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Abstract
Heart failure (HF) can be caused by a variety of causes characterized by abnormal myocardial systole and diastole. Ca2+ cur-
rent through the L-type calcium channel (LTCC) on the membrane is the initial trigger signal for a cardiac cycle. Declined 
systole and diastole in HF are associated with dysfunction of myocardial Ca2+ function. This disorder can be correlated with 
unbalanced levels of phosphorylation / dephosphorylation of LTCC, endoplasmic reticulum (ER), and myofilament. Kinase 
and phosphatase activity changes along with HF progress, resulting in phased changes in the degree of phosphorylation / 
dephosphorylation. It is important to realize the phosphorylation / dephosphorylation differences between a normal and a 
failing heart. This review focuses on phosphorylation / dephosphorylation changes in the progression of HF and summarizes 
the effects of phosphorylation / dephosphorylation of LTCC, ER function, and myofilament function in normal conditions 
and HF based on previous experiments and clinical research. Also, we summarize current therapeutic methods based on 
abnormal phosphorylation / dephosphorylation and clarify potential therapeutic directions.
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Introduction

Heart failure (HF) remains an unsolved public health prob-
lem. A failing heart is unable to efficiently supply oxygen-
ated blood to the body, resulting in insufficient oxygen 
supply and nutrients to the body. Cardiovascular-related 

diseases, including chronic cardiac overload or injury (e.g., 
high blood pressure, valvular heart disease), myocardial 
infarction or ischemia, cardiac remodelling, functional 
abnormalities, and genetic disorders, can eventually lead to 
HF [1]. Response of the heart can initially be compensatory 
to additional load or heart damage by increasing its size 
and contractility [2]. The increase in heart size and mass 
is thought to be accompanied by biochemical, molecular, 
structural, and metabolic changes that maintain the function 
of an enlarged heart. However, chronic stress or disease can 
lead to dilation of the ventricles and decline of the systolic 
function, eventually progressing to HF [3]. The most obvi-
ous functional change in HF is the decline of diastolic and 
systolic function, an important cause of which is Ca2+ dys-
function in the myocardium.

Ca2+ dysfunction is associated with abnormal activation 
or inactivation of key kinases and phosphatases, which can 
cause phosphorylation and dephosphorylation imbalance in 
HF (Fig. 1). Protein kinase A (PKA) is a central regulator 
of cardiac function and morphology [4]. The typical 
PKA signaling pathway is essential for cardiac activity, 
especially catecholamines, including norepinephrine 
secreted from cardiac sympathetic nerve terminals in the 
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heart and epinephrine released from the adrenal medulla 
[5]. Acute PKA activation improves cardiac performance 
and is associated with enhanced myocardial contractility, 
but chronic PKA activation or inhibition can lead to HF. 
Constitutive PKA activation induces hyperphosphorylation 
of phospholamban (PLN) and ryanodine (RyR2) of the 
sarcoplasmic reticulum (SR), leading to reduced contractility 
and dilated cardiomyopathy [6]. Protein kinase C (PKC) 
is another member of the serine-threonine kinase family. 
The increased expression and activity of PKC in HF are 
closely related to the activation of PKC-α [7, 8]. PKC-α is 
a fundamental regulator of cardiac contractility and Ca2+ 
processing in cardiomyocytes. Regulation of PKC-α activity 
affects dephosphorylation of the SR Ca2+ ATPase-2 pump 
(SERCA-2) inhibiting PLN and altering the SERCA-2 Ca2+ 
load and transients. Other kinases, such as protein kinase 
D (PKD), calmodulin kinase 2 (CaMKII), etc., have also 
been shown to be activated in HF, while protein kinase G 
(PKG) activity is reduced [9, 10]. The activation mechanism 
of PKD involves PKC-mediated PKD phosphorylation, 
which can be attenuated by PKC inhibition [11]. And 
neurohormonal stimulation of PKD activity may be enhanced 
under conditions where PKA activity is down-regulated [12], 
perhaps allowing PKD-mediated pathways to assume greater 
significance in the acute regulation of contractile function 

in HF [13]. PKD-mediated myofilament phosphorylation 
may have physiological significance in the neurohormonal 
regulation of myocardial contractile function. PKG can be 
activated by PKA, and play a role in inhibiting adrenaline, 
which is related to anti-myocardial hypertrophy [14]. PKG 
also phosphorylates many PKA-related sites, including the 
L-type Ca2+ channel (LTCC), PLN, troponin I, myosin-
binding protein C (cMyBP-C), and titin. CaMKII is a 
highly validated signal associated with a variety of diseases, 
especially those of the cardiovascular system [15].

Dephosphorylation in the heart related to systolic 
and diastolic function is mainly mediated by protein 
phosphatase 1(PP1), protein phosphatase 2A (PP2A), 
and phosphodiesterase (PDE). PP1 is a serine-
threaminophosphatase phosphatase that primarily targets 
the PLN of SR [16]. Activity of PP1 has also been shown to 
increase in failing hearts and is associated with reduced Ca2+ 
recovery in ER [17, 18]. PP2A is another major phosphatase 
in the heart that regulates Ca2+ processing [19]. PP2A 
coordinates the excitation and contraction of the heart. The 
importance of PP2A in the heart lies in its ability to antagonize 
the effects of β adrenergic receptor (β-AR) stimulation, 
reducing Ca2+ transient amplitude while increasing the Ca2+ 
sensitivity of myofilaments in force development. PP2A is the 
main phosphatase of LTCC. PP1 and PP2A form complexes 

Fig. 1    Calcium function in normal myocardium and failing myo-
cardium.  In normal hearts, appropriate phosphorylation and dephos-
phorylation of LTCC, ER, and myofilament are associated with 
faster Ca2+  release and recovery and lower Ca2+-sensitivity; while 

in failing hearts, abnormal phosphorylation and dephosphoryla-
tion of LTCC, ER, and myofilament is associated with faster Ca2+  
release but weakened recovery ability and higher myofilament 
Ca2+-sensitivity
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on the RyR and have regulatory effects on the RyR. In HF, 
PP2A expression and activity are dysregulated [19]. PDE 
superfamily consists of several distinct subtypes that regulate 
the strength and duration of cyclic adenosine monophosphate 
(cAMP) and cyclic guanosine monophosphate (cGMP) 
signaling in discrete compartments of cardiomyocytes [14], 
with the PDE4 and PDE3 subtypes controlling Ca2+ release 
and reuptake in the sarcoplasmic reticulum via RyR2 and 
SERCA-2 [20–23]. In pathological hypertrophy and HF, 
levels of PDE1, PDE2, PDE5, PDE9, and PDE10 are elevated. 
Overall, decreased activity of PDE3 and PDE4 amplified 
catecholamine toxicity [14].

Changes in the expression and phosphorylation / dephos-
phorylation imbalance are associated with changes in Ca2+ 
activity in cardiomyocytes. Studies on changes in phospho-
rylation levels have been quite mature. It has been recog-
nized that three main amino acids can be phosphorylated: 
serine (Ser), threonine (Thr), and tyrosine (Tyr), which are 
characterized by active hydroxyl groups that can be nega-
tively charged by binding to phosphate groups [24–30]. 
Animal experiments were conducted to study the effects of 
phosphorylation in different regions of cardiomyocytes on 
Ca2+ function by replacing amino acid targets with nega-
tively charged aspartic acid to simulate continuous phospho-
rylation and positively charged alanine to simulate continu-
ous dephosphorylation. In this review, we summarize the 
current research and findings of the relationship between 
intracellular Ca2+ dysfunction and phosphorylation/dephos-
phorylation imbalance in cardiomyocytes and clarify poten-
tial therapeutic directions.

Receptor activation 
and related‑phosphorylation

One of the most prominent features of the progression of 
cardiac hypertrophy is the persistent activation of β-AR. The 
rapid positive inotropic action of β-AR activation is depend-
ent on the activation of PKA and its downstream target phos-
phorylation. Epinephrine signaling directly contributes to 
PKA activation and stimulates downstream phosphoryla-
tion by activating β-AR. In cardiomyocytes, the major tar-
gets are LTCC, RyR2, and PLN [31]. This phosphorylation 
is thought to be beneficial during early hypertrophy. The 
phosphorylation of LTCC facilitates external Ca2+ uptake, 
thereby activating more ER Ca2+ release. The phosphoryla-
tion of RyR2 is beneficial to the release of Ca2+, the increase 
of cytosolic Ca2+ concentration, and the increase of contrac-
tility during systole. The phosphorylation of PLN enhances 
the function of the Ca2+ pump, which is conducive to the 
rapid reduction of intracellular Ca2+ concentration, the rapid 
completion of the relaxation and contraction cycle, and the 
improvement of myocardial function.

In addition to PKA activation, the downstream activator 
of β-AR is PKCε, which is not activated through the cAMP 
pathway. Studies have shown that epinephrine can activate 
PKCε via β-AR, independent of PKA activation [32]. The 
activation was not mediated by the cAMP signaling pathway 
but by the classical PLC/PKC pathway. In cardiomyocytes, 
the major phosphorylation targets of PKC are located in 
myofilaments and are associated with decreased myofila-
ment contractile function. In addition to this, PKC also phos-
phorylated Thr286 of CaMKII [33], which was related to the 
decrease of CaMKII activity. Loss of PKCε promotes the 
occurrence and development of HF [8] indicating that PKCε 
plays an important role in preventing the occurrence of HF.

Epinephrine signaling activates not only β-AR but also 
α adrenergic receptor (α-AR). α-AR also shows positive 
inotropic effects. During the development of physiological 
hypertrophy or a stress state, epinephrine mainly activates 
β-AR, triggering a strong positive inotropic effect. However, 
the α-AR mediated positive inotropic response is predomi-
nant in HF rats, which is related to the inhibition of β-AR 
phosphorylation [34]. Activation of α-AR can promote the 
phosphorylation of the myosin light chain (MLC) by pro-
moting the activation and expression of Ras homolog gene 
family (Rho) kinase, which is related to the increase of myo-
filament Ca2+-sensitivity [35].

In normal conditions, neurotransmitters can inhibit the 
β effect of epinephrine by activating muscarinic 2 recep-
tors (M2-R). In the progression of cardiac hypertrophy, the 
activation of epinephrine inhibits the M2-R. When β-AR is 
continuously activated, parasympathetic nerves are activated 
in a feedback manner. Undergoing hyperphosphorylation 
leads to the inhibition of β-AR, and activation of M2-R can 
be manifested. In cardiomyocytes with suppressed β-AR, 
M2-R activation promotes the activation and expression of 
MIC kinase and Rho kinase, leading to MLC-2 phosphoryla-
tion and increased myofilament Ca2+-sensitivity [36], sug-
gesting that the activation of these two kinases is independ-
ent of cAMP. This would act as a compensatory effect for 
the loss of β-AR-related inotropic effects. In addition to the 
partial positive inotropic effect caused by M2-R activation, 
the overall performance of myocardial contractility is still 
reduced due to the inhibition of β-AR phosphorylation and 
the activation of the dephosphorylation signal.

Abnormal Ca2+ and phosphorylation/
dephosphorylation

LTCC and abnormal phosphorylation/
dephosphorylation

LTCC, commonly referred to as dihydropyridine receptor 
(DHPR), is sensitive to various 1,4-dihydropyridines [37]. 
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LTCCs in the cardiomyocyte are composed of four different 
polypeptide subunits (a1, b, a2, d), and the pore-forming 
subunit a1 is the most important part of the channel, which 
forms the channel pore for ion flow.

LTCC is the main entry point for Ca2+ influx (ICa2+) into 
cardiomyocytes and determines the activity of the entire 
heart [38–40]. The main pathway of Ca2+ channel activa-
tion is through PKA-mediated phosphorylation (Fig. 2A), 
which is activated by the second messenger cAMP. This 
process is also regulated by phosphorylation of LTCC and 
intracellular Ca2+ concentration [38, 41–43]. However, the 
inhibition of adenylyl cyclase (AC) activity is one of the 
most common pathways to interrupt PKA-dependent LTCC 
stimulation [44]. Another way to reduce PKA-dependent 
channel phosphorylation is the activation of PDEs, which 
hydrolyze cAMP and cGMP and reduce their intracellular 
concentrations [42, 45] and play an important role as PKC 
in LTCC regulation. PKC has a biphasic effect on ICa2+. 
PKCβ isoform stimulates ICa2+, whereas PKCε inhibits 
ICa2+ [46, 47].

Previous studies have found that it may not be the 
number and activity of LTCC that are reduced in HF, but 
mainly the ability of LTCC to stimulate the release of 
Ca2+ in ER, which is related to the excitation-contraction 
coupling defect [48]. Basal ICa2+ of LTCC was also found 
to be weakened in HF (Fig. 1), which may be related to 
the Ca2+ concentration in the cytoplasm, in which the Ca2+ 
binding protein calmodulin (CaM) plays a key role [49]. The 
balance of phosphorylation and dephosphorylation of LTCC 
is related to their activity, and the phosphorylated form 
of LTCC may be related to maintaining channel activity 
and enhancing the ability to stimulate ER Ca2+ release. It 
was previously thought that PKA and PP2A regulate the 
phosphorylation level of Ser1928 and thereby determine 
channel activity [50]. However, later experiments found 
that the phosphorylation level of Ser1928 is not related to 
LTCC activity, but the distal carboxyl terminus of α1C is 
the required factor for the β-AR stimulation of LTCC in 
cardiomyocytes [51]. Another interesting phosphorylation 
site is the Ser1700 site of the a-subunit. Although one 
study demonstrated that PKA-mediated phosphorylation at 
Ser1700 did not have a major effect on the enhancement of 

ICa2+ [52], other experiments found that ICa2+ was reduced 
and cardiac hypertrophy developed when phosphorylation 
at Ser1700 was absent [53], while Ser1700 and Thr1704 
double mutations accelerate cardiac hypertrophy and HF 
[54]. Another experiment showed that these conserved 
consensus PKA phosphorylation sites (in addition to 
those mentioned above), including Ser1512 and Ser1570 
(CaMKII-mediated phosphorylation) in α1, Ser459, 
Ser478, and Ser479 in β2, were not responsible for elevated 
LTCC activity when phosphorylated [55]. In addition, the 
phosphorylation of LTCC by PKA is also associated with A 
kinase anchoring protein (AKAP). PKA without AKAP15 
was ineffective in regulating LTCC in cardiomyocytes 
when the corresponding β-AR pathway was stimulated 
[56]. Genetic disruption of AKAP150 in mice significantly 
reduces the co-immunoprecipitation of PKA with LTCC and 
prevents phosphorylation of Ser1928 upon β-AR stimulation 
in vivo [57]. Although different experimental results have 
emerged, it is suggested that PKA is important for the 
maintenance of LTCC activity. It has been observed that 
the dysfunction of LTCC is consistent with β-AR depression, 
and the normal function of β-AR may be the basis for the 
maintenance of LTCC activity.

SR and abnormal phosphorylation/dephosphorylation

SR is a Ca2+ store in cardiomyocytes, which is divided into 
longitudinal SR (LSR) parallel to myofibrils and junctional 
SR (JSR) in contact with the transverse tube. The coupling 
reaction of JSR and LTCC on the transverse tube is the trig-
ger mechanism of myocardial contraction. The major phos-
phorylation sites of the SR are located at RyR2 and PLNs 
(located at the Ca2+ pump/SERCA-2), and their phospho-
rylation status is related to intracellular Ca2+ release and 
recycling [58].

RyR2 and abnormal phosphorylation/dephosphorylation

RyR2, a calcium channel in the SR in cardiomyocytes, is 
the most important component of myofilament contraction 
triggered by Ca2+ release during contraction [59]. Local 
regulation of RyR2 channels by PKA phosphorylation is 
an effective mechanism for regulating SR Ca2+ release. 
RyR2 is a tetramer composed of four 565,000 Dalton RyR2 
peptides and four 12,000 Dalton FK-506 binding proteins 
(FKBP12.6). FKBP12s, which stabilizes RyR channel func-
tion [60] and facilitates coupled gating between adjacent 
RyR channels [61], are packaged into dense arrays of special 
regions of the SR that release intracellular stores of Ca2+ to 
trigger muscle contraction. One FKBP12 molecule binds to 
each RyR subunit, and dissociation of FKBP12 significantly 
changes the biophysical properties of the channel, resulting 
in the appearance of subconductance states and an increase 

Fig. 2    Phosphorylation and dephosphorylation in normal myocar-
dium and failing myocardium. A In normal conditions, PKA is the 
main kinase enhancing myocardial contractility when receiving 
adrenaline stimulation through the β-AR. PDE mainly coordinates 
with the function of PKA. PP2A and PP1 are responsible for LTCC 
and ER dephosphorylation, facilitating myocardial dilation. B But 
in HF, with a weakened β-AR signal and increased PDE function, 
the M2-R and α-AR remain functional. Phosphorylation caused by 
PKC, CaMKII, Rho, and MLCK is associated with Ca2+  leakage and 
enhanced myofilament Ca2+  sensitivity. Dephosphorylation caused 
by PP1 can reduce Ca2+  recovery into ER

◂
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in P0 due to increased sensitivity to Ca2+-dependent activa-
tion [60, 62], while dissociation of FKBP12 from RyR chan-
nels inhibits coupling gating, resulting in random gating of 
the channel rather than fusion [61].

Phosphorylation of RyR2 enhances Ca2+ release, 
and CaMKII-mediated hyperphosphorylation promotes 
the occurrence of HF. Previous studies have found that 
hyperphosphorylation of RyR2, specifically mediated 
by PKA, is present in HF accompanied by decreased 
phosphatase activity, resulting in the increasing activity 
of LTCC in the diastolic period and Ca2+ leakage through 
inhibition of FKBP12.6 binding [59]. Moreover, it was 
found that not only PKA but also CaMKII was involved in 
the hyperphosphorylation of RyR2 (Fig. 2A, B), leading to 
the enhancement of RyR2 activity. The phosphorylation 
sites included Ser2808, Ser2814, and Ser2815 [33, 63, 64]. 
However, ablation of the PKA-mediated phosphorylation 
at Ser2808 failed to prevent the progression of cardiac 
dysfunction [65, 66]. CaMKII-mediated ablation at Ser2814 
prevented the progression of HF [63]. In animal experiments 
and human hearts, both PKA and CaMKII are involved in 
RyR2 phosphorylation in hypertrophic hearts. However, in 
failing hearts, RyR2 phosphorylation is mainly mediated 
by CaMKII and is accompanied by a higher level of Ca2+ 
leakage [63, 67]. Meanwhile, lower activity of PDE4D3 has 
been detected in HF cardiomyocytes, which also contributes 
to RyR2 hyperphosphorylation and HF progression [63]. 
It can be speculated that the progression of HF is mainly 
related to late CaMKII-mediated hyperphosphorylation 
and reduced PDE4D3 activity. The early PKA-mediated 
phosphorylation of RyR2 enhances the activity of LTCC 
and facilitates the release of more Ca2+ to adapt to the 
higher strength of muscle contraction, but this requires the 
cooperation of the enhanced function of SERCA-2. The 
CaMKII-mediated hyperphosphorylation of RyR2 results 
in Ca2+ overload and decreases Ca2+ transients.

SERCA‑2 and phosphorylation/dephosphorylation signals

SERCA-2, located in the SR, is the most important com-
ponent of Ca2+ recycling during diastole. SERCA-2a is 
the most important subtype in adult cardiomyocytes 
[68]. SERCA-2a can transport cytosolic Ca2+ into the SR 
through ATPase activity, which keeps the cardiomyocyte’s 
low Ca2+ concentration in the diastolic state and provides 
the necessary conditions for myocardial contraction [69]. 
PLN, a small, reversibly phosphorylated transmembrane 
protein located in the cardiac SR [68], was identified as a 
major substrate of cAMP-dependent kinases and a regula-
tor of the SERCA-2 [69–76], which can be phosphoryl-
ated by PKA and CaMKII (Fig. 2A, B). The main effect 
of dephosphorylated PLN association with SERCA-2a is 
to reduce the apparent affinity of SERCA-2a for Ca2+. 

Alleviation of SERCA-2a inhibition by PLN is a major 
contributor to the positive inotropic and exotropic effects 
of β-agonists [77–81].

PLN phosphorylation enhances SERCA-2a activity, and 
CaMKII-mediated PLN hyperphosphorylation promotes the 
progression of HF. The phosphorylation of PLN at Ser16 
and Thr17 mediated by PKA and CaMKII has been shown 
to inhibit PLN activity and enhance SERCA-2 activity, 
which is conducive to the rapid recycling of cytosolic 
Ca2+, shortening the relaxation [12] and contraction cycles 
to adjust to the cytosolic hypercalcemia environment. The 
dephosphorylated form of the PLN inhibits SERCA-2a 
activity [12, 69, 70]. Although some animal studies support 
that PLN phosphorylation is reduced in HF [82], others have 
found that PLN phosphorylation is increased [83, 84], which 
may be related to the type of animal studied and the stage of 
HF. The major site of increased phosphorylation in animal 
models of HF is located at Thr17, and the increase of Thr17 
phosphorylation in the HF group is negatively correlated 
with myocardial contractility. It was also found that 24-hour 
continuous induction of Ca2+ transient also promoted Thr17 
phosphorylation and decreased Ser16 phosphorylation and 
inotropic drug response [85]. Consistent with findings in 
human HF samples [68, 86], decreased phosphorylation 
was found at Ser16 in animal models of HF [82]. This 
suggests that CaMKII-mediated PLN phosphorylation, but 
not PKA, is associated with HF progression. Meanwhile, 
PP1β knockdown could increase the phosphorylation of 
PLN [87], and increase PP1 activity in HF (Fig. 2B) [17, 
18] probably reducing PLN phosphorylation and impaired 
Ca2+ pump function.

Myofilament and abnormal phosphorylation/
dephosphorylation

The sarcomere is the basic unit of myofibril. The sarcomere 
consists of three different myofilament systems. The compo-
nents of the thick filament system are myosin and cMyBP-
C. The thin myofilament system is composed of monomers 
of myosin (attached to myosin), tropomyosin, and troponin. 
Concomitant myofibrin and titin maintain the physical struc-
ture of sarcomeres. According to the sliding filament theory, 
the combination of troponin and Ca2+ affects tropomyosin, 
exposing the binding sites of actin and myosin, and then 
actin slides along the myosin. Myofilament is also an impor-
tant part susceptible to phosphorylation in HF.

Myosin and abnormal phosphorylation/dephosphorylation

Myosin is the main component of the thick filaments, con-
sisting of two heavy chains and four light chains, which 
have ATPase activity. In failing human hearts, there was no 
difference in MLC-1 phosphorylation levels compared to 
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normal hearts, while MLC-2 phosphorylation levels were 
significantly reduced, which is associated with increased 
Ca2+-sensitivity (Fig. 1) [88]. The maximum tension does 
not alter, although with increased Ca2+-sensitivity [88]. It 
was discovered that phosphorylation of myosin regulatory 
light chain (RLC) and phosphorylation of cRLC enhanced 
the Ca2+-sensitivity [89, 90], which is related to increased 
contractility [91].

Located between myosin and actin, cMyBP-C can 
respond to PKC, PKA, and CaMKII (Fig. 2A, B). Phos-
phorylation of the CaMKII signal is attributed to enhanced 
filament contractility. Previous studies have shown that 
healthy human hearts have higher levels of cMyBP-C phos-
phorylation, whereas failing human hearts have lower levels 
of phosphorylation [92]. Independent of cTnI, PKA phos-
phorylation of cMyBP-C accelerated cross-bridge kinetics 
[93]. The cMyBP-C can be dephosphorylated in response 
to cholinergic signaling in HF, which is related to calcineu-
rin overexpression [94]. The rate of force development 
and filament activation were found to be inhibited by the 
dephosphorylation form of the cMyBP-C phosphorylation 
sites Ser273, Ser282, and Ser302 [95], with Ser282 possibly 
having the greatest impact [96].

Troponin and abnormal phosphorylation/dephosphorylation

Troponin includes three subunits: troponin T (cTnT), tro-
ponin C (cTnC), and troponin I (cTnI), of which cTnT is a 
tropomyosin-binding subunit and cTnC is a Ca2+-binding 
subunit. The role of cTnI is to prevent myosin and actin 
from binding to one another. Experiments showed that cTnT 
was phosphorylated at the same level in cardiomyocytes of 
human failing and normal hearts, while cTnI was phospho-
rylated at a lower level in the failing hearts [88, 97].

Human cTnI contains 209 amino acids, including 12 
Ser residues, 8 Thr residues, and 3 Tyr residues, and the 
phosphorylation of cTnI is mediated by PKA and PKC 
(Fig.  2A, B). The PKA-mediated phosphorylation of 
cTnI is associated with increased length-dependence and 
decreased Ca2+-sensitivity [98], while the PKC-mediated 
phosphorylation may be associated with cardiac disorder 
[99]. The percentage of cTnI dephosphorylated states was 
found to be elevated in human failing hearts compared to 
normal hearts [88]. A study found that in human failing 
hearts, phosphorylation decreased in some sites of cTnI 
including Ser5, Ser6, Ser5/Ser6 duplex, Ser23, Ser24, 
Ser23 /Ser24, Tyr26, while increased in Ser42, Ser44, 
Thr51, Ser77, Thr78, Ser77/Thr78, Thr143, Ser166, 
Thr181, and Ser199 [100]. It was also found that pseudo-
phosphorylation at both Ser42/44 and Ser23/24 reduced 
myofilament Ca2+-sensitivity [101]. Double phosphoryla-
tion at Ser23/24 is essential for reducing Ca2+-sensitivity, 
whereas phosphorylation at a single Ser23 or 24 is not 

[102]. However, a later experiment found that a single 
Ser23 or 24 phosphorylation was sufficient to reduce 
Ca2+-sensitivity [103]. Pseudo-phosphorylation of 
Ser42/44, the PKC phosphorylation sites, is linked to a 
greater decrease in myofilament Ca2+-sensitivity [101]. 
Meanwhile, the pseudo-phosphorylation of Ser42/44 
weakened the length dependence and blunted the length 
dependence mediated by PKA, while the pseudo-phospho-
rylation at Ser23/24 enhanced this length dependence and 
could be reinforced by PKA [101]. In another experiment, 
PKCα and phosphorylation levels at Ser44 were found to 
increase in human and rat failing hearts, which decreased 
following the implantation of a ventricular assist device 
[104]. Increased phosphorylation of Ser23/24 and Ser150 
was found in the ischemic myocardium [105]. At neutral 
PH (PH = 7), cardiomyocytes with phosphorylation at 
Ser150 showed higher Ca2+-sensitivity, whereas phos-
phorylation at Ser23/24 showed lower Ca2+-sensitivity. 
However, co-phosphorylation of Ser23/24/150 alleviated 
the low Ca2+-sensitivity caused by Ser23/24 at neutral 
PH (PH = 7) [105, 106]. The presence of a phosphoryl-
ated acidic environment was shown to attenuate myofila-
ment Ca2+-sensitivity. At acidic PH (PH = 6.5), a greater 
decrease of Ca2+-sensitivity was found when Ser23/24 
and Ser23/24/150 were phosphorylated than single phos-
phorylation of Ser150, indicating that phosphorylation at 
Ser150 enhanced the tolerance of cardiomyocytes to an 
acidic environment [105]. It was also found that phospho-
rylation of Ser23/24 accelerated the rate of Ca2+ dissocia-
tion from troponin, whereas phosphorylation of Ser150 
blunted this increase. Independent of the acidic environ-
ment, the presence of Ser150 phosphorylation slowed the 
speed of Ca2+ dissociation from troponin [105]. Another 
study found that, similar to phosphorylation at Ser23/24, 
phosphorylation at Tyr26 reduced Ca2+-sensitivity while 
accelerating the rate of dissociation of Ca2+ from tro-
ponin. It’s also has been found that co-phosphorylation of 
Ser23/24 and Tyr26 did not further reduce Ca2+-sensitivity 
but further accelerated the rate of dissociation of Ca2+ 
from troponin [27]. Compared with non-failing myocar-
dium, Ser199 phosphorylation was increased in end-stage 
HF [100]. Ser199 was found to be phosphorylated mainly 
mediated by PKC [107], and its elevated phosphorylation 
increased myofilament Ca2+-sensitivity without affecting 
its length dependence [108]. Phosphorylation at Thr143 
is also mediated by PKC, and pseudo-phosphorylation of 
Thr143 increases Ca2+-sensitivity but does not alter length 
dependence [109].

Phosphorylation of cTnT can be mediated by PKC, 
among which PKCa has four phosphorylation sites on 
cTnT including Thr197, Ser201, Thr206, and Thr287, and 
phosphorylation of these sites is associated with decreased 
myofilament Ca2+ sensitivity [110, 111]. The functional 
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consequences of the phosphorylation of Thr144 were 
unknown [111]. Although PKC phosphorylation can play 
different roles in cTnT/cTnI, it is mainly related to elevated 
Ca2+-sensitivity [107].

Titin and abnormal phosphorylation/dephosphorylation

The primary function of titin is to maintain the integrity and 
stability of myofibrils. HF is often accompanied by increases 
in myocardial stiffness-based titin [112, 113].

The increased phosphorylation of Ser4043 and Ser12884, 
which can be phosphorylated by CaMKII, was found in the 
failing heart [114], suggesting that excessive activation of 
CaMKII is an adaptive response in HF patients and HF ani-
mal models [114, 115]. Titin is also a substrate of PKG, of 
which PKG1α is the major isoform expressed in the myocar-
dium and involved in the phosphorylation of several cardiac 
target proteins, playing a key role in the sarcomole [116]. 
PKG has been shown to phosphorylate the N2Bus region in 
titin, thereby reducing titin-based myocardial stiffness [112]. 
As for the phosphorylation modification of Titin, in addition 
to the two major kinases, other kinases are also involved in 
the post-translational modification of Titin. In HFrEF rats, 
the kinase PKCα showed increased activity in the ventricle 
and was shown to phosphorylate the PEVK element of titin 
[117]. PKCα-dependent phosphorylation at Ser11878 in the 
PEVK-titin fragment was found to be hyperphosphorylated 
in the HFpEF animal model [118], enhancing the passive 
tension of titin. PKD, through its mediated phosphorylation, 
regulates heat shock protein 27 to alleviate titin aggregation, 
thereby inhibiting titin-dependent cardiomyocyte stiffness 
[118]. PKA and extracellular regulating kinases 2 (ERK2) 
were shown to phosphorylate titin springs at specific sites 
within heart-specific N2-Bus elements, and this modifica-
tion alters the molecular stiffness of N2-Bus [118].

Treatment directions focusing 
on phosphorylation/dephosphorylation

 Restoration of the balance of key kinases and phosphatases 
is important to the normal Ca2+ function in cardiomyocytes, 
which is highly related to the phosphorylation-
dephosphorylation balance. Here are some treatments based 
on the phosphorylation-dephosphorylation disorder to treat 
HF (Table 1).

The increase in PP1 activity observed in HF was associ-
ated with decreased Inhibitor-1 phosphorylation as well as 
increased I-2 phosphorylation [119–121]. Inhibitor-1 (I-1) 
is the first putative endogenous inhibitor of PP1 (Table 1) 
[122], and I-1-deficient mice exhibit increased PP1 activ-
ity, decreased cardiac function, blunted β-AR response, 
and reduced PLN phosphorylation (Table 1) [119]. PP1 

can be phosphorylated after treatment with isoproterenol 
[123–125], resulting in reduced PP1 activity; PP1 can also 
be dephosphorylated by PP2A and PP2B, which allows res-
toration of function to basal levels by relieving PP1 inhi-
bition [126]. When PKA is phosphorylated at Thr35, I-1 
efficiently inhibits PP1 activity [122, 127, 128]. However, 
the phosphorylation of PKCα at Ser67 and Thr75 of I-1 
was associated with increased PP1 activity and decreased 
contractility in vivo [129, 130]. Inhibitor-2 (I-2) is a heat-
stable phosphoprotein similar to I-1 [122]. Expression of I-2 
resulted in reduced PP1 activity is associated with enhanced 
contractile parameters and increased instantaneous kinetics 
of Ca2+, which shows that it manifested by increased phos-
phorylation at Ser16 of PLN. But not at Thr17, suggesting 
that the PP1c/I-2 complex may preferentially dephospho-
rylate the PKA sites in the PLN [131, 132]. Studies on the 
external application of PP1 inhibitors are also ongoing. It 
was found that adenovirus-mediated I-35 in the truncated 
form of I-1c expression which lacks Ser67 and Thr75 
enhances the contractile response and Ca2+ dynamics in 
human failing myocytes [133]. It was also found to attenu-
ate the progression of HF in experimental mice, which was 
characterized by a reduced degree of cardiac hypertrophy. 
Similar results were found in I-2 as a therapeutic modality 
[18]. These beneficial effects are mediated by the enhanced 
phosphorylation of PLN, while the phosphorylation level 
of RyR2 remains unchanged. This may be important at the 
therapeutic level, as increased RyR phosphorylation may 
potentially lead to diastolic leakage and arrhythmogenic 
activity [134, 135].

Changes in PDE in HF are diverse, as mentioned 
above, levels of PDE1, PDE2, PDE5, PDE9, and PDE10 
are increased in pathological hypertrophy and HF. How-
ever, the PDE3 and PDE4 changes are diverse, and their 
overall reduced activity is correlated with hypertrophy. 
Treatment options specific to PDE are also constantly 
emerging. It has been clinically demonstrated that inhibi-
tors of PDE3 and PDE5 are ineffective [136]. PDE1 
enzymes bind to and hydrolyze cAMP and cGMP in a 
mutually competitive manner. PDE1A regulates the unique 
cAMP and cGMP pools, predominantly in the perinuclear 
and nuclear regions of cardiac fibroblasts. Inhibitors 
of PDE1 or PDE1A gene silencing have been shown to 
inhibit the adrenalin-induced reduction in PKG activity 
[137]. PDE1A is also upregulated in cardiac fibroblasts 
activated by profibrotic stimuli, and inhibition or silenc-
ing of PDE1A was shown to limit myofibroblast trans-
formation and the synthesis of extracellular matrix [138]. 
The pan-PDE1 inhibitor vinpocetine prevented cardio-
myocyte hypertrophy and fibroblast activation, thereby 
blunting pathological remodeling induced by angiotensin 
II (Table 1) [139]. ITI214 is a drug directed against the 
PDE1 inhibitor, which can produce acute inotropic and 
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lusitropic effects by promoting a cAMP pool independ-
ent of β-AR signaling and increasing ICa2+ (Table 1). 
However, it was less associated with Ca2+ transients and 
myofilament phosphorylation [140]. ITI-214 augmented 
cardiac inotropy, cardiac output, and heart rate (Table 1) 
[141]. PDE2 has a low affinity for cAMP and cGMP but 
a high hydrolytic capacity. Increased expression of PDE2 
and the hydrolysis activation of cAMP were associated 
with a diminished β-AR response [142–144], suggest-
ing a possible association with the progression of HF 
[144]. An antihypertrophic effect of PDE2 inhibition was 

reported in isolated cardiomyocytes [145, 146]. Inhibi-
tion of PDE2 was also shown to counteract cardiac hyper-
trophy and pathological remodeling (Table 1), particu-
larly in fibrosis. In contrast, cardiomyocyte activation by 
PDE2 may favor ischemic HF to improve Ca2+ homeo-
stasis, limit systolic dysfunction, and prevent arrhythmia 
[147, 148]. PDE2 cardiomyocytes may be beneficial to 
counteract the pressure overload caused by pathologi-
cal remodeling [145–147, 149]. Isoforms of PDE4 and 
PDE3 were found to control Ca2+ release and reuptake in 
the SR by RyR2 and SERCA-2 respectively [20–23], or 

Table 1   Drugs and potential treatments for HF based on abnormal phosphorylation /dephosphorylation in cardiomyocyte

PP1 protein phosphatase 1, PDE phosphodiesterase, PP2A protein phosphatase 2A, PKA cyclic-AMP dependent protein kinase A, PKG cyclic-
GMP dependent protein kinase G, PKC protein kinase C, CaMKII calcium-CaM-dependent protein kinase II, PLN phospholamban

Targets Activity in HF Potential direction Drugs Function Mechanism

PP1 increase Activation of I1 and I2 1. Increasing contractility
2. Reducing degree of cardiac 

hypertrophy

Blunting β-AR response
Reducing PLN phosphorylation

PDE PDE1 increase PDE1 inhibition IT1-214 Augmenting cardiac inotropy, 
cardiac output

and heart rate

Facilitating cAMP and cGMP 
pools

Pan-PDE1 inhibition Vinpocetine Preventing cardiomyocyte 
hypertrophy

and fibroblast activation
PDE2 increase PDE2 inhibition - Preventing cardiac hypertrophy

and pathological remodeling
PDE3 - - - -
PDE4 - - - -
PDE5 increase PDE5 inhibition Sildenafil Preventing cardiomyocyte 

hypertrophy
and cardiac dysfunction

PDE8 - - - -
PDE9 increase PDE9 inhibition - 1. Contributing to cardiac 

output
2. Improving diastolic function
3. Impairing systolic function

PDE10 increase PDE10 inhibition - -
PP2A - - - - -
PKA - - - - -
PKG decrease PKG activation Sildenafil Improving cardiac diastolic 

function
PDE5 inhibition

Sacubitril-valsartan Angiotensin receptor neprilysin 
inhibition

Riociguat/Pralicigaut Soluble guanlyly cyclase 
activation

Sotagliflozin Sodium-dependent glucose 
transporter 2 inhibition 
(inhibiting myocardial 
inflammation and oxidative 
stress and improve endothelial 
function)

PKC α increase PKC α inhibition Ruboxistaurin Increasing contractility and HF 
improvement

Recovering of myofilament 
function

CaMKII increase CaMKII inhibition Hesperadin Ameliorating cardiomyocyte 
injury and HF

Facilitaing Ca2+ recovery into ER
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localized to the myofilaments [150, 151] or the nuclear 
envelope [23, 152, 153]. PDE3 activity is present in the 
cytosolic and microsomal fractions and constitutes the 
majority of cAMP-hydrolysing activity in the latter [154]. 
PDE3 regulates ICa2+ [155–159] and Ca2+ uptake in the 
SR by modulating cAMP-PKA [160, 161]. The role of 
its expression in HF was different in different experi-
ments, with some experiments finding that its activity is 
unchanged in human failing hearts [162, 163], while oth-
ers have found that its activity is reduced [164]. Some 
animal experiments reported reduced PDE 3 activity in 
HF [164–169], while others found elevated PDE 3 activ-
ity and expression [170–173]. However, PDE3 inhibition 
was shown to increase the incidence of arrhythmias in 
patients [174, 175]. PDE4D3 localizes within the RyR2 
macromolecular complex, whose activity occurs mainly 
in the nuclear membrane. This localized pool of PDE4 
also controls the integration of β-AR to AMP-PKA sign-
aling in the nucleus. PDE4 activity can be regulated by 
PKA phosphorylation or by MAPK1 [176, 177], which is 
a major negative regulator of β-AR responses in healthy 
rat cardiomyocytes [156, 178], and the conversion from 
PDE4 to PDE3 occurs in cardiac hypertrophy and HF 
[166, 179, 180]. Reduced PDE4 activity in HF increased 
RyR2 phosphorylation and promoted Ca2+ leakage [22]. 
On the other hand, this promotes the phosphorylation of 
SERCA-2, contributes to Ca2+ uptake, and may be ben-
eficial for HF [82, 86, 181–183]. PDE5 is localized at 
the Z-band [184], which is cGMP-activated and specifi-
cally hydrolyzes cGMP. PDE5 expression is elevated in 

animal and human failing hearts [185–189], although some 
experiments found it to be reduced [190]. PDE5 inhibi-
tion provided cardioprotection by promoting cGMP-PKG 
signaling to prevent cardiomyocyte hypertrophy and car-
diac dysfunction [191]. PDE5 inhibition was also shown 
to attenuate diastolic dysfunction and decrease fibrosis and 
collagen type I deposition [192, 193]. The cGMP-PKG 
pathway under the control of PDE5 counteracts the effects 
of adverse cardiac remodeling (Table 1). PDE8 is a high-
affinity, cAMP-specific enzyme [194, 195]. PDE8A was 
found to regulate excitation-contraction coupling by con-
trolling a specific pool of cAMP involved in β-AR regula-
tion of Ca2+ homeostasis [196]. PDE9 is highly specific 
for cGMP hydrolysis and is mainly located on the mem-
brane, transducing the np-coupled signal. PDE9 inhibition 
may lead to improved diastolic function and impaired sys-
tolic function (Table 1) [197]. Animal studies have dem-
onstrated that the inhibition of PDE 9 contributes to car-
diac output [198]. PDE10 is upregulated in failing hearts 
in animals and humans [199], and PDE10 was shown to 
reduce epinephrine-induced cardiac hypertrophy [199]. 
However, other experiments simultaneously suggested 
that PDE overexpression exerted protective effects on the 
heart and reduced cardiac hypertrophy and cardiac hyper-
trophy caused by β-AR stimulation [143, 147], which can 
be associated with decreased phosphorylation of RyR2 and 
reduced ER Ca2+ leaks in early stages of HF or ischemic 
heart disease, preventing the occurrence of arrhythmia.

PP2A can dephosphorylate many sites on LTCC 
[200–203], RyR2 [204, 205], as well as TnI, TnT, and 

Fig. 3    Potential treatment plan 
targeted on abnormal kinase 
and phosphatase. Conventional 
treatments including diuresis, 
angiotensin inhibition, and 
β-AR inhibition. Potential 
treatment targeted abnormal 
kinase and phosphatase should 
be sequential. PKG activation 
and PP1 inhibition can be firstly 
used for they are responsible for 
Ca2+  recovery. CaMKII inhibi-
tion is also important for it is 
beneficial to normal ER func-
tion. PKC inhibition is the last 
for it is mainly related to Ca2+  
sensitivity recovery (a higher 
Ca2+  sensitivity may play a 
compensation role with rela-
tively low intracellular Ca2+)
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MyCP-c [206–209], which regulates the relaxation and 
contraction capacity of cardiomyocytes. The relationship 
between reduced LTCC activity and altered PP2A activity 
is unclear at present, and the treatment of PP2A is mainly 
in the cancer field. Whether PP2A inhibition is helpful 
in the treatment of HF still needs further experiments to 
be proven.

PKA is important in the progression of HF, and the res-
toration of its activity depends on the normal function of 
β-AR. However, for PKA, whether promoting the activity 
of PKA alone is helpful in the treatment of HF, more animal 
experiments are needed. PKG is another important kinase 
that is related to the phosphorylation of MLC [210]. PKG 
decrease is associated with HFpEF (with normal systolic 
function but impaired diastolic function, because PKG 
facilitates Ca2+ recovery into ER) [211]. PKG activation 
has broad prospects [212] (Table 1), and PKG may be the 
best alternative in the absence of normal β-AR function. 
PKC and CaMKII are activated in HF. Experiments proved 
that infusion of the oral PKCα/β/γ inhibitor ruboxistaurin 
increased contractility in wild-type and PKCβγ (- / -) mice, 
but not in PKCα (- / -) mice, which showed that the inhibi-
tory effect of PKCα improved HF (Table 1) [8]. The same 
effects were found in other animals [213], providing a new 
direction for HF treatment. Hesperadin is a CaMKII inhibi-
tor, and its application ameliorates cardiomyocyte injury and 
HF (Table 1) [214]. CaMKII activation is mainly associated 
with ER dysfunction, and its inhibitory effect may help to 
restore ER function. CaMKII inhibitors have broad prospects 
for the treatment of HF.

As shown in Fig. 3, a comprehensive treatment plan tar-
geted abnormal kinase and phosphatase can be started by 
PKG activation and PP1 inhibition, for they are benefical 
to restoring the function of SERCA-2. CaMKII inhibition is 
also important because former studies indicated a relation-
ships between activation of CaMKII and ER dysfunction 
and myofilament dysfunction. Although PKCα is activated 
in HF, it is mainly related to a rising Ca2+ sensitivity. PKCα 
inhibition can be considered. PDE inhibitiors should be used 
with caution, because they may cause arrhythmias. Future 
experiments are expected to prove the effect of the potential 
treatment plan.

Conclusions

Calcium dysfunction because of abnormal phosphorylation 
and dephosphorylation is directly related to impaired myo-
cardial systolic and diastolic functions. β-AR recovery is 
the end point of HF. Considering the relationships between 
Ca2+ and CaMKII and PKC, recovery of SR (Ca2+ release 
and recovery) is the most important, and PKG activation 
and PP1 inhibition may play a great role in the absence of 

normal β-AR function. Other potential therapeutic directions 
in HF can be focused on CaMKII and PKCα inhibitions 
with the removal of HF-leading risks, which can facilitate a 
normal Ca2+ function and have benign circular effects, and 
also improve the function of myofilament. Also, myofila-
ment dysfunction is related to α-AR and M2-R activation. 
Inhibition of α-AR and M2-R inhibition can be considered, 
but it can cause many side effects. Treatment plans targeted 
on abnormal kinase/phosphatase should be sequential, for 
sudden Ca2+ decrease may cause a more serious systolic 
disorder. Future experiments are expected to prove the com-
bined therapeutic effect and establish an appropriate dosage 
and course of treatment.
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