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Abstract
Heart failure (HF) is a pervasive clinical challenge characterized by compromised cardiac function and reduced quality of 
life. The kinin-kallikrein system (KSS), a multifaceted peptide cascade, has garnered substantial attention due to its potential 
role in HF. Through activation of B1 and/or B2 receptors and downstream signaling, kinins modulate various physiological 
processes, including inflammation, coagulation, pain, blood pressure control, and vascular permeability. Notably, aberrations 
in KKS components have been linked to HF risk. The elevation of vasodilatory bradykinin (BK) due to kallikrein activity 
reduces preload and afterload, while concurrently fostering sodium reabsorption inhibition. However, kallikrein’s conversion 
of prorenin to renin leads to angiotensinsII upregulation, resulting in vasoconstriction and fluid retention, alongside increased 
immune cell activity that fuels inflammation and cardiac remodeling. Importantly, prolonged KKS activation resulting from 
volume overload and tissue stretch contributes to cardiac collagen loss. The conventional renin-angiotensin-aldosterone sys-
tem (RAAS) inhibitors used in HF management may inadvertently intensify KKS activity, exacerbating collagen depletion 
and cardiac remodeling. It is crucial to balance the KKS's role in acute cardiac damage, which may temporarily enhance 
function and metabolic parameters against its detrimental long-term effects. Thus, KKS blockade emerges as a promising 
strategy to impede HF progression. By attenuating the link between immune system function and tissue damage, KKS inhibi-
tion can potentially reduce cardiac remodeling and alleviate HF symptoms. However, the nuanced roles of BK in various acute 
conditions necessitate further investigation into the sustained benefits of kallikrein inhibitors in patients with chronic HF.
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Introduction

Heart failure (HF) is a complicated clinical condition char-
acterized by the inability of the heart to adequately circulate 
blood, resulting in various symptoms and a lower quality 
of life. The kinin-kallikrein system (KKS), constituting a 
complex peptide cascade involved in several physiological 
processes such as inflammation, coagulation, pain, blood 

pressure control, and vascular permeability, is one such 
mechanism that has received much attention and may be 
involved in HF progression [1].

In the KKS, kinins originate from kininogens through 
the action of tissue and plasma kallikreins. Some impacts of 
kinins are induced via activation of B1 and/or B2 receptors 
and downstream signaling such as nitric oxide. For instance, 
the KKS releases vasoactive kinins, such as bradykinin (BK), 
which is implicated in vasodilation, vascular leakage, and 
pain [1]. Notably, several studies have suggested a key role 
for KKS in the pathogenesis of HF, evidenced by increased 
BK levels in both animal and human model studies [2, 3]. 
Elevated BK levels have been frequently related to increased 
inflammation, oxidative stress, endothelial dysfunction, and 
fibrosis, all of which are major clinical hallmarks of HF [4, 
5]. Additionally, genetic abnormalities within KKS compo-
nents have been associated with an increased risk of develop-
ing HF or affecting its prognosis [6].

The current study aims to provide a comprehensive over-
view of the KKS components in pathophysiology of HF. 
Exploring the involvement of the KKS in the pathogenesis 
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of HF can provide valuable insights into potential treatment 
targets that may improve patient outcomes. The information 
discussed in this review will help advance ongoing investiga-
tions into the intricate processes underlying HF, ultimately 
paving the way for more potent therapeutic approaches.

An overview of heart failure

Cardiovascular diseases, which account for 31% of all global 
fatalities, are the most fatal diseases worldwide resulting 
in 17.9 million deaths each year [7, 8]. In 2017, the global 
age-standardized prevalence rates of HF and years lived with 
disability due to HF were 831.0 and 128.2 per 100,000 peo-
ple, respectively [9]. HF continues to pose a significant pub-
lic health challenge globally, particularly in countries with 
relatively low socio-demographic index [9]. The American 
College of Cardiology Foundation and the American Heart 
Association (ACCF/AHA) guideline defined HF as “a com-
plex clinical syndrome that results from any structural or 
functional impairment of ventricular filling or ejection of 
blood” [10]. The new classification of HF according to left 
ventricular (LV) ejection fraction (LVEF) is as follows: HF 
with reduced ejection fraction (HFrEF) if the LVEF ≤ %40, 
HF with mildly reduced ejection fraction (HFmrEF) if the 
LVEF = %41–49, and HF with preserved ejection fraction 
(HFpEF) if the LVEF ≥%50 [11].

Patients with HF may experience a wide range of symp-
toms, with the prevalent ones being shortness of breath, 
weariness, reduced tolerance to physical activity, orthopnea, 
dizziness, nausea, vomiting, diarrhea, loss of appetite, and 
fluid retention [12]. Notably, HF can be a consequence of 
a variety of heart problems, genetic abnormalities, and sys-
temic disorders. Patients with HF may have a combination 
of etiologies, including ischemic heart disease, hyperten-
sive heart disease, valvular dysfunction, and autoimmune 
diseases [13, 14].

Mechanism

Cardiac function overview

Understanding the function of the cardiovascular system is 
vital for comprehending the body’s circulatory processes. 
Several key parameters play pivotal roles in this context. 
Cardiac output (CO) represents the heart’s blood-pumping 
capacity, typically ranging 4–8 L/min. CO is affected by 
synergistic ventricular contraction, ventricular wall integ-
rity, and valvular competence. In addition, stroke volume 
(SV) denotes the blood volume ejected by the ventricle dur-
ing per heartbeat, usually 1 cc/kg or 60–100 cc. Notably, 
SV is influenced by preload (fiber stretch at diastole end), 

afterload (resistance for blood ejection), and contractility 
(heart’s inotropic state). Further, mean arterial pressure 
(MAP) is regulated by CO and total peripheral resistance 
(TPR) [15].

In heart pathogenesis, such as HF, reduced CO leads to 
lower MAP and reduced tissue perfusion. The body tries to 
restore MAP through the Frank-Starling mechanism, ven-
tricular remodeling, and neurohormonal activation, which 
will be briefly discussed here.

Frank‑Starling mechanism and HF

The Frank-Starling relationship represents how the LV 
responds to increased preload under normal conditions. 
As passive tension increases, active contraction strength-
ens, resulting in bigger SV and CO [16]. As the ventricular 
contraction strength increases, the heart muscle gradually 
becomes hypertrophic, followed by a shrinking ventricular 
space. To compensate for the decrease in the impact vol-
ume, the heart rate increases and the diastole time decreases. 
Blood supply to the heart muscle itself occurs during dias-
tole. Increased heart demand for blood and decreased blood 
supply, as observed in HF, ultimately lead to heart mus-
cle damage, fibrosis, and apoptosis [17, 18]. In return, it 
is also possible to disrupt the interconnection of actin and 
myosin filaments with excessive ventricular dilation, which 
decreases the strength of the heart muscle contraction [19].

Heart remodeling and HF

Following cardiac injury or stress stimulation, various mul-
tifactorial systemic mechanisms involving structural, neu-
rohumoral, cellular, and molecular factors, are triggered 
and act together to maintain physiological function. These 
intricate and coordinated processes result in fluid overload, 
sympathetic nervous system (SNS) hyperactivity, and cir-
culatory redistribution, leading to significant concomitant 
and progressive clinical signs and symptoms. This process 
of structural and functional alterations of the heart after 
injury is referred to as remodeling, which can be categorized 
into physiological/pathological and adaptive/maladaptive, 
depending on the nature of the changes and their impact on 
the heart’s health and function [20].

Regardless of the underlying pathologic cause, remod-
eling impacts all cells and components of the heart, resulting 
in various cellular changes such as cardiomyocyte hypertro-
phy, myocyte apoptosis, and necrosis, along with fibroblast 
proliferation, accumulation of proinflammatory mediators, 
and reorganization of extracellular matrix [21].

Fibrosis, characterized by abnormal formation of colla-
gen and extracellular matrix components, significantly con-
tributes to HF progression [22]. It impacts cardiac structure 
and function, which leads to reduced contractility, increased 
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stiffness, and electrical disruptions in the myocardium [23]. 
Key cellular processes include cardiac fibroblast activation, 
inflammation, and endothelial dysfunction.

Furthermore, the transforming growth factor (TGF) sign-
aling, matrix metalloproteinases (MMPs), and tissue inhibi-
tors of metalloproteinases (TIMPs) are among the molecular 
pathways that regulate fibroblast activation, collagen forma-
tion, and extracellular matrix remodeling [23]. MicroRNA 
dysregulation has also been linked to cardiac fibrosis by 
influencing fibroblast activation, collagen production, and 
extracellular matrix remodeling [24].

Moreover, left ventricular reverse remodeling (LVRR) is 
a compensatory mechanism that improves cardiac function 
after HF. This is structurally defined by decreased ventricu-
lar volume and improved adrenergic sensitivity and is asso-
ciated with decreased inflammatory mediators [25].

Neurohormonal mechanism and HF

Neurohormonal activation is the dysregulation of hormonal 
systems that maintain cardiovascular homeostasis, such as 
the SNS, renin-angiotensin-aldosterone system (RAAS), 
vasopressin system, and natriuretic peptides [26]. In patients 
with HF, the overactivation of the SNS leads to increased 
release of norepinephrine (NE) [27]. Notably, elevated NE 
levels in patients with HF have been linked with increased 
mortality. NE causes vasoconstriction, increased heart rate, 
and cardiac remodeling [27]. Furthermore, it promotes 
inflammation, oxidative stress, and apoptosis in the heart 
muscle, contributing to HF progression [28].

The RAAS is an important regulator of blood volume and 
systematic vascular resistance. In RAAS, renin is released 
into the circulation in response to low blood pressure or 
inadequate sodium levels. This occurs when arterial baro-
receptors detect low pressure and the kidneys sense low 
sodium levels [29]. The SNS triggers renin release through 
the β-adrenoreceptor-cAMP pathway [30]. In this process, 
kallikrein (KAL) converts proreninin to renin, which, in 
turn, converts angiotensinogen to angiotensin I. Angioten-
sin-converting enzyme (ACE) then converts angiotensin I 
into angiotensin II, a potent vasoconstrictor that stimulates 
the release of aldosterone from the adrenal glands. Aldos-
terone leads to sodium retention and potassium excretion, 
resulting in fluid overload and electrolyte imbalances [31]. 
Furthermore, angiotensin II directly influences cardiac 
remodeling by promoting fibrosis and hypertrophy [32]. 
Thus, the RAAS plays a crucial role in the development and 
progression of HF, mainly by promoting vasoconstriction, 
fluid retention, and cardiac remodeling.

Importantly, angiotensin II can stimulate the release 
of vasopressin, also called antidiuretic hormone (ADH), 
which inhibits the secretion of renin, regulates kidney 
water reabsorption, and maintains fluid. In patients with 

HF, vasopressin levels tend to rise due to reduced CO and 
renal hypoperfusion, leading to fluid retention and worsen-
ing symptoms such as congestion and edema, resulting in 
clinical symptoms like dyspnea and peripheral edema [33].

In addition, atrial natriuretic peptide (ANP), brain natriu-
retic peptide (BNP), and natriuretic peptide precursor-C 
(NPP-C) play roles in the pathophysiology of HF [34]. 
These natriuretic peptides are released into the bloodstream 
in response to pressure, strain, and specific proinflamma-
tory cytokines. Actions of these hormones cause vasodila-
tion, diuresis/natriuresis, inhibition of RAAS, reduction of 
sympathetic activity, and prevent the progression of heart 
hypertrophy. BNP levels can also predict outcomes in HF, 
with higher levels indicating a greater risk of death. Moni-
toring BNP levels over time can guide treatment decisions 
and assess treatment effectiveness [35].

Inflammation and HF

While conventional risk factors, genetic cardiomyopathy, 
and mechanical valve dysfunction are important contribu-
tors to HF, the possible role of immune activation should be 
considered as a significant factor in the development and 
progression of HF. Even if the initial trigger of HF may not 
be immunological, the immune system can become activated 
in the acute setting following an injury, which may also pre-
dict clinical outcomes [36].

It is widely acknowledged that inflammation is critical in 
cardiac hypertrophy and HF. For instance, increased serum 
pro-inflammatory cytokine levels are often observed in all 
types of HF, suggesting that chronic low-grade inflammation 
might be an important mediator contributing to the mainte-
nance or exacerbation in patients with established HF [37]. 
Yet, the causality of inflammation and disease progression 
requires further investigations [36, 37].

Inflammatory cytokines have been shown to reduce 
muscle contractility and promote apoptosis of cardiomyo-
cytes. They can activate a substrate degradation program, 
induce substrate metalloproteinases, and cause extracel-
lular matrix degradation. Several studies have shown that 
pro-inflammatory cytokines such as C-reactive protein 
(CRP), tumor necrose factor-alpha (TNF-α), and members 
of the interleukin 1 (IL-1) and interleukin 6 (IL-6) family 
are elevated in patients with HF [37, 38].

In addition, myocardial ischemia-reperfusion injury 
causes the infarcted heart to produce more inflammatory 
cytokines [39]. This inflammatory response following 
ischemia-reperfusion involving toll-like receptor signaling 
and activation of complement and reactive oxygen species 
(ROS) generation is also implicated in developing postin-
farction ventricular remodeling and HF [40].

It is important to mention that endothelium normally 
has both anti-inflammatory and antithrombotic functions. 
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The endothelium controls vascular tone in healthy peo-
ple by balancing the release of vasodilators such as nitric 
oxide (NO) with endothelium-derived constrictors such as 
endothelin. Notably, the involvement of several pathways, 
including TGFβ1/Smad, mitogen-activated protein kinases 
(MAPKs), and nuclear factor-B (NFκB) signaling in the 
regulation of endothelial nitric oxide synthase (eNOS) and 
NO bioavailability is implicated in endothelial function and 
cardiac chamber remodeling [41, 42]. Understanding the 
interplay between TGFβ1, MAPKs, NFκB, and inflamma-
tory responses is crucial for developing targeted therapies 
to modulate these pathways and mitigate adverse cardiac 
remodeling and inflammation in cardiovascular diseases.

Vascular permeability is crucial in inflammation, allow-
ing immune cells into damaged myocardium, intensifying 
the inflammatory response. Controlling vascular permeabil-
ity is critical for preventing excessive leakage, which can 
cause tissue injury or edema development. Endothelial cells 
regulate vascular permeability through contraction, inter-
cellular gaps, and transcytosis and thus play critical roles 
during inflammation [43].

Additionally, increased vascular permeability disrupts the 
endothelial barrier integrity and impairs heart’s microvascu-
lar circulation, oxygen supply, and waste removal, compro-
mising cardiac function [44]. Excess vascular permeability 
may lead to fibrosis by allowing pro-fibrotic factors such 
as TGF-β to invade the myocardium, promoting fibroblast 
activation, and collagen production. Fibrosis is a key aspect 
of heart remodeling, with excessive deposition of extracel-
lular matrix proteins in the myocardium [22].

Moreover, excess vascular permeability can promote 
angiogenesis by enhancing endothelial cell movement and 
growth, which is a compensatory mechanism to improve 
oxygen supply to the enlarged heart [43]. However, it can 
also lead to abnormal vessel growth and leakage, further 
worsening heart function [45]. Gaining insights into the 
role of vascular permeability in heart remodeling provides 
opportunities for therapeutic interventions. Modulating 
inflammation or fibrosis pathways related to vascular perme-
ability may offer new treatments for cardiovascular diseases.

The activated inflammatory pathways are also observed in 
people at high risk for HF, including obese individuals [46] and 
cigarette smokers [47], and in the absence of congestive heart 
failure (CHF) clinical syndromes [48]. On the other hand, pro-
tective factors such as exercise have anti-inflammatory effects 
[49]. All these cases indicate the high importance of inflam-
mation in HF. Nonetheless, the role of inflammation in HF is 
complicated. Chronic inflammation causes structural and func-
tional changes in the heart, leading to unfavorable remodeling 
and impaired contractility. Activating various inflammatory 
pathways, such as cytokines, chemokines, and immune cells, 
is important in sustaining this inflammatory effect [50].

Kinin‑kallikrein system (KSS)

An overview of KKS

The KSS is a complex regulatory system that coordinates 
various physiological processes, including inflammation, 
coagulation, pain, cell proliferation, vasodilation, and blood 
pressure [1, 51]. The KKS contains two pathways including 
plasma KKS and tissue KKS.

Plasma KKS

The plasma KKS, as part of the intrinsic coagulation sys-
tem, involves the autoactivation of factor XII when blood 
encounters negatively charged or neutral surfaces. The acti-
vated factor XII (FXIIa) then catalyzes the conversion of 
prekallikrein (PK) to its activated form, plasma KAL, by 
cleaving off a small peptide fragment from PK in a process 
known as contact activation. Accordingly, the plasma KKS 
is often used as synonymous with the “contact activation 
system (CAS) [1, 51].

The activated KAL, in turn, cleaves high molecular 
weight kininogen (HMWK) into the potent inflammatory 
mediator, nonapeptide BK. BK generated from HMWK acts 
as the ligand for the G-protein coupled B2-receptor (B2R). 
Des-Arg9-BK is a biologically active peptide formed when 
BK undergoes enzymatic cleavage by the carboxypeptidase 
enzyme kinases I. Des-Arg9-BK is a ligand for the G-pro-
tein coupled B1-receptor (B1R). Both receptors help release 
mediators such as NO, arachidonic acid, prostaglandins,  
leukotrienes, and endothelium-derived hyperpolarizing fac-
tors [52]. While B2R activation results in a transient release 
of NO in endothelial cells, B1R activation leads to very high 
and sustained NO production [53].

Notably, the majority of the effects of the plasma KKS 
on inflammation, vascular function, blood pressure control, 
and nociceptive response are attributed to the activation of 
B2R and B1R by BK and des-Arg9-BK, respectively [54]. 
Additionally, the cleaved HMWK-a binds to neutrophils 
and monocytes, inhibiting their adhesion to fibrinogen and/
or vitronectin. HMWK-a binding to monocytes stimulates 
the production and release of inflammatory cytokines and 
chemokines [1].

The KAL is part of both the CAS and KKS, resulting in 
reciprocal acts. While the CAS is involved in thrombin for-
mation and inflammation, the KKS mainly plays an impor-
tant part in inflammation and lacks a specific role in blood 
coagulation. It is worth mentioning that the activated factor 
XIIa plays a multifaceted role in the plasma KKS and the 
intrinsic coagulation pathway. The factor XIIa can also initi-
ate the complement system, fibrinolysis, and may regulate 
cellular response [55].
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Tissue KKS

Unlike the plasma KKS, the tissue KKS is independent of 
factor XII and involves different components, including 
low molecular weight kininogen (LMWK) and tissue KAL 
[51]. In the tissue KKS, the enzyme tissue KAL produced 
and released by various tissues, including kidneys, salivary 
glands, and pancreas, acts on LMWK to produce a peptide 
called kallidin or Lys-BK. Kallidin is a vasoactive sub-
stance and, similar to BK, interacts with B2R and mediates 
various physiological responses, including vasodilation, 
increased vascular permeability, smooth muscle contrac-
tion, and inflammation. Kallidin can also be converted to 
BK by aminopeptidase.

KKS and RAAS

The KKS acts as a natural counter-regulatory system to 
the RAAS in the body [30]. As discussed, the RAAS is an 
important hormonal system that regulates blood pressure 
and fluid balance in the body. In response to low blood pres-
sure or low sodium levels, the RAAS induces vasoconstric-
tion, sodium and water retention, and vascular tone. This 
primarily achieved through the action of a potent vasocon-
strictor named angiotensin II, which is generated by ACE. 
Angiotensin II stimulates the release of plasminogen activa-
tor inhibitor 1 (PAI1) from endothelial cells.

On the other hand, the KKS plays a role in vasodilation 
and fluid balance by producing kinins, such as BK and kalli-
din, which are potent vasodilators [51]. They increase vascu-
lar permeability, leading to the relaxation of blood vessels, 
decreased systemic blood pressure, and decreased produc-
tion of ROS to protect the heart and the kidney from organ 
damage [56].

Once released, kinin peptides (BK, KAL, and kallidin-
like peptide) circulate in the blood and interact with their 
respective receptors (B1R and B2R) to exert various physio-
logical effects. ACE, which is primarily found on the surface 
of endothelial cells and other tissues, rapidly cleaves and 
inactivates these peptides. This regulatory action of ACE on 
kinin peptides serves as an essential regulatory mechanism 
to prevent excessive or prolonged effects of kinin in the body 
[30, 51]. These kinins are crucial in activating endothelial 
cells during various processes, including inflammation, 
vasodilation, increased vascular permeability, and smooth 
muscle contraction within blood vessels. Consequently, dis-
ruption in this system can lead to hypotension, angioedema, 
and heart and kidney disorders [57]. Notably, the KKS is 
regulated by serpins and has a complex distribution of com-
ponents, along with numerous interactions with other essen-
tial metabolic pathways.

ACE inhibitors and angiotensin receptor blockers (ARBs) 
are two classes of medications commonly used to manage 

hypertension and other cardiovascular conditions. It is worth 
noting that changes in ACE levels have a more significant 
impact on kinin levels than on angiotensin II levels [58]. 
ACE inhibitors are the most widely used agents to increase 
KKS activity [56, 58]. Their primary role is to upregulate 
kinins rather than to inhibit ACE. Additionally, ARBs are a 
class of widely used medications that are effective in protect-
ing the heart and kidneys by selectively blocking the angio-
tensin II type 1 (AT1) receptor, which are specific receptors 
for angiotensin II [59].

KKS and the heart

KKS in acute cardiac pathological conditions

In acute conditions such as acute coronary syndrome (ACS), 
KAL activity causes vasodilation due to the production of 
BK, followed by NO. A study explored the impact of KAL 
on heart remodeling and apoptosis in post-myocardial infarc-
tion (MI) [60]. Rats injected with adenovirus containing 
human tissue KAL or luciferase gene displayed enhanced 
cardiac responses during dobutamine-induced stress. Nota-
bly, somatic gene delivery improved cardiac responses to 
stress, reduced myocardial apoptosis, and enhanced cell 
survival. This study demonstrates the KKS’s pivotal role 
in mitigating the progression of HF by modulating the Akt-
mediated signaling pathway, which reduces cardiac hyper-
trophy, fibrosis, endothelial dysfunction, and myocardial 
apoptosis [60].

In another study, intramyocardial infusion of purified 
tissue KAL following an MI led to the reduction of infarct 
size and inhibition of cardiomyocyte apoptosis associated 
with elevated NO levels and Akt signaling [61] as well as 
reduced caspase-3 activation [62]. Importantly, icatibant, 
a B2R antagonist, inhibited the effects of KAL. This sug-
gests that via B2R activation, KAL may inhibit apoptosis, 
inflammation, and ventricular remodeling by enhancing the 
formation of NO and suppressing oxidative stress pathways. 
Additionally, KAL may protect the heart against reperfusion 
injury and vascular injury [63, 64].

KKS in HF

As explained, kinins are active peptides released as a product 
of KAL’s enzymatic action on kininogen. The cumulative 
effects include vasodilation, hypotension, endothelial relax-
ing factor release, and natriuresis. Endogenous BK is rapidly 
inactivated by kininase I and kinase II, known as ACE.

It has been demonstrated that KAL causes pro-inflam-
matory reactions by stimulating immune cells, includ-
ing neutrophils and monocytes/macrophages. TNF-α 
and interleukins (IL-1, IL-6) are two pro-inflammatory 
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cytokines released due to this activation, leading to car-
diac inflammation. Chronic inflammation causes mala-
daptive remodeling, and fibrosis and worsens heart func-
tion [61]. Additionally, KAL activity increases TGF-β 
production, a profibrotic cytokine [65]. TGF-β promotes 
the synthesis of extracellular matrix proteins, caus-
ing myocardial fibrosis [66]. KAL also generates ROS 
through interaction with nicotinamide adenine dinucleo-
tide phosphate (NADPH) oxidase enzymes, leading to 
oxidative damage to cellular components and apoptosis, 
which may worsen HF progression [56].

In the Second Northwick Park Heart Study (NPHSII) of 
2706 middle-aged Caucasian men, 175 events occurred dur-
ing follow-up, including 124 (70.8) acute MIs, 33 coronary 
surgeries (18.9%), and 18 silent Mis (10.3%) [67]. The study 
found that common polymorphisms in the genes encoding 
the kinins B1R and B2R influence prospective hypertensive 
coronary risk, suggesting that the B1R and B2R may play 
the same function in human coronary vascular diseases.

It is worth mentioning that the B1R is more expressed 
during LV dysfunction and ACE inhibition [68]. An 
in vitro study discovered that endotoxin-induced kinin B1R 
induction in pig coronary arteries caused concentration-
dependent, endothelium-independent contraction [69]. A 
B1R antagonist, SSR240612, prevented these contractions, 
while the B2R antagonist, HOE140, had no effects [69]. 
Accordingly, the induction of B1R during inflammation 
could be of clinical concern in the vasculature, especially in 
coronary arteries with dysfunctional endothelial cells.

Notably, patients with CHF (NYHA class II) may exhibit 
elevated plasma BK levels and endothelial markers asso-
ciated with inflammation during long-term ACE-inhibitor 
therapy [70]. However, those patients treated with ACE-
inhibitor may not be able to respond adequately to ischemic 
and exercise-induced stimuli.

A previous study showed that acute VO in rats increases 
both angiotensis II and BK levels in the interstitial fluid 
(ISF) [71]. While the treatment with ACE inhibitors 
decreased angiotensin II levels, the level of ISF BK was 
elevated, reducing LV hypertrophic response. Although add-
ing B2R antagonists to ACE inhibitors did not yield a better 
outcome, B2R blockade produced more concentric hypertro-
phy as it led to a thicker wall and smaller chamber diameter 
[71]. These results indicate that the cardioprotective effects 
of ACE inhibitors are mostly due to their reducing effect on 
angiotensin II levels. They also found a significant interac-
tion between mast cells and BK in influencing the impact of 
ACE inhibition on LV remodeling during the initial phase 
of VO [71].

Furthermore, the ACE inhibitor-induced increase in 
BK may exacerbate matrix loss. In an animal study, rats 
underwent either sham surgery or artocaval fistula (ACF) 
to stimulate VO [72]. ACF rates were treated with either 

a 2-day B2R blockade or a 4-week ACE inhibition. It was 
found that the primary mechanism for LV remodeling in 
response to ACF-induced VO was BK-mediated collagen 
matrix dissolution [72]. ACE inhibitors, which raise anti-
fibrotic BK, did not reduce LV remodeling in VO. In con-
trast, B2R blockade prevented eccentric LV remodeling and 
improved its function.

In another study, LV ISF collection and echocardiography 
were performed in sham and ACF rats [73]. ACF rats exhib-
ited LV dilatation, higher LV end-diastolic pressure, and 
elevated LV ISF BK levels. Mast cell numbers increased, 
while interstitial collagen decreased at 4 and 15 weeks post-
ACF. Aprotinin, a KAL inhibitor, preserved interstitial colla-
gen, prevented mast cell increase, and improved LV systolic 
function in ACF rats. A 24-h LV interstitial BK infusion 
increased mast cell numbers by twofold and reduced inter-
stitial collagen by 30%, but this effect was reversed by a 
B2R antagonist [73]. The findings show that VO triggers 
KKS upregulation, leading to mast cell infiltration, extracel-
lular matrix loss, and LV dysfunction. KAL inhibition may 
counteract these effects.

It is worth noting that the B1R blockade with BI113823 
seems to be as effective as ACE inhibition with lisinopril in 
attenuating post-infarction LV remodeling and HF in rats; 
however, the effects of the combination of both compounds 
may not be additive [74].

Conclusion

In the KKS, KAL activity increases the level of the vasodi-
lator BK, which reduces preload and afterload and directly 
inhibits sodium reabsorption from renal tubules. On the 
other hand, KAL converts prorenin to renin, increasing the 
level of angiotensin II, resulting in vasoconstriction and 
fluid retention through increasing the permeability of blood 
vessels. It facilitates the activity of immune system cells, 
including neutrophils and macrophages, which ultimately 
increases inflammation and heart remodeling.

VO and tissue stretch cause long-term KKS activation, 
leading to heart collagen loss. RAAS-blocking drugs cur-
rently used in managing HF can increase KKS activity, exac-
erbating cardiac collagen reduction and, ultimately, cardiac 
remodeling. Although the KKS function in heart damage 
can temporarily improve cardiac function and metabolic 
parameters, it also causes tissue destruction and long-term 
cardiac remodeling.

Thus, KKS-blocking treatments may play a significant 
role in mitigating the progression of HF. Through break-
ing bridges between the immune system function and tis-
sue damage, KKS blockade can reduce cardiac remodeling. 
Further, reducing the influence of BK contributes to a partial 
alleviation of HF symptoms. Nevertheless, considering the 
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vital and beneficial roles of BK in various acute conditions, 
such as stroke, it is anticipated that its deletion could lead to 
adverse consequences in the long term. The authors propose 
that partial inhibition of KAL may yield positive outcomes 
in patients with HF. However, further research is required to 
elucidate the long-term effects of KAL inhibitors in patients 
with chronic HF.
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