to exclude patients who were in a Medicare health maintenance organization in the

month of the survey because their cost data were not available in the claims file. Finally,

patients who had breast-conservation surgery but did not receive radiation were excluded.

The data, although over 10 years old at this point, provide a unique opportunity to analyze

a large national sample of Medicare beneficiaries with a confirmed diagnosis of early-stage

breast cancer. Moreover, we chose this dataset for comparability to other results based on

this dataset published in the literature (Hadley et al. 1992, 2003; Polsky et al. 2003).

We use all 5-year Medicare payments from inpatient, outpatient, and physician Part-B

claims to estimate direct medical costs, including costs related to breast cancer treatment

and all other medical costs covered by Medicare; and calculate total costs using an annual

3% discount rate. The final sample consisted of 2,517 patients, of whom 1,813 patients had

mastectomies and the remaining had BCSRT. The distribution of patient characteristics by

treatment type is published elsewhere (Polsky et al. 2003). The covariates that we adjust

for are variables that are both measurable and theoretically predictive of costs, including

age at the time of surgery, cancer stage, Charlson co-morbidity index, and race. Because

claims do not contain socioeconomic data, we use percentage college graduates, median

household income, and percentage below poverty level by 5-digit zip-code. Additionally,

we adjust for county-level data on health system characteristics, such as number of hospital

admissions, number of nursing homes, and an indicator for urban area. We assume that

there are no unobserved confounders.

Our primary goal of the analysis is to estimate the ATE of BCSRT over MST on total

costs (we do not address issues of unobserved confounders here). For the sake of com-

pleteness, we apply all the estimators that we evaluated in our simulations. In order to

estimate PSs, we start with a saturated logistic regression model that includes all quadratic
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terms and two-way interactions besides the main-effects. We then follow a stepwise

approach with backward selection to arrive at a model that shows reasonably good fit to the

treatment choices.

5.2 Results

The final logistic regression estimator for estimating PSs passes all the goodness of fit tests

conducted based on raw-scale residuals (Pearson correlation test, q = 0.002,

P value = 0.94; Pregibon’s Link test, z = -0.20, P value = 0.85; and modified Hosmer–

Lemeshow test, F = 0.93, P value = 0.51). Figure 3a shows the distribution of estimated

PSs to select BCSRT for the two treatment categories.

We also look at the overall levels of balance in the covariate means. We run a seemingly

unrelated regression where each covariate is regressed on the BCSRT indicator and the

estimated PS. We find that the P value on the coefficient of the BCSRT indicator is close to
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Fig. 3 a Distribution of estimated PSs by treatment groups; b imbalances in mean and standard deviation of
Charlson Index score (ChSc) and the correlation between CHSc and median household income between
treatment groups at specific values (ranges in the case of correlation) of estimated PSs
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0.98 for every covariate, which indicates excellent overall balance in the covariate means

across treatment groups once adjusted for PSs. The joint test of the coefficients across all

covariates is also highly insignificant (P value = 0.99). However, a closer look at the

distribution of covariates across estimated PS reveals greater discrepancies. Figure 3b

shows the level of match attained between treatment groups after conditioning on the

estimated PSs for three statistics: (1) the mean and standard deviation of one of the

covariates, (2) the Charlson’s score, and (3) the correlation between Charlson’s score and

median household income. We find substantial discrepancies in all three statistics even in

regions where the estimated PSs have substantial probability density mass.

As with any regression model, any conclusion about the lack of bias for its parameters

comes from the goodness of fit of the model to the data. Figure 4 illustrates the goodness of

fit for log-GLM and EEE methods and the corresponding DR methods, log-GLM-DR and

EEE-DR, in terms of raw-scale residuals over their corresponding deciles of linear pre-

dictors. Both the log-link GLM method and its DR alternative show curvature in the raw-

scale residuals over the deciles of their linear predictors. Both of these estimators fail the

more parsimonious Pregibon’s Link test (GLM: z = -6.01, P value \ 0.001; GLM-DR:
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Fig. 4 Analysis on cost of breast cancer treatments. Profile of residuals over the deciles of linear predictors
for log-GLM and EEE methods and the corresponding DR methods log-GLM-DR and EEE-DR

Table 4 Estimated ATE of BCSRT versus MST in breast cancer patients

Model: estimator ATE (SE) Difference from ATE (EEE)

C1: log-link GLM 12,318 (1,596) 2,335 (635)a

C2: EEE 9,983 (1,350) –

P1: PS stratification (by quintiles) 11,384 (1,633) 1,401 (1,389)

P2: PS weighting 10,994 (2,271) 1,011 (2,151)

P3: PS matching (kernel) 11,398 (1,878) 1,415 (1,424)

P4: PS matching (LLR) 11,173 (2,143) 1,190 (1,796)

R1: log-GLM-DR 11,418 (1,981) 1,435 (1,752)

R2: EEE-DR 10,284 (1,788) 301 (1,350)

LLR local linear regression

Significant at: a 5%
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z = -3.01, P value = 0.003). On the other hand, the EEE method and its doubly-robust

counterpart show no systematic biases and pass all goodness of fit tests. In fact the EEE

appears to be more efficient in its predictions compared to EEE-DR.

These features translate to the ATEs shown in Table 4. The log-link GLM regression

estimator produces ATEs that are significantly different from the EEE estimate at the 5%

level, representing a bias (compared to the EEE estimate) of about 24%. All the PS-based

estimators also produce big discrepancies compared to the EEE estimator (with bias

ranging from 10 to 14%), but each is quite inefficient for its estimate to be significantly

different from the EEE estimate. For example, the log-link GLM-DR model, which we

know to be a biased estimator based on goodness of fit criteria illustrated in Fig. 4, also

produces a bias of about 14%, without being statistically different from the EEE estimator,

due to its inefficiency.

As expected from our simulation results, we find that the PS weighting is robust but also

inefficient (due to discrepancies in higher order moments of covariates after propensity

matching, as illustrated in Fig. 3b). This inefficiency comes with an unstable point esti-

mate, because the empirical example is just one realization of the data. Thus, goodness-

of-fit tests can help practitioners evaluate and trade-off potential biases with efficiency.

For this data, the EEE appears to be the best estimator both based on its efficiency and also

on the evidence of lack of bias based on the goodness-of-fit tests.

6 Discussion

We compare the performance of various regression, PS-based, and DR estimators in esti-

mating ATEs on outcomes generated via non-linear data generating processes that simulate

processes common for health care costs. Our simulations suggest that conditioning on

estimated PS creates balance across treatment groups in the means but not necessarily in the

higher order moments nor in the joint distribution of X’s. This finding does not go away when

an over-specified model is used to estimate the PS. As a result, we believe that PS estimators

for treatment effects on health care costs are inefficient at best, but biased at worst.

Our second set of simulations demonstrate certain non-linear generating mechanisms

where the PS estimators produce biased estimates of treatment effects. Interestingly, when

a PS estimand is not misspecified, inverse-probability weighting using PSs is the only

unbiased estimator under all data generating mechanisms studied and outperforms

matching estimators. This is in line with Busso et al.’s work (2009). However, PS-based

estimators are often extremely inefficient when compared to an unbiased regression esti-

mator. All PS-based estimators are prone to bias when PSs estimator is misspecified, which

is in contrast to Zhao’s findings (2008). Thus, care, should be taken before naively

applying any one estimator to estimate ATEs.

An important caveat to this work is that all our simulations assumed good overlap

between the treatment groups, and none of the simulations considered unobserved variables.

Based on our findings, we also conjecture that, like regression methods, PS methods

may suffer from the curse of dimensionality when the outcomes data are potentially

generated via non-linear data generating processes. This is primarily because matching on

propensity must not only ensure matching of covariate means across treatment groups but

also the entire joint distribution of the covariates across treatment groups. This second

criteria is seldom achieved in a finite sample and gives rise to bias and inefficiency when

using PS-based estimators on outcomes that are presumably generated via non-linear

processes. Further work in this area can provide useful guidance for researchers.
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We hope that our results and discussions will convey to researchers the potential pitfalls

of relying on any one estimator exclusively, especially for non-linear outcomes such as

health care costs.
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