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Abstract
A ventricular assist device (VAD) is a form of mechanical circulatory support that uses a mechanical pump to partially or 
fully take over the function of a failed heart. In recent decades, the VAD has become a crucial option in the treatment of end-
stage heart failure in adult patients. However, due to the lack of suitable devices and more complicated patient profiles, this 
therapeutic approach is still not widely used for pediatric populations. This article reviews the clinically available devices, 
adverse events, and future directions of design and implementation in pediatric VADs.

Keywords  Pediatrics · Ventricular assist device · Mechanical circulatory support · Heart failure

Introduction

Pediatric heart failure (HF) is an important cause of mor-
tality in childhood. The incidence of HF in children and 
adolescents has been reported to range from 0.87/100,000 
to 7.4/100,000 [1], with a 5-year mortality or heart trans-
plant (HT) rate of 40% [2]. The approaches to HF treatment 
are similar in both adult and pediatric patients and include 
medication, device therapy, surgical treatment, mechanical 
circulatory support (MCS) and HT. For those patients who 
retain severe and persistent symptoms of HF despite optimal 

guideline-directed medical treatment, due to the inefficiency 
of other approaches, HT was viewed as the last resort and 
the only long-term solution. However, the overall shortage 
of suitable donors is an important obstacle to their treatment.

Therefore, as one of the alternative treatments for patients 
suffering from HF, ventricular assist devices (VADs) have 
drawn increasing attention and have revolutionized this field. 
The concept of using a mechanical pump to assist or take 
over heart function was initially put into practice in the early 
1960s. After the first successful clinical use of a VAD as 
postsurgical support in a 37-year-old female [3], the first 
use of VADs in pediatric patients was performed by Dr. 
Debakey in 1967. A 16-year-old girl received mitral valve 
replacement and was supported by a paracorporeal VAD 
postoperatively until medically stable. The technique and 
products have improved after decades of development since 
that time. However, it was not until the 2000s that pediatric 
VAD applications underwent a burst of continual growth. 
Accordingly, a significant increase in waiting-list survival 
was observed in the era where pediatric VADs initially 
started to be employed [4]. Indeed, the VAD has changed 
the management strategy of pediatric HF. However, we are 
still facing difficulties such as a lack of suitable devices, 
more severe and complicated patient profiles, less practice 
experience and higher complication rates, which all limit the 
application of pediatric VADs.

This article reviews the clinically available devices, 
adverse events, and future directions of design and imple-
mentation in pediatric VADs. Additionally, in this article, 
by introducing differences in the current status of VAD 
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application in pediatric and adult patients, we try to clarify 
the large “gap” in devices and patient management and to 
provide our analysis and advice.

Classification and properties of clinically 
available pediatric VADs

Pediatric VADs are classified in a number of ways for better 
description. They can be separated by the anticipated dura-
tion of therapy: short term (temporary) and long term (dura-
ble). Short-term pediatric VADs are designed for a limited 
duration of support, usually ranging from several hours to 
up to 30 days. Temporary VADs are usually applied in acute 
processes for bridge to transplant (BTT), bridge to recovery 
(BTR) or bridge to durable VAD support; or applied for 
prolonged support in cases of small children and patients 
with complicated circulation. Long-term VADs are mostly 
applied for BTT and destination therapy (DT). It should be 
noted that in clinical practice, limitations regarding the dura-
tion of support are unclear [5].

The mode of blood flow created by the device could bet-
ter reflect the mechanism of VADs, as it is strongly related 
to the outcome of patients, and is briefly introduced in this 
section. Generally, there is pulsatile flow (PF, by first genera-
tion devices) and continuous flow (CF, by second- and third-
generation devices). In addition, VADs are also classified 

based on the location of the pump relative to the patient: 
percutaneous (intravascular), implantable and paracorporeal.

Based on the major registries and studies, we enrolled the 
devices frequently used in pediatric patients or in studies 
focusing on pediatric populations, regardless of whether they 
were specifically designed for children. Sorted by the recom-
mended duration of support, clinically available devices are 
shown in (Table 1) along with their key information.

First‑generation VADs

The first-generation VADs consist of a volume displacement 
pump that is actuated pneumatically or electrically to gen-
erate PF. Berlin Heart EXCOR VAD (Fig. 1a) is currently 
the most widely used pediatric PF device. First-generation 
VADs have shown clinical advantages over optimal medical  
therapy since their application [6]. Meanwhile, first-generation  
VADs have also shown flaws. Other than limited patient 
mobility due to large driving consoles and noise generated 
by mechanical heart valves [7], most importantly, PF devices 
consist of multiple moving mechanical parts and prosthetic 
valves, which leads to limited reliability and durability and 
a higher risk of thrombus formation. A study revealed that 
the probability of PF device failure was as high as 35% at 
24 months [8], making it one of the major concerns. Moreo-
ver, another study reported that patients with PF devices 
had a far worse survival rate at 2 years with more frequent 

Table 1   VADs most implanted in pediatric patients, sorted by recommended duration of support

The key metrics extracted from the latest manuals or product catalog provided by suppliers. Information not provided in official manuals is pre-
sented as “/”; “*” indicates that the VAD is no longer available in the market

Device Location Generation Output (L/min) Body surface area (BSA, m2) or 
body weight (kg) recommended

Short-term VADs
CardiacAssist TandemHeart [87] Percutaneous 2 0–5 /
Maquet RotaFlow [88] Paracorporeal 2 0–10 /
Abbott PediMag [89] Paracorporeal 3 0–1.5 /
Abbott Centrimag [90] Paracorporeal 3 0–10 /
Abiomed Impella 2.5/CP/5.0 [91] Percutaneous 2 up to 2.5/3.7/5 /
Long-term VADs
Berlin Heart INCOR [92] Intracorporeal 3 / /
Berlin Heart EXCOR (10 ml) [93] Paracorporeal 1 0.5–1.1 2–8.5 kg
Berlin Heart EXCOR (15 ml)[93] Paracorporeal 1 0.9–1.7 6.5–15 kg
Berlin Heart EXCOR (25 ml) [93] Paracorporeal 1 1.5–2.6 13.5–25 kg
Berlin Heart EXCOR (30 ml) [93] Paracorporeal 1 1.8–3.2 16–30 kg
Berlin Heart EXCOR (50 ml) [93] Paracorporeal 1 3–5.5 30–55 kg
Berlin Heart EXCOR (60 ml) [93] Paracorporeal 1 3.6–6 35–60 kg
Abbott HeartMate II [94] Intracorporeal 2 2.5–10 >1.2 m2

Abbott HeartMate III [95] Intracorporeal 3 2.5–10 >1.2 m2

Medtronic HeartWare HVAD*[96] Intracorporeal 3 2–10 >1.2 m2



771Heart Failure Reviews (2024) 29:769–784	

adverse events and device replacements than patients with 
CF devices [9]. This study is seen as a milestone and has 
revolutionized the choice of device.

Second‑ and third‑generation VADs

Second- and third-generation VADs both pertain to CF 
pumps. All rotary blood pumps, except if full levitation of 
the impeller within the pump housing is achieved under 
normal operating conditions (referring to third-generation 
VADs), are defined as second-generation devices [7]. 
The CF pumps are widely used, and they could serve as 
short-term paracorporeal VADs (Maquet RotaFlow, Abbott 
Centrimag, etc.), percutaneous VADs (CardiacAssist Tan-
demHeart, Abiomed Impella, etc.) (Fig.  1d) or durable 
intracorporeal VADs (Medtronic HeartWare HVAD, Abbott 
HeartMate III, etc.) (Fig. 1b, c). Theoretically, the durabil-
ity and hemocompatibility could be further improved with 
a wear-free operation mode, which is the primary motiva-
tion for the development of third-generation VADs. The 
MOMENTUM 3 trial reported that, at 2 years, the compos-
ite endpoint of survival free of disabling stroke and reop-
eration to remove or replace a malfunctioning device was 
significantly better with HeartMate III (third-generation 

VADs) than with HeartMate II (second-generation VADs) 
in both the BTT and DT groups [10]. However, other third-
generation devices, such as Berlin Heart INCOR and Abbott 
PediMag, still need constant observation to clarify their 
superiority in patient outcomes.

Adverse events of pediatric VADs

Pedimacs (the Pediatric Interagency Registry for Mechani-
cal Circulatory Support), Paedi-EUROMACS (The European 
Registry for Patients with Mechanical Circulatory Support) 
and ACTION (Advanced Cardiac Therapies Improving Out-
comes Network) are the three major pediatric VAD registries 
[11–13] reflecting the current situation of this field. How-
ever, their reports of adverse events are not quite comparable, 
as there are differences in the type of adverse events con-
cluded between the studies, and the categorization of “early” 
or “late” adverse events varies. To avoid confusion, the data 
referred to in this section are mainly based on the Pedimacs 
registry, who might be more representative as it so far has 
included more cases than other registries along with more 
dispersed distribution of patients’ ages. We also reviewed 
studies including ≥ 25 patients published in the last 5 years 

Fig. 1   Diagrams of representative VADs applied in children. Red 
arrows represent the direction of blood flow. a First-generation pedi-
atric LVAD (Berlin Heart EXCOR). b  Second-generation axial CF 

LVAD (HeartMate XVE LVAD). c  Third-generation centrifugal CF 
LVAD (HeartMate III). d Percutaneous LVAD (Abiomed Impella)
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(2019–2023) referring to adverse events of pediatric VADs 
in (Table 2), including Paedi-EUROMACS and ACTION. 
Numerous variables could have an impact on the VAD risk 
profile, including patient age, body size, anatomy, develop-
mental hemostasis, device type, illness severity and comor-
bidities prior to implantation [14], and these interdependent 
factors greatly amplify the complexity of patient outcome.

Bleeding

Bleeding, especially gastrointestinal (GI) bleeding, is a 
significantly common complication that leads to recurrent 
hospitalizations, along with increased lengths of stay, costs, 
blood transfusions, and time off anticoagulation or antiplate-
let therapy [15]. The risk of bleeding in the setting of VAD 
support is multifactorial and is related to anticoagulation/
antiplatelet therapy, dysregulated angiogenesis, arteriovenous 
malformations, VAD-associated von Willebrand syndrome, 
mucosal hypoxia induced by lack of pulsatility in CF VADs, 
etc. [16]. Adding up both GI and non-GI bleeding, the rate 
of bleeding events in the Pedimacs registry is up to 5.1 per 
patient-year within the first 2 weeks and 0.6 per patient-year 
afterward [12]. Since pediatric patients have distinct differ-
ences in blood rheology and behavior [17], the patient man-
agement should be actively and repeatedly evaluated.

Infection

Infection is another common adverse event occurring in 
VAD-supported children. The Pedimacs registry found 
that infections occurred in 12% of pediatric patients within 
2 weeks of implantation and 21% after 2 weeks or more 
[12]. Among adult patients, the most common VAD-specific 
infections are driveline infections, with an overall event rate 
of 14 to 48% between various studies [18]. The ACTION 
registry further reveals that, in children, the three most 
common types of infection are sepsis, localized non-device 
infection, and percutaneous site and/or pocket infection [19]. 
Paracorporeal devices are strongly related to a higher risk of 
infection than intracorporeal devices [19].

Device malfunction/pump thrombus formation

Device malfunction/pump thrombus formation is the most 
frequently reported major adverse event in pediatric popu-
lation [5, 11]. Pump thrombus is the most common reason 
for device exchange and could be a risk factor for stroke 
leading to morbidity [20]. Although pump thrombus is a 
significant adverse event, a study noted that only 13% to 
15% of device malfunctions are attributable to pump fail-
ure [21]. The true incidence of malfunction of the broader 
system components might have been neglected. CF-VADs 
greatly ameliorated the outcome, with 90.4% of adult 

patients at 1 year and 82.6% at 2 years free from device 
malfunction/pump thrombi [22]. Similarly, in a recent 
study of pediatric patients implanted with the HeartMate 
3 device, there were no episodes of pump thrombosis or 
pump dysfunction requiring operative exchange with a 
median 78 days of follow-up [23]. However, due to the dif-
ference in device type and the lack of experience, it seems 
much less optimistic for the overall pediatric patients, 
especially those supported by paracorporeal devices [24].

Neurological dysfunction

Neurological adverse events are defined and recorded dif-
ferently among studies, most of which mainly focus on 
cerebrovascular accidents (CVAs). Ischemic strokes usu-
ally result from embolic sources on the aortic valve, the 
inflow cannula, or intracardiac chamber, and hemorrhagic 
strokes may occur mainly secondarily to hypertension or 
coagulopathy [25]. The Pedimacs report reveals that stroke 
occurs in 11% of all pediatric patients [12]. CVAs are one 
of the leading causes of death in Paedi-EUROMACS 
(24.17% of deaths), as in the Pedimacs cohort [11, 12]. It 
is important to recognize that adverse neurological events 
comprise a broad category of complications. Other than 
CVAs, there are seizures, encephalopathy, asymptomatic 
neuroradiological findings, confusion, extra-axial bleed-
ing, etc. [26].

Beyond these complications, right ventricular failure 
[27], aortic regurgitation [28, 29], peripheral infarction [30], 
arrhythmia [31, 32], renal dysfunction, respiratory failure, 
wound dehiscence, allosensitization, psychiatric episodes, 
and hemolysis are also observed adverse events post-VAD 
implantation [22, 33] and yet are less discussed in pediat-
ric cohorts. Despite improvements in VAD technology and 
increasing familiarity with pediatric VAD patients, the out-
come and survival of pediatric patients are still not optimal 
and not comparable with those of adults. For better determi-
nation of the incidence of adverse events and for improved 
reporting of how to effectively manage them, sharing experi-
ences across centers is of great value.

Future directions of pediatric VADs design

Ideally, VADs should be able to provide suitable cardiac 
output both at rest and during exertion, high durability, a 
less invasive implantation approach, a nonblood contact 
design, and a fully implantable system to avoid skin barrier 
penetration [34]. Whereas each of these ideals may have 
been achieved and implemented in different designs, we 
are far from fulfilling all of these criteria. Here, we put 
forward a few possible trends of pediatric VADs design 
and research.
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Suitable devices for different age groups

Lack of suitable devices designed to address the unique 
anatomic and physiologic needs of children in different 
age groups remains the biggest obstacle. The development 
of pediatric VADs lags behind that of adults due to both 
technological limitations and economic unsustainability. 
As a result, many larger children are implanted with adult 
devices. Using adult-sized devices in children (“off-label” 
or “off-design” application) results in patient-device size 
mismatches, creative implantation strategies, and blood 
flow beyond the range recommended [35]. Adapting adult 
VADs for children has the risk of unexpected complications. 
Indeed, worse patient outcomes compared to adult patients 
have been observed. A multicenter registry analysis showed 
promising outcomes in a cohort of pediatric and younger 
adult patients undergoing implantation of HeartMate III 
[23], but only 57% of these patients were discharged. While 
in adult patients supported by HeartMate III, the discharge 
rate could reach 94.2% [36], showing an obvious gap 
between the two populations. Similarly, in another study, 
the rate of discharge for HVAD was 80% in young adults 
and only 48% in children [31]. Numeric simulations and 
in vitro measurements indicate that in the pediatric condi-
tion, HVAD washout of old blood is 2 times slower and 
the residence time of blood within the pump is twofold 
prolonged compared with a typical adult case [37], which 
are potentially unfavorable mechanisms in terms of blood 
trauma and thrombogenicity. Thus, adapting adult VADs for 
larger children could be a temporal solution in this era, but 
devices specially designed for them are expected.

As to smaller children supported by VADs, the outcome 
is even worse and with more limited options. When we look 
at survival by age group, the youngest patients have the low-
est overall survival [5]. Factors associated with the lowest 
survival are frequently observed together (infants, Pedimacs 
patient profile level 1, paracorporeal continuous VADs, and 
congenital heart disease) [12]. In these cases, implantable 
devices are barely possible to be applied due to the body 
size. Challenges such as a complex anatomy, a more invasive 
procedure for implantation and risks related to mechanical 
valves make the durable PF VAD support less ideal. On 
the one hand, innovations of PF VADs, such as a valveless 
design (Fig. 2), could be beneficial to them in the future; on 
the other hand, short term paracorporeal CF VADs has cur-
rently become a very important option. Although the devices 
were designed for short-term support, a prolonged duration 
is proven to be feasible. The median duration varies between 
6 to 20 days [38–42] with a longest duration of 227 days 
[41] reported in different studies. A study shows that 71% 
of patients had positive primary end point [41], which is 
acceptable considering the patient profile, but still far from 
optimal. The safety duration of temporary devices should 

be reevaluated with more clinical evidence collected, and 
the development of extracorporeal PF and CF devices with 
suitable range of output is also crucial for small children.

In conclusion, there are challenges and an urgent need 
for suitable devices for each age groups. Devices specifi-
cally designed for children should be further developed, 
and the full potential of VAD therapy for children has yet 
to be realized.

Non‑blood‑contacting devices

The development of non-blood-contacting devices is a very 
attractive research direction. Reduction or even elimination 
of direct contact between the blood flow and the device 
could theoretically avoid the use of anticoagulation agents 
and could reduce complications such as gastrointestinal 
bleeding, neurologic injury and device-related thrombosis. 
Non-blood-contacting devices directly compress the heart 
using artificial muscle or pressurized cups that either cover 
the entire epicardial surface or target just one of the diseased 
ventricles. Several non-blood-contacting devices have been 
tested in animals [43]. For example, a “soft robotic sleeve” 
could use compressed air to power artificial silicone mus-
cles [44]. By being selectively activated to compress and 
twist, the silicon muscles mimic the movements of the nor-
mal human heart (Fig. 3). However, complications related 
to local mechanical lesions, such as bleeding, ecchymosis 
and adhesions, should not be ignored, and the outcome and 
stability require further research.

Wireless power system for implantable VAD

A wireless power system could greatly reduce percutane-
ous site infections (PSIs), especially in pediatric patients 
supported by implantable devices. All current VADs are 
either paracorporeal/intravenous devices that have cath-
eters inserted across the skin barrier to transfuse blood 
or implantable devices with a percutaneous drive line to 
power the VAD, which are associated with PSIs. It has 

Fig. 2   Mechanism of TORVAD pulsatile pump. “A” and “B” are two 
pistons that cyclically move around a toroidal pumping chamber via 
magnetic coupling to a motor. Black arrows indicate the movement of 
pistons, and red arrows represent blood flow generated. By cyclically 
actuating one piston around a toroidal pumping chamber via magnetic 
coupling to a motor, TORVAD could generate a pulsatile blood flow 
without an area of stasis
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been reported that at 1 year after implantation, nearly 19% 
of adult CF left ventricular assist device (LVAD) recipi-
ents develop a PSI [45]. Younger age may be a predictor 
of a higher incidence of PSIs, and being more physically 
active is suspected to be an important reason [45]. With 
less control of their actions, pediatric patients could more 
likely disrupt the integrity of the driveline–integument 
barrier, and the self-nursing of percutaneous sites may 
not be well performed unless there is intense assistance 
and supervision from adults. As a result, the elimination 
of the driveline of implantable devices is feasible and very 
advantageous for pediatric patients.

Previous transcutaneous energy transfer systems have 
been limited by restrictions on the separation distance and 
alignment between the transmit and receive coils [46], and  
there are some breakthroughs. For example, a coplanar 
energy transfer system characterized by coil-within-the-
coil topology could ensure high and robust resonance 
energy powering. It has been tested in animal trials for up to 
6 months, and the first two applications in human use were 
reported in 2019 (both supported for more than 30 days) 
[47]. The free-range resonant electrical energy delivery 
(FREE-D) system allows power delivery at larger distances 
without compromising safety and efficiency [48]. The wire-
less powering system may offer a new perspective on quality 
of life (QoL), a decrease in the caregiver burden, and the 
elimination of driveline infection for patients supported by 
implanted devices [49].

In addition, better anticoagulation surface materials, bet- 
ter anticoagulation management protocols [50] (to consist  
with developmental hemostasis [14]), a larger range of support,  
miniaturization and better mobility are all directions worth 
working on. Here we reviewed published materials on pedi-
atric VADs under development (Table 3) mostly focusing on 
blood pump innovation. Other than basic information, their 
unique innovations of design are also provided. We look 
forward to encouraging outcomes in future investigations to 
provide better choices for children.

Future directions of pediatric VADs 
implementation exploration

Exploration of PF generated by CF pumps 
for children

PF devices are currently less preferred when CF pumps are 
optional, but the pulsatility of blood flow does have posi-
tive effects on patients. It has been proved in both pedi-
atric and adult population that patients with PF devices 
had a far worse outcome compared to CF devices [9, 12], 
there has been a clear trend of transition in device type in 
the adult population over time, and PF devices are almost 
abandoned for long-term support. Of all durable VADs 
implanted in adult patients in the last decade, only 0.4% 
have been driven by PF pumps [51]. While as to pediatric 
patients, PF VADs are implanted in more cases, accounting 
for approximately 27.6% of all pediatric VADs implanted in 
North America and for 52.9% in Europe [11, 12], and this 
could be explained by the difficulty of device implantation 
into children, different preferences for treatment strategies 
and the lack of suitable CF devices for smaller and younger 
children. PF pumps seem to be applied only in unavoidable 
circumstances. However, it is mainly because of how the 
pumps work, instead of the pulsatility of blood flow. It is 
undeniable that PF has many advantages over CF, includ-
ing reduced incidence of aortic valve complications [52], 
gastrointestinal bleeding [53, 54], ventricular suction and 
pulmonary congestion [6]; and improved volume unloading 
[55] and bridge to recovery outcomes [56].

Thus, combining the safety of the CF pump and the hemo-
compatibility of PF could be beneficial, but it should be pru-
dently applied. Other than the pulsatility generated by the 
intrinsic cardiac cycle, a PF can also be actively generated 
with CF pumps by periodically adjusting the pump speed. 
A few attempts have been made in adult population. The 
Lavare cycle [57] is a periodic speed modulation designed 
for better washout of the pump. It significantly reduced the 

Fig. 3   The structure of a bioinspired nonblood-contacting VAD with 
“soft robotic sleeves”. a  The design is inspired by the muscle fiber 
orientations of the outer two layers of the myocardium. b Individual 
active layers composed of fluidic actuator contractile elements could 

perform compression and decompression or twisting and untwisting, 
or could simultaneously perform both actions to provide proper sup-
port
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rates of stroke, sepsis and right heart failure, with no dif-
ference in the transplant or recovery rates [57]. Similarly, 
by periodically changing the pump speed, the HeartMate 
III system could generate an artificial pulse every 2 s [58]. 
By evaluating middle cerebral artery flow dynamics, it was 
found that the pulsatility and improved hemocompatibility 
of HeartMate III may improve cerebrovascular metabolic 
reactivity compared with HeartMate II, which matches the 
decreased rate of stroke and better clinical outcomes [59]. A 
computational fluid dynamic simulation showed that the arti-
ficial pulse contributes to the removal of blood components 
from pump surfaces [58]. These evidences show potential in 
pediatric patients’ outcomes, especially for those supported 
by CF pumps. Despite all the advantages, similar “artificial 
pulse” applications in pediatric patients should be highly 
cautiously reviewed. It is currently not well understood how 
pediatric patients tolerate mechanical support in either pulsa-
tile or continuous-flow scenarios [60]. It has been observed 
that artificial pulses increase turbulence and total stresses, 
whose biological effects are not known in detail but might 
contribute to clinically observed issues related to hemocom-
patibility [58]. In addition, if introduced into pediatric appli-
cation, the range of pump speed change for generating PF 
should be carefully titrated and dynamically adjusted for each 
patient, as a very high speed may lead to suction events and 
arrhythmias [25]. In conclusion, attempts to adjust the cur-
rently available CF devices to mimic PF could be beneficial 
and are worth exploring for children; and to avoid collateral 
harm, both the biological and clinical implications of the 
technique remain to be resolved.

From salvage therapy to standard routine

Due to lack of experience and fear of device-related compli-
cations, pediatric VADs were mainly used as an approach 
to rescue patients with critical conditions. In the Pedimacs 
cohort, 87.1% of patients had INTERMACS profile 1 (criti-
cal cardiogenic shock) or 2 (progressive decline) at VAD 
implantation, which is more advanced than the 50.9% in the 
adult population [12, 51]. As improvements in technology 
and medical care continue to reduce the risk of morbidity 
associated with VAD support, strategies regarding candi-
dacy and timing for device implantation should also evolve. 
Outcomes are worse when patients have developed cardio-
genic shock with significant end-organ dysfunction prior to 
implantation [5, 61]. A more proactive device placement 
strategy could stop and even reverse the worsening general 
condition, and mechanical unloading has many positive 
effects on preservation and recovery of cardiac function 
[62]. Thus, VAD should gradually shift to a component of 
standard pediatric HF therapy, rather than primarily as a 
means of hemodynamic support [63], and proactive implan-
tation may promote the process of recovery.

Better choice of duration VAD “bridge”

A recent analysis showed that more than 1200 children have 
been bridged to heart transplant in the last 15 years with 
MCS, including VADs and total artificial hearts [64]. For 
pediatric patients, there is yet no consensus reached regard-
ing the duration of “bridge”, and how to make full use of 
both VAD support and heart transplantation to optimize 
patient survival is worth discussing.

Heart transplantation seems to be carried out more radi-
cally in pediatric patients. At 6 months after VAD implanta-
tion, more than half of pediatric patients in North America 
were reported to receive a heart transplant [65], as did 33% 
of patients in Europe [66]. Meanwhile, for adult patients, 
only 7.3% of them received a heart transplant, and 76.6% 
survived on support at 1 year post-implantation [51]. Pos-
sible reasons are that the proportion of qualified receivers 
in children is higher, and the mindset of pediatric physicians 
overemphasizes the benefit of minimizing the support dura-
tion [67], which results in anticipative transplantation. Once 
such support commences, medical teams seem to be in a race 
against the “complication clock,” and they try to shorten the 
bridge to transplantation.

However, some experts propose that being in a rush to 
eliminate VAD support may not be beneficial. This “bridge” 
of the VAD here plays an important role, more than just 
helping the patients to live long enough for a suitable donor 
graft. Prolonged BTT support duration leads to stabilization 
and rehabilitation of the patient prior to transplantation, with 
improved end-organ function, decreased inotrope and ventila-
tor dependence, and improved nutritional and functional status 
[4], which can all improve patients’ pretransplant conditions 
and candidacy for heart transplantation. Moreover, this can 
also provide an opportunity for myocardial recovery [65] and, 
in certain cases, free them from having a heart transplant [68, 
69]. Additionally, transplantation that is performed too soon 
has potential risks, such as graft failure and a missed oppor-
tunity for recovery [70]. Keeping both VAD-related compli-
cations and risks of early heart transplantation in mind, the 
optimal balance between these two competing risks determines 
the optimal timing of explantation. A study concerning 1064 
children who underwent VAD implantation prior to a heart 
transplant indicated that a longer duration (within 30 days ver-
sus ≥ 30 days) of VAD support prior to heart transplantation 
is associated with a one-year survival benefit in children [71]. 
A multicenter review of pediatric VAD support analyzing the 
association between the duration of support and posttransplant 
survival identified a potentially optimal duration of VAD sup-
port: 2–4 months in patients supported with a paracorporeal 
pulsatile VAD and any time after 3 weeks in patients sup-
ported with an intracorporeal continuous VAD [72]. Texas 
Children’s Hospital has adopted a 3-month waiting period after 
CF VAD implantation [65]. These patients are inactivated on 
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the transplant waitlist after implantation to allow sufficient 
time for systemic recovery, which has shown promising sur-
vival, cardiac recovery and QoL improvements. In conclusion, 
a prolonged “bridging period” is likely to be beneficial, but the 
optimal timing is yet to be determined.

Further improvement in physical activity 
performance after VAD implantation

Patients on LVAD support demonstrate improved physical 
activity and QoL, but well below that of healthy people [73]. 
Low physical activity levels are associated with increased 
risk factors for cardiometabolic diseases, impairments in 
cognitive function and lower academic achievement for chil-
dren [74], and such activity deficits also affect muscular 
strength, patient-reported health outcomes [75], functional 
capacity, social interactions and mental health [76]. Thus, 
generalized treatment, rehabilitation and exercise prescrip-
tions should timely step in. To coordinate this process, finely 
adjusted VAD output is needed for proper support.

Upmodulation of pump speed within a limited range 
during exercise is worth exploring but yet debatable. In 
the healthy population, cardiac output increases threefold 
to fivefold to meet the demands of exercising [77]. Under 
VAD support, the pump speed, delta P (pressure difference 
between systemic arterial blood pressure and left ventricu-
lar end diastolic pressure) and native heart contractility 
determine the actual total cardiac output (CO) [78]. Since 
mechanical pumps have approximately half the sensitivity of 
the natural heart to preload and three times greater sensitiv-
ity to afterload [78], when exercise is completed at the base-
line pump speed of CF LVAD, an increase in total output 
can be observed but is not sufficient to maintain low filling 
pressures. Thus, increasing total CO during body exercise 
by increasing the pump speed within a limited range may 
provide better support. Several studies have shown positive 
effects of upmodulation of pump speed on CO and on toler-
ance of body exercise [77, 79, 80], including both adult and 
pediatric cohorts. In contrast, some studies indicate that the 
high-speed setting does not improve exercise tolerance [81, 
82]. Given the limited patient volume, the variety of patients 
and pumps involved, and the heterogeneity of modulation 
and exercise protocols of these studies, the conclusion is still 
controversial and needs to be discussed separately. Addition-
ally, the exercise physiology needs to be further elucidated 
in VAD patients, and smarter and automatically adjusting 
device algorithms are expected.

Balancing interagency and international development

The accessibility of proper medical care, convenience and 
cost of follow-up largely depend on the distribution of quali-
fied centers. It is clearly seen that pediatric VADs are not 

yet widely applied even in developed countries and regions, 
and there is an obvious interagency imbalance. For exam-
ple, only 13 large-volume hospitals (defined by > 30 patients 
reported) out of 47 hospitals carry out 63% of pediatric 
VAD implantations in North America [12], and the situa-
tion is quite similar in Europe [11]. From an international 
perspective, fewer centers and cases are reported in other 
countries and regions, and the gap is much wider. Taking 
China as an example, a nation-wide survey indicates that by 
June 2017, the total case number of pediatric VAD implan-
tation in mainland China was 39 [83]. The first application 
of implantable LVADs in pediatric patients was carried out 
in 2022 at Fuwai Hospital using Corheart 6 (full magnetic 
levitated LVAD designed and fabricated by a local com-
pany) [84]. Thus, pediatric VAD support is far from widely 
applied. Although the superiority of VAD support over 
extracorporeal membrane oxygenation (ECMO) is widely 
observed [85, 86], ECMO is still the most attainable option 
of MCS in most cases. The imbalanced interagency and 
international development of pediatric VAD largely restricts 
the accessibility of medical care and overall survival of 
patients, and the road ahead will be long.

Conclusion

VAD support plays an important role in the management of 
end-stage HF. Great accomplishments have been made in 
recent decades, but VAD application to pediatric patients 
very much lags behind that in adult patients in many aspects, 
and there are still many unsettled questions to be answered. 
To overcome these challenges, more registries enrolling a 
larger number of pediatric patients should be established to 
provide comparative data and to guide clinical decisions. 
Regarding the technological development of pediatric 
VADs, forward-thinking design solutions are needed. We 
believe that VAD will better serve pediatric HF patients in 
the future.
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