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Experimental heart failure models in small animals
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Abstract

Heart failure (HF) is one of the most critical health and economic burdens worldwide, and its prevalence is continuously
increasing. HF is a disease that occurs due to a pathological change arising from the function or structure of the heart tissue
and usually progresses. Numerous experimental HF models have been created to elucidate the pathophysiological mecha-
nisms that cause HF. An understanding of the pathophysiology of HF is essential for the development of novel efficient
therapies. During the past few decades, animal models have provided new insights into the complex pathogenesis of HF.
Success in the pathophysiology and treatment of HF has been achieved by using animal models of HF. The development
of new in vivo models is critical for evaluating treatments such as gene therapy, mechanical devices, and new surgical
approaches. However, each animal model has advantages and limitations, and none of these models is suitable for study-
ing all aspects of HF. Therefore, the researchers have to choose an appropriate experimental model that will fully reflect
HF. Despite some limitations, these animal models provided a significant advance in the etiology and pathogenesis of HF.
Also, experimental HF models have led to the development of new treatments. In this review, we discussed widely used
experimental HF models that continue to provide critical information for HF patients and facilitate the development of

new treatment strategies.
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Introduction
Definition and importance of heart failure

Heart failure (HF) is a clinical syndrome characterized
by the inability to send sufficient blood to the periph-
eral tissue as much as its metabolic requirement due to
pathologies arising from the function or structure of the
heart tissue, and it usually has a progressive course [1-3].
The complexity of HF has been challenging the scientific
world for many years. Versatile and complex processes
in the pathophysiology of HF have been investigated for
a long time. Also, the heterogeneous structures of the
disease negatively affect the speed of scientific develop-
ments in this field. The prevalence of HF continues to
increase significantly today.
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Prevalence and incidence

Unfortunately, HF is a leading cause of death worldwide
[4, 5]. Tt affects more than 26 million people worldwide,
with a prevalence of more than 12% over the age of 70 [6].
Although HF is generally seen in the elderly, it occurs at
all ages [7, 8]. Currently, 6.5 million people in the USA are
thought to have HF, and it is predicted that 8 million people
in the USA will be diagnosed with HF by 2030 [8, 9]. HF is
the leading cause of death worldwide, with approximately
50% of patients dying within the first 5 years after diagnosis
[10]. HF not only is affected human health but also dra-
matically affects the social economy. It costs several billion
dollars each year and is estimated to increase by around 70
billion costs by 2030 [10]. It is essential to analyze risk fac-
tors and develop new effective treatment methods for HF
patients for all these reasons.

Pathophysiology, subclassification, and symptoms

The most important defining feature of HF is the heart’s
inability to pump enough blood to the body and the resulting
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low quality of life in these patients [11]. HF is a complex
clinical picture with many different etiologies. The main fea-
ture of HF has reduced contractile force or underfilling. Sys-
temic inflammation, hypoxic environment, cardiomyocyte
damage, mechanical stress, and other profibrotic cytokines,
transforming fibroblasts into myofibroblasts at the injury
site, are the essential pathophysiological processes underly-
ing heart diseases [12]. Myofibroblasts have a more con-
tractile structure by developing stress fibers. These induce
cardiomyocyte hypertrophy by causing cytokines’ secre-
tion, such as transforming growth factor-f, tumor necrosis
factor-a, and angiotensin II [9, 13—16]. As a result of myofi-
broblasts’ activity, it also causes the formation of extracel-
lular connective tissue and the formation of interstitial and
perivascular fibrosis [17]. This fibrotic structure adversely
affects the heart tissue’s physiological processes and causes
myocardial stiffening and diastolic dysfunction [18]. These
changes cause left ventricular hypertrophy, inhibition of the
left ventricle’s relaxation ability, and diastolic dysfunction
[19]. Developments such as ischemic damage in the heart
lead to cardiomyocyte death, leading to decreased contrac-
tion of heart tissue and wall thickness [20]. As a result of
these damages, the heart tissue’s cytosolic functions are
impaired [21]. Pathological changes such as increased stift-
ness of the myocardial tissue reduced left ventricular con-
traction and heart tissue remodeling are the main hallmarks
of HF [21]. The pathophysiology of systolic and diastolic
heart failure and the differences between them are shown in
Fig. 1. Left HF is often the leading cause of right HF and
is associated with an increased risk of sudden death [22].
HF is further divided into three subgroups: (1) HF with
preserved EF (HFpEF, LV EF > 50%), (2) HF with midrange
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EF (HFmrEF, 40-49% LV EF), (3) HF with reduced EF
(HFrEF, LV EF <40%). This sub-classification has an
essential place in the difference in HF treatment protocols
[23]. According to the analysis of the data obtained from
the Framingham Heart Study, 56.2% of the patients were
diagnosed with HFpEF, 31.1% with HFrEF, and 12.8% with
HfmrEF [24]. Although the relative proportion of HFrEF
decreases, the absolute number of HFrEF patients is pre-
dicted to increase in the coming years. HFpEF occurs when
the ventricles fail to relax correctly and are clinically defined
as normal EF or HF with diastolic dysfunction. About half of
HF patients suffer from HFpEF and exhibit HF symptoms,
including exercise intolerance, congestion, and edema asso-
ciated with cardiac hypertrophy [25, 26]. HFpEF is more
common in women than men and its incidence increases
in older age [27]. In addition, it can be a secondary disease
that occurs as a result of various chronic diseases such as
hypertension and diabetes mellitus [9, 28].

As a result of clinical studies, it is known that there is a
transition between HF subtypes. According to this, includ-
ing HFrEF to HFmrEF/HFpEF or HFmrEF to HFpEEF, it is
referred to as “HF with enhanced LVEF” (HFiEF). These
patients have transitioned to the lower HF phenotype
from baseline. Including HFpEF to HFmrEF/HFrEF or
HFmrEF to HFrEF, it is referred to as “HF with worsened
LVEF” (HFdEF). The remainder of the enrolled patients
were termed “HFuEF with unchanged LVEF” (HFuEF)
[29]. Age, hypertensive and in some cases diabetes-related
ventricular remodeling thus creates the slowly progressive
substrate upon which HFpEF is formed, and recent evi-
dence suggests that progression of a number of abnormali-
ties in cardiovascular function may promote the transition
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Fig. 1 The pathophysiology of systolic and diastolic heart failure and the differences between them
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to overt HFpEF, including loss of contractile reserve, dias-
tolic reserve, chronotropy, vasodilation, and endothelial
function. In contrast, HFrEF most commonly develops in
response to distinct pathophysiologic perturbations lead-
ing to accelerated and larger-scale myocyte loss/dysfunc-
tion, with the most common etiologies including acute
myocardial infarction, genetic abnormalities, myocarditis,
or toxin effects (e.g., alcohol or chemotherapy) [30].
Two-thirds of all HF patients fall under four main head-
ings: ischemic heart disease, chronic obstructive pulmo-
nary disease, hypertensive heart disease, or rheumatic heart
disease [30]. Typical signs of HF and physical examination
findings include dyspnea, weight gain, weakness, increased
jugular venous pressure, pulmonary rales, and peripheral
edema [31]. Symptoms of right and left-sided HF are shown
in Fig. 2. These findings significantly affect the expected
patient’s quality of life [32]. All these symptoms and signs
occur due to increased cardiac hypertrophy, formation of
fibrotic tissue, and decreased blood supply. Many cardiac
problems, such as coronary artery disease, myocardial
infarction, and cardiomyopathy cause HF [30]. HF causes
the loss of the heart tissue’s physiological contractile ability
by causing cardiomyocyte damage or death. All these patho-
logical changes cause the insufficient pumping of blood to
the systemic circulation, in other words, the emergence of
systolic HF. This relationship showed that brain natriuretic
peptide levels and mortality are higher in HFrEF patients
than in HFpEF patients. The relative incidence of these
three subgroups, a decrease in HFrEF, and an increase in
HFpEF have been observed in recent years [27, 33].

Fig.2 Symptoms of right and
left-sided HF

Possible therapeutic targets of HF

Despite significant improvements in cardiovascular mortal-
ity over the last decades, cardiovascular disease is the main
reason for death in several countries. Cardiovascular thera-
pies improved the survival of patients with cardiovascular
disease but, at the same time, increased the number of sub-
jects affected by chronic cardiovascular conditions such as
HF. The development of new drugs for HF therapy must
be necessarily focused on additional targets [34]. Possible
therapeutic pathways and mechanisms in HF are shown in
Table 1.

Experimental models of heart failure

It is well known that there are many risk factors associated
with HF. Apart from risk factors, comorbidities such as
obesity, hypertension, type 2 diabetes, and chronic kidney
disease have revealed the necessity of developing new treat-
ment options in HF [28, 62—-64]. The pathogenesis of HFpEF
and HFrEF is multifactorial. Therefore, it is complicated to
distinguish underlying mechanisms that may be overlapping
and interconnected. The complex mechanisms of all these
variables make the disease difficult to understand and dis-
cover new treatment methods. One of these difficulties is the
lack of ideal animal models similar to the pathophysiological
features of human HF.

Various experimental animal models are used to analyze
the causes of HF and to develop current treatment strate-
gies [65]. Many small animal species are often preferred for
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Table 1 New possible

. Targets
pharmacological targets

New promising drugs HF form References

and promising drugs for the

Myocardial interstitial fibrosis
treatment of HF

Chymase

SERCA2a

Partial adenosine A1 receptor

Cytochrome C

Soluble guanylate cyclase

Arginine vasopressin signaling

P38 mitogen-activated protein kinase inhibition

Myosin
Interleukin-16
Interleukin-1 receptor

Inhibitor of fibroblast growth factor 23

Inhibition of galectin-3

Regenerative stem cell therapies

Advanced glycosylation end products

Inhibitor of the late inward sodium current

Histone deacetylase inhibitor
Titin

Endothelial nitric oxide synthase activator
Inhibitor of ATP hydrolysis of the myosin heavy chain

Inhibitor of sodium-hydrogen exchanger 3

Sacubitril/valsartan HFrEF [35-37]
Empagliflozin HFpEF
Fulacimstat
Istaroxime HFrEF [38]
HFpEF
BMS-986231 HFrEF [39]
Neladenoson HFrEF [40-42]
Capadenoson HFpEF
Elamipretide HFrEF [43]
Vericiguat HFrEF [44, 45]
HFpEF
Pecavaptan HFrEF [46]
HFpEF
HFpEF [47]
Omecamtiv mecarbil HFrEF [48]
HFpEF [49]
Canakinumab HFrEF [50, 51]
Anakinra HFrEF
HFpEF [52]
HFpEF [53]
HFpEF [54]
Alagebrium HFpEF [55]
Ranolazine HFpEF [56]
Givinostat HFpEF [57]
RNA binding motif-20 HFpEF [58]
AVE3085 HFpEF [59]
Mavacamten HFpEF [60]
Tenapanor HFpEF [61]

HF heart failure

this purpose, including mice, rats, and guinea pigs. Mice
and rats are very similar to the human genome, with 30,000
protein-coding genes. The most important advantages of
these experimental animal species are the short reproduc-
tive cycles and low housing costs. These models generally
use genetic modifications and pharmacological and surgical
approaches. Many animal models have provided significant
progress in knowledge of HFrEF and HFpEF pathogenesis
[26]. The HF models in small animals are shown in Fig. 3.

Myocardial infarction (MI)

Ischemia/anoxia occurs when a part of the myocardium is
not provided with adequate blood flow or if it is completely
stopped due to coronary occlusion [66, 67]. Insufficient
blood flow to the myocardium is one of the leading causes
of HF [68-70].

Several animal models have been developed to mimic HF
in humans with coronary artery disease [71, 72]. These mod-
els can help elucidate the pathophysiological mechanisms
occurring in ischemic human hearts. The main model types
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used are coronary artery ligation, coronary artery emboli-
zation, hydraulic occluder or ameroid ring constrictor, and
cryoinjury models. These interventions are generally used
to narrow or occlude coronary vessels. This blockage can be
used to trigger acute or chronic HF [71, 73]. Coronary artery
ligation is the most commonly used model used to induce
HF in many animals, from mice to pigs [74-76]. Coronary
artery ligation has been performed not only in rats but also
in mice [77, 78]. Since ischemic heart disease is the most
important cause of HF in humans, coronary artery occlu-
sion is the most common inducing acute myocardial injury
in animal models.

Ischemic heart disease is the main cause of HF in humans
[79]. Ligation of the left anterior descending (LAD) coro-
nary artery or any of its branches is the most preferred and
generally accepted method to induce HF [8, 16, 80, 81]. Cor-
onary artery ligation is a widely used small animal HF model
created by Pfeffer et al. in rats and later used by numerous
groups [82]. After discovering the experimental model,
Pfeffer et al. showed that the use of angiotensin-converting
enzyme inhibitor (ACEI), captopril, increased the contractile
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Fig.3 The HF models in small animals

function and survival of the ventricles after MI in rats [83].
These experimental studies laid the foundation for ACEIs
traditionally used in MI patients today. This method also
provides information about cardiac remodeling developed in
the heart after MI and its pathophysiology [84]. Pathological
changes occur due to the increased overload in the cardiac
tissue and the increased fibrotic structure in the extracellular
tissue [8, 85]. In addition, this condition is accompanied
by neurohumoral activation [86]. Dilatation, necrosis, and
apoptosis were observed in the cardiac tissue of the animals
in which this experimental model was applied. Also, high
ventricular filling pressures and decreased cardiac index
were found. In addition to all these changes, the natriuretic
peptide and renin-angiotensin system were activated [87,
88]. HF induced by LAD ligation is associated with myo-
cardial hypertrophy, progressive myocardial enlargement,
and late failure if 40-50% of the left ventricle is viable [14,
89]. There was no significant difference in cardiac output
in rats 1 week after LAD ligation compared to the control
group. However, a significant reduction in cardiac output
was detected 3—5 weeks after LAD ligation [90]. A signifi-
cant reduction in rats’ cardiac output, up to 25%, is observed
8 weeks after LAD ligation [91]. It is known that mice that
survive progressively develop HF 4 weeks after surgery [92].
Infarction size varies between 10 and 45% and is directly
related to left ventricular function damage; this ratio affects
HF’s development time. In general, the infarct must affect
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at least 30% of the left ventricular mass to demonstrate the
typical HF features and detect various biomarker levels [81].

Studies have shown that female mice undergo less ven-
tricular remodeling. Sex hormones are thought to underlie
this difference. Female mice show less extensive ventricular
remodeling than males, suggesting the role of sex hormones
[93]. These differences should be taken into account when
designing experiments. It must be taken into attention. Due
to the MI experimental model in both mice and rats, the
mortality rate ranges from 35 to 50%. Ventricular fibrilla-
tion usually occurs within 1 h after MI due to severe acute
HF [94]. Although progressive, non-occlusive coronary
artery occlusion is usually seen in clinical patients; this
model is mostly caused by a normal coronary artery’s sud-
den occlusion. Ischemic heart disease in humans is mostly
caused by non-occlusive coronary artery narrowing. This
experimental model is created by reducing the left coronary
artery’s inner lumen diameter by about 60% by occluding
the vessel with a probe and then removing it in rats [95].
As aresult of the decrease in coronary blood flow, a reduc-
tion in left ventricular performance and deterioration in HF
are observed. Ischemic HF develops more slowly than this
model of total occlusion, and the overall mortality rate is
approximately 43%. Although coronary artery ligation is a
reliable model for inducing tissue damage that leads to HF,
it does not reflect HF development in patients. In sum, the
coronary artery ligation-induced coronary artery test model
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can be established in a robust, reproducible manner in many
species [96-98].

Temporary LAD occlusion models have been devel-
oped to induce human ischemia—reperfusion (I/R) injury.
However, results vary due to the variability observed in the
left coronary anatomical structure in mice [99]. The coro-
nary artery is ligated for 180 min and then reperfused in
the I/R method. Approximately 16% infarct area and an
LVEF of roughly 40% were formed in this method parallel
with increased LVEDP, LVESYV, and N-terminal pro-BNP
after 4 weeks from MI [100]. In a different version of these
models, a temporary occlusion is achieved by imitating
I/R, whereby the flow in the previously occluded coronary
artery bed is allowed to recover [99]. Another method used
to induce myocardial ischemia/infarction is coronary artery
embolization. For this purpose, intracoronary emboliza-
tions, thrombin, and fibrinogen are used [101]. Coronary
microembolization has been used extensively for a while
and causes a decrease in ejection fraction (EF), an increase
in LVEDP, and an increase in plasma norepinephrine lev-
els [102]. This model causes a local infarction and global
ischemia as a result of the development of the aneurysm. MI
is created by serial injections of 90-micron diameter poly-
styrene microspheres in this model’s left coronary artery.
Injections are made with a catheter inserted through the
femoral artery [103]. Approximately 20,000 microspheres
are injected into the artery with each injection. A total of 3
injections are made at 15-min intervals and repeated every
week until the desired effect is observed. It is known that
a total of 4—14 injections are usually required to obtain a
chronic HF model. Injections are stopped when the ejection
fraction (EF) is reduced to 35%. This microembolization-
induced myocardial ischemia is an irreversible model of HF
[104]. A study showed that this sheep model was stable for
6 months, and the mortality rate was shown to be between
30 and 50% [103]. The microembolization model is typically
only applied to large animals to cause HF [105, 106].

This model has several advantages:

1. Lower risk of severe inflammatory complications than
thoracotomy
2. This model is similar to the clinical situation in HF

However, it is difficult to understand the exact length and
location of coronary artery occlusion. Arrhythmias during
the experimental model may cause difficulties in interpret-
ing the biological response [107]. It seems that I/R models
were created to overcome this limitation, and transient LAD
occlusion facilitated the investigation of molecular mech-
anisms and tissue damage [108—110]. It has been shown
that ischemic injury in newborn mice is triggered by LAD
ligation and complete recovery occurs after 3 weeks. The
regenerative potential is reduced in aged mice due to the
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age-related decrease in the number of healthy cardiomyocyte
cells [111]. Interestingly, in another study, rats were studied
4, 8, and 16 weeks after coronary artery ligation. According
to the data obtained, hemodynamic and clinical signs indi-
cated cup failure in only 16-week-old rats [112]. Essential
advantages of LAD ligation include the cost and simplic-
ity of the process. In addition, electrophysiology, coronary
anatomy, physiology, and MI developmental processes in
rodents differ when compared to humans. However, this
experimental model is considered a significant disadvantage
since some studies have shown that the mortality associ-
ated with this experimental model can reach up to 70% [81].
Despite its widespread use, there are significant drawbacks
to this intervention [107]:

1. Infarctions seen in cases are relatively small (left ven-
tricular mean ~21%).

2. Major hemodynamic changes are not seen due to a large
number of pericardial collaterals.

3. Mortality rates of more than 50% are seen due to ven-
tricular tachycardia.

Recent studies have shown that the branching pattern of
coronary arteries in Lewis congenital rats is more consistent
than in other strains. LAD ligation in Lewis inbred rats has
been shown to have a lower mortality rate despite having a
more extensive infarction than Sprague Dawley rats [95].
However, it should be kept in mind that the clinical mani-
festations of chronic HF and neurohumoral changes were
not evaluated in this study. Therefore, this promising model
needs to be studied in more detail. Studies show that recov-
ery and termination processes begin faster in rats than in
humans, which requires careful interpretation of the results.
Another alternative MI model is the cryoinfarction, which
causes damage to the epicardium of mice and rats [113].
However, this model has not attracted much attention from
the scientific community and is no longer preferred. As a
result of the study, it has been shown that myocardium wall
thickness and fibrotic tissue due to infarction are less pro-
nounced in mice than in rats [114].

Another method used to induce MI involves the use of a
hydraulic occluder or ameroid ring constrictor. Procedures
begin with a left anterolateral thoracotomy followed by a
pericardial incision, while the left coronary artery branch is
exposed and the hydraulic occluder is inserted. The occlu-
sive is then inflated to cause partial stenosis or complete
obstruction. An ultrasonic flow probe is positioned distal to
the occluder to manage the degree of occlusion and record
downstream flow from the left coronary artery [115]. Simi-
larly, an ameroid ring constrictor is implanted. It will gradu-
ally shrink due to the peculiarity of the material. As a result
of this method, complete or partial narrowing will occur in
the coronary artery [116]. One of the essential factors in
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choosing a model is the variation in coronary variability
and collateral vasculature between animals. Hedstrom et al.
showed that in the region at risk, 50% infarction develop-
ment time varies significantly between species [117]. Addi-
tionally, the type of anesthesia must also be considered
when choosing a model affecting I/R [118]. HF model due
to MI can be created in rats with the cryosurgery method.
After intercostal thoracotomy, a 0.18 1.2-cm? liquid nitrogen
probe is applied to the left ventricular free wall 15 times for
20 s. Also, cryoinjury may not always induce a transmural
lesion, and it should be noted that in this case, it can heal
without fibrotic tissue forming and an aneurysm develop-
ing [119]. The cryoinjury model is reproducible and gener-
ally has a moderate resemblance to infarctions observed in
the clinic. It has some disadvantages as with other surgical
models because they are presented more acutely than clini-
cally [120]. As a result, numerous animal models allow us
to examine the effect of a drug in the field of HF. A model’s
advantages must be carefully compared against disadvan-
tages, and non-scientific factors such as cost, effort, and time
must also be considered.

Chronic rapid cardiac pacing

Dilated cardiomyopathy caused by chronic tachycardia is
a known clinical picture [121]. Whipple et al. showed that
atrial pacing above 330 beats/min can induce physical signs
of HF and cardiomyopathy due to experimental tachycar-
dia that was first shown in 1962 [122]. The experimental
model is simple and neurohumoral activation develops after
about 8 weeks. Increased left ventricular filling pressures
after 1-2 months of pacing are associated with pulmonary
wedge pressure and right atrial pressure, ascites, pulmonary
congestion, and reduced EF [123]. After pacing cessation,
hemodynamic changes usually correct within 4 weeks. This
is a unique feature of this model [124]. The interaction
between HF and arrhythmia is well established to increase
the risk of developing HF and morbidity or mortality [125].
Sudden cardiac death is one of the major causes of episodes
in HF [126]. This situation can develop after arrhythmia. For
example, arrhythmias such as atrial fibrillation significantly
increase the risk of HF. Experimental models of arrhythmia-
induced HF are characterized by chronic rapid pacing peri-
ods indicated by the pacemaker’s anatomical location [127,
128]. In tachycardia models, the pacemaker is implanted
in the right or left ventricle. The right ventricle was paced
at a rate ranging from 180 to 240 bpm, causing congestive
HF within 3 to 4 weeks [129]. While the right atrium was
paced at a rate of 400 bpm, the left and right ventricles were
dilated without hypertrophy [130]. In dogs, pigs, and sheep,
128-130 rapid pacing of the atrium or ventricle for at least
3—4 weeks is known to cause progressive HF and is partially
reversible upon cessation of stimulation [131].

According to experimental studies on dogs, it is known
that atrial pacing above 330 beats/minute can cause symp-
toms of HF. In general terms, this model has been shown in
creatures such as dogs, pigs, sheep, and rabbits [132]. It is
known that the pacing-induced HF model is also suitable
for rodents. The rapid right ventricular pacing model has
been shown to cause a progressive biventricular dilatation,
including decreased cardiac output and increased periph-
eral vascular resistance and neurohumoral activation within
a few weeks [133]. Tachycardia causes a decrease in sys-
tolic, diastolic function and cardiac output. In addition, left
ventricular end-diastolic pressure, mean arterial pressure,
pulmonary artery pressure, and wall stress increase in this
model approximately 24 h later. Ventricular dysfunction is
seen after 3—-5 weeks and results in HF. However, no sig-
nificant changes are observed in the structure, physiology,
and hypertrophy of the left ventricle. Indeed, cardiac widen-
ing is accompanied by very little cardiac hypertrophy [134,
135]. Therefore, the chronic pacing tachycardia experimen-
tal model has been used to generate dilated cardiomyopathy
and chronic HF.

In the neurohumoral activity, early sympathetic activa-
tion and reduced parasympathetic activity are seen. Atrial
natriuretic peptide and brain natriuretic peptide levels in
plasma increase before damage to the left ventricle. This
was thought to be a protective mechanism, but exogenous
atrial natriuretic peptide administration did not improve
hemodynamic and renal responses [136]. It has been shown
that cytokines such as endothelin-1 and TNF-a increase in
plasma in HF induced by this model [137]. HF created with
this model develops due to left ventricular dysfunction simi-
lar to HF in humans. Accordingly, catecholamines’ plasma
levels first increase in the early period and then reach the
plateau [137]. Increases in plasma endothelin levels, beta-
receptor density changes, and function are similar to patients
with HF [138]. However, increased levels of endothelin and
renin in plasma are seen in advanced stages of left ventricu-
lar dysfunction [139]. This experimental model has some
essential features in terms of being similar to HF. First,
major surgical traumas such as thoracotomy and pericar-
diectomy that may affect hemodynamics are not required.
Second, HF occurs in as little as a few weeks in this experi-
mental model, allowing sequential observations. Third, cali-
bration can be achieved using a pacemaker to stimulate the
heart rate. Fourth, rapid pacing leads to the emergence of
well-defined signs of biventricular failure with cardiomeg-
aly, hypoperfusion, pulmonary congestion, cachexia, and
ascites. Finally, the HF model created by this experimental
model is reversible [136, 140].

This experimental model is characterized by increasing
cardiac volume with fluid retention, increasing catechola-
mines, atrial natriuretic peptide, renin-angiotensin, aldos-
terone, endothelin-1, and TNF-a [141]. Due to chronic
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tachycardia, calcium abnormalities, and deterioration of the
extracellular matrix through the activation of myocardial
matrix, metalloproteases, gelatinase, and other cytokines
are seen [142-145]. After pacing for 1 week, apoptosis is
seen due to myocyte damage. Both the heart’s systolic and
diastolic function recovered within approximately 2—3 weeks
after the cessation of stimulation [71].

As a result of all these reasons, plasma markers of neu-
rohormonal activation in pacing models are very similar to
patient populations. In terms of calcium balance, the sar-
colemmal Na/Ca exchanger is known to increase, while
SERCA levels are lower [141, 145, 146]. As a result of the
analyses performed, it was shown that there was a signifi-
cant loss in myocyte count, and this was thought to be the
main component of cardiomyopathy. Increased p5S3 DNA
binding activity to the Bax promoter, increased Bax protein
expression, and decreased Bcl-2 have been shown in pacing-
induced HF models [147].

The most important advantages of the model are its pre-
dictability, reproducibility, and resemblance to the hemo-
dynamic and mechanical phenotype of HF due to dilated
cardiomyopathy in humans. One of the essential advantages
of this model is that the model is simple and requires simple
instrumentation. This HF model closely resembles human
HF due to dilated cardiomyopathy in terms of mechanical,
structural, neurohormonal, and myocyte functional changes
[11, 131]. However, the return of mechanical and neurohor-
monal changes within a few days after pacing is stopped is
a limitation of this model. Limitations include the absence
of myocardial hypertrophy and fibrosis and the reversibility
of this myopathy [148]. Approximately 48 h after pacing is
stopped, hemodynamic variables return to normal, and left
ventricular EF normalizes after 1-2 weeks. During the first
hours after stopping pacing, the circulating atrial natriuretic
peptide level drops by 60%. Unlike hemodynamic dysfunc-
tion and neurohormonal activation, ventricular dilation con-
tinues even after pacing is terminated. Another limitation
is that events due to mechanical and electrical dyshomo-
geneity of the heart due to the homogeneity of myocardial
damage induced by rapid pacing can not be shown in this
model. Unlike in humans, hypertrophy does not occur in the
HF model created by chronic rapid pacing. The absence of
fibrotic tissue contributes to ventricular remodeling. There-
fore, it may not reflect all the features of HF [132]. The
enlargement of both ventricles and mitral valve annulus
shown in the experimental model has been associated with
valve insufficiency [129].

Rapid pacing models have been used to evaluate intracel-
lular and extracellular changes and develop new pharmaco-
logical treatment methods. Rapid pacing models have also
been used to assess the different surgical procedures required
for HF [149, 150]. It is predicted that this experimental HF
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model, which is used in many different animal species, may
help to elucidate the mechanisms related to HF in the future.

Pressure overload

Chronic left ventricular pressure-overload is an experimental
model in mice and rats that causes HF that mimics adapta-
tions associated with hypertension and aortic valve steno-
sis in patients [151-154]. Although the pressure-overload
model is used more in rodent studies, they are less used in
large animal experiments than ischemic models [72, 155,
156]. Similar to rodents, methods such as aortic taping
can also be applied to large animals [157]. Aortic constric-
tion causes an increase in pressure in the left ventricle and
hypertrophy. While banding does not initially significantly
affect the contraction, gradually, the constriction’s relative
intensity increases as the animal grows, resulting in cardiac
hypertrophy [155].

Overpressure-induced left ventricular hypertrophy and
HF have been produced in rodents by transverse aortic con-
striction (TAC) and abdominal aortic constriction (AAC)
[12, 158, 159]. Rats exposed to pressure-overload for more
than 8 weeks have impaired systolic function, fractional
shortening, and EF values. Significant increases in left ven-
tricular posterior wall thickness, left ventricular inner size,
and ventricular septal wall-size indicate concentric cardiac
hypertrophy [10, 143]. A decrease in E, A wave, and E/A
ratio on echocardiography indicates diastolic dysfunction
[160]. All results show a significant increase in left ven-
tricular end-diastolic dimension, left ventricular end-systolic
dimension, and left ventricular posterior wall thickness.
Also, a 60% reduction in the maximum pressure develop-
ment rate (+dP/dt) indicates diastolic dysfunction [154].
Various surgical approaches have been developed to exam-
ine HF caused by chronic overpressure on the left ventricle
and to mimic the protection mechanisms associated with
hypertension in patients. These experimental models cause
significant macroscopic and microscopic hypertrophy, but
systolic dysfunction appears to progress much more slowly
than rodent models [161].

The development of animal models with preserved EF
is difficult due to the complexity of the pathophysiology of
the disease [162, 163]. Pressure-overload is directly related
to the development of left ventricular hypertrophy seen in
HF. Myocardial hypertrophy is a protective mechanism
that occurs due to increased myocardial cell tension [164].
Although it is beneficial, it may cause the myocardium to
decrease its elasticity and become fibrotic after a certain
level. Also, it gradually surpasses all post-loading protec-
tion mechanisms. Then, despite the left ventricle’s enlarge-
ment, the load reserve is depleted, and the basal contraction
becomes incompatible with the post-load level [165].
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Pressure-overload usually occurs in conditions such as
left ventricular outlet obstruction such as hypertension or
aortic stenosis. As a result of these experimental models, it
has been shown that hypertrophy and fibrotic tissue develop
in the myocardium of experimental animals. Also, impaired
relaxation, increased left ventricular stiffness, and left atrial
remodeling were also observed [166]. According to the
Framingham study, left ventricular hypertrophy is seen in
many serious diseases such as sudden cardiac death, HF,
myocardial infarction, and stroke. Therefore, left ventricu-
lar hypertrophy is considered to be an independent cardiac
risk factor. However, reverse remodeling with normaliza-
tion of the left ventricular mass can be expected after treat-
ment. Reverse remodeling is determined clinically as a
result of echocardiographic studies [167]. Despite scientific
advances, cellular mechanisms in myocardial tissue are not
clearly known. The experimental model of pulmonary artery
banding induces right ventricle overpressure. The supraval-
vular aortic stenosis model is widely used in rats.

New experimental models are being developed to induce
metabolic diseases in large animals to induce HF with pre-
served ejection fraction [157]. Transverse aortic stenosis in
mice was first described by Rockman et al. [168]. Today,
it has been the most used experimental model to examine
HF caused by excessive left ventricular pressure. The TAC
model leads to concentric hypertrophy, interstitial fibrosis,
increased left ventricular stiffness, and eventually systolic
HF due to increased pressure in the left ventricle [169, 170].
The TAC model causes concentric cardiac hypertrophy and
subsequent systolic HF by increasing left ventricular after-
load. Evaluation of the TAC procedure and comparison with
the control group is done by doppler [171]. The TAC model
has enabled discovering the cause of many fundamental
pathological changes seen in HF, especially left ventricular
remodeling [159, 172, 173]. Among this model’s advantages
are the lower mortality rate (5—-10%) and the occurrence of
left ventricular hypertrophy [132]. Another advantage of
this experimental model is that it can manipulate the degree
of overpressure load by changing the contraction intensity
[174]. It is also an essential advantage that thoracic aortic
constrictions resemble those in humans, especially aortic
stenosis [175]. The major disadvantage of the TAC proce-
dure is that it is dependent on the experimenter. Repeating
the experiment is a complicated and technically demand-
ing model. It also has the disadvantage of large variability
between individuals [171].

As a result of studies conducted in rats, it was shown that
AAC initially caused an increase in contractility due to the
sympathetic nervous system [176]. Only after 8§ weeks of
concentric hypertrophy becomes apparent, as well as systolic
and diastolic dysfunction [175]. The hypertrophic response
and progression to HF resulting from the TAC model depend
on sex, weight, age, and genetics. Approximately 1 month

after adrenal AAC in mice, cardiac hypertrophy is seen, and
the degree of this narrowing causes HF after 15-21 weeks
[177]. Also, as a result of the studies, the mortality rate of
TAC was found to be between 6 and 45%, and it was found
to be very variable [178, 179].

As a result of recent developments, the double loop-clip
technique has been developed. They measured the lumen
diameter of the middle aortic arch during preoperative echo-
cardiography to calculate the inter-knot span of the suture
for the double loop-clip technique modified by Merino et al.
This new procedure reduced the mortality rate in experi-
mental animals and resulted in reproducible aortic stenosis
[180]. The application of this model results in marked left
ventricular hypertrophy and HF associated with increased
B-myosin heavy chains. Also, a decrease in EF is observed.
The hemodynamic function is associated with decreased
sarco(endo)plasmic reticulum calcium ATPase (SERCA)
expression, glucose uptake, reduced amount of adenosine
in the coronary artery, and increased cardiomyocyte micro-
tubule density [79, 145]. A decrease in SERCA expression
in the left ventricle was observed 20 weeks after the experi-
mental model. This suggests that SERCA may be a marker in
the process between hypertrophy and HF [63, 181]. In terms
of changes in the neurohormonal level, when hypertrophy
occurs, plasma catecholamine levels are normal, and local
myocardial RAS activation is increased [182]. The num-
ber of ANP increases due to HF. Also, as a result of the
studies performed, it was determined that the PTHrP/PTH
bioregulatory system, which is locally expressed in the ven-
tricular myocardium, is associated with pressure-overload
hypertrophy [183]. It has been shown that not only myosin
heavy chain and atrial natriuretic peptide (ANP), but also
cytokines such as interleukin-1, interleukin-6, and TNF-«
are increased in HF induced by this experimental model
[184]. Apoptotic processes, collagen, and matrix remodeling
are seen in this experimental model. Also, Ca*" is an ion
required for cell growth and the continuation of vital cell
functions. In response to growth stimuli, the cytosolic Ca**
level is increased, and calcineurin is indirectly activated.
These changes also cause dephosphorylation of transcription
factors, which in turn regulates the expression of specific
genes. Although not well known, calcineurin is thought to be
a mediator of myocardial hypertrophy [181]. Changes in the
nitric oxide (NO) pathway in pressure-overloaded heart tis-
sue are important [185]. Studies have shown that sildenafil,
a phosphodiesterase-5 inhibitor, reduced the left ventricular
hypertrophy in the TAC model created in mice [186, 187].
Also, exogenous administration of the NO synthase cofactor
(BH4) improved this left ventricular hypertrophy in mice
[188]. Aortic constriction has been demonstrated in both the
infrarenal and adrenal position in rats.

The experimental model of aortic constriction causes
hypoperfusion, hypertension, and left ventricular hypertrophy.
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The AAC model contributes to the slower development of
HF [160, 189]. When aortic insufficiency is combined with
aortic narrowing, HF develops more rapidly. Ezzaher et al.
reported that aortic insufficiency is produced by destroying
the aortic valve with a catheter introduced through the carotid
artery. After 14 days, aortic narrowing was performed just
below the diaphragm. HF developed approximately 1 month
after the first surgical procedure [190]. Although the protein
and mRNA levels of the Na*/Ca®* exchanger increased sig-
nificantly in the HF model, the Ca**/ATPase level in the sar-
coplasmic reticulum did not change significantly [79]. This
model mimics the changes in myocardial function observed
in the late human myocardium. Therefore, this experimental
model may be very suitable for studying HF after hypertro-
phy. Hyperreninemia develops in less than 4 days as a result
of adrenal aortic coarctation. After several weeks, ventricular
ACE activity may return to typical values, which may be
associated with increased hypertrophy and normalization
of wall stress [191]. As a result of this experimental model,
left ventricular hypertrophy and HF were associated with
increased f-myosin heavy chain mRNA and atrial natriuretic
factor mRNA. Interestingly, after 20 weeks of banding, a
decrease in SR-Ca2*/ATPase mRNA levels was seen by the
polymerase chain reaction (PCR), while not in the group that
did not develop HF. These data indicate that the decrease in
SR-Ca2*/ATPase mRNA levels may indicate compensatory
hypertrophy’s transition to failure in these animals [181].
During compensated hypertrophy, although catecholamine
levels are normal, there is a local myocardial increased renin-
angiotensin system. Also, with the development of HF, cat-
echolamine levels in plasma may increase [192]. Therefore,
this model should be preferred to examine the pathophysi-
ological changes in the transition from hypertrophy to HF at
the myocardial level. It is also a significant advantage that it
can elucidate the molecular mechanisms involved in reverse
remodeling of left ventricular hypertrophy [193].

Volume overload

The HF model induced by volume overload can be created
by many different methods such as the arteriovenous fis-
tula, aortic valve insufficiency, or destruction of the mitral
valve [154, 194, 195]. It can cause HF in hyperdynamic
conditions such as hyperthyroidism, beriberi (vitamin B1
deficiency), and severe anemia [154]. A shunt is created
surgically to induce HF by causing an increase in volume.
The shunt is usually formed between the aorta and the vena
cava, femoral artery and vein, carotid artery, and internal
jugular vein. Mice and rats are generally used in the HF
model induced by volume overload [26]. Although HF
progression varies, these models investigate disorders in
fluid balance, electrolytes, and hormones common in HF.
Increasing the heart’s volume load causes an increase in left
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ventricular end-diastolic pressure and results in expanding
all the chambers in the heart. Although the systolic function
is not impaired until the last stage of HF, the heart enlarges,
and eccentric hypertrophy develops [196]. A catheter creates
aortic valve perforation and chronic severe aortic regurgita-
tion in a study on rabbits. Although eccentric left ventricular
hypertrophy is observed first, it is often followed by systolic
dysfunction [197]. However, it is difficult to induce aortic
regurgitation in an experimentally reproducible manner,
so most animal models have focused on inducing mitral
regurgitation [198]. While arteriovenous fistula formation
is a common volume overload model in small animals, it is
rarely used in large animal models [199].

Surgical or percutaneous cutting of the mitral valve
chordae tendineae causes mitral regurgitation and leads to
chronic HF. However, this model is known to have a high
mortality rate of up to 50% [200]. The reason for high mor-
tality is that the degree of experimental HF created is dif-
ficult to control. One method of controlling this procedure
is to place a graft between the left ventricle and the left
atrium [201]. Although implantation is technically difficult,
clamping the graft allows the degree of HF to be controlled.
Inferior vena cava filters can be placed to keep the degree of
insufficiency under control in the experimental HF model
created due to mitral valve insufficiency [201]. Mitral valve
insufficiency can also be observed in patients with postmyo-
cardial infarction, and this circumstance is a poor prognosis.
This model is usually done in sheep and pigs by infarctions
the posterior wall of the left ventricle. The prognosis of
mitral valve insufficiency after ischemia is quite poor [202].

Arteriovenous fistula models are another HF model used
to create volume-overload HF in large animals [203]. The
degree of shunt and proximity to the heart are among the
factors that determine the severity of HF. The internal jugu-
lar vein and left carotid artery are exposed in the cervical
arteriovenous shunt procedure. Approximately 30 min after
the opening of the shunt, a 40% increase in cardiac output
is observed. The left ventricular end-diastolic diameter and
left ventricular end-diastolic volume increase after 8 weeks
[132]. Although the arteriovenous fistula created between
the carotid artery and the jugular vein caused an increase
in left ventricular end-diastolic volume by approximately
50%, it did not cause a change in the end-diastolic pressure
value [204]. Pinsky et al. performed a shunt between the
infrarenal aorta and the superior vena cava to induce volume
overload in 1979, whereas Tessier et al. have also combined
this method with doxorubicin administration with a similar
approach in goats [199].

Apart from this, mitral valve regurgitation was induced
in dogs causing left ventricular enlargement. While left
ventricular mass increased, there was not much change in
the right ventricle. Asymmetric left ventricular dilatation
was observed. Septum increased its contribution to the left
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ventricular stroke volume [205]. Mitral valve insufficiency
models do not fully reflect HF. These models do not have
pathophysiological changes in the myocardial structure due
to ischemia or hypertrophy and are observed in congestive
HF. The most important advantage of this model is evaluat-
ing the aperture of the shunt by palpating the neck. Also,
ultrasound can be used for this procedure. A simple tech-
nique, the needle technique, is used to create an aortocaval
shunt [206]. Compensated hypertrophy occurs approxi-
mately 2-8 weeks after the aortocaval fistula is formed.
Left ventricular end-diastolic pressure increases around five
times in the first week [206]. Arteriovenous shunts cause
HF due to dilated cardiomyopathy by induction of volume
overload in rodents. Femoral arteriovenous fistula causes
HF, although it has a high mortality rate (over 25%) [207].
Also, the HF model’s essential advantages created with an
aortocaval shunt are low mortality rate, simple, rapid, and
no need for thoracotomy [208]. Studies in rats showed that
cardiac hypertrophy developed and left ventricular diastolic
pressure increased 4 weeks after shunt induction [209].

Volume overload resulting from aortocaval fistula causes
a decrease in left ventricular function. Subsequently, hyper-
trophy develops as a mechanism of protection, leading to
near-normal function at 4 weeks [210]. The decompensated
hypertrophic HF and decreased systolic and diastolic func-
tion are seen approximately 8—16 weeks after the surgical
procedure [211]. After a large aortocaval fistula is opened,
severe volume overload occurs. Initially, the left ventricular
function is suppressed, and hypertrophy develops as a pro-
tective mechanism. Hemodynamic functions are almost the
same as normal after 4 weeks [212]. It has been determined
that in about 7% of cases, the shunt closes spontaneously,
so the fistula opening must be confirmed at the end of the
experiment. It is known that left ventricular end-diastolic
pressure increase is caused only by a large shunt and devel-
ops after at least 4 weeks [213].

Aortic valve insufficiency also causes HF as a result of
increased volume in rats [214]. An increase in beta-recep-
tor density was observed in heart tissues with HF in the
16th week. Progressive neurohormonal activation derived
from the chronic mitral valve regurgitation model allowed
investigation of the effects of angiotensin II type 1 and beta-
receptor blockade on left ventricular failure [215]. For exam-
ple, Tsutsui et al. showed in a study performed by bridges
that the beta-receptor blockade provides an improvement in
contractile function in the left ventricle compared to the con-
trol group [216]. It was observed that basal adenylyl cyclase
activity increased, and beta-adrenoceptor signal transduc-
tion was similar to hypertrophy by induced volume overload
[210]. According to recent studies, it has been shown that
the synthesis of ANP expression increases due to increasing
volume rather than pressure [217]. Also, induced myocyte
elongation, changes in myofilament structure, and decreases

in myocyte contractile function were observed [218]. It has
been shown that SERCA2a expression can prevent systolic
and diastolic dysfunction and left ventricular remodeling
[219]. Volume overload in mice causes minimal apoptosis
in the absence of pathological remodeling than the TAC
model [26]. Surgical-induced HF models are presented in
the Table 2.

Drug-induced

Drugs induce HF model in different animals to study the
etiology of HF that includes chemotoxicity, hypertension,
kidney damage, and liver damage [226, 227]. Drug-induced
HF models are presented in the Table 3. In summary, HF can
be caused by the administration of chemical agents. How-
ever, in general, the advantages and disadvantages should be
evaluated carefully, and the appropriate experimental model
should be selected.

Hypertension

Hypertension is one of the essential conditions leading to
diastolic HF in humans [144, 240]. Hypertension causing
extensive inflammation and metabolism changes can lead
to myocardial stiffness and diastolic dysfunction [241, 242].
Ventricular dysfunction develops due to the proliferation of
fibroblasts, hypertrophy of vascular smooth muscle cells,
and pathological accumulation of interstitial collagen [143,
243]. Hypertension-induced HF models are presented in the
Table 4.

High fat diet + L-NAME

It is known that the comorbidities that increase the risk
of HFpEF are diabetes, obesity, and hypertension [249].
Recently, Hill et al. proposed a “two-hit” mouse model
of HFpEF that mimics the concomitant metabolic and
hypertensive stress in mice [250]. In this model, a high-
fat diet (HFD) induces metabolic stress (obesity, glucose
intolerance, and metabolic syndrome), and a drug called
Nw-nitro-1-arginine methyl ester (L-NAME), which inhib-
its nitric oxide synthase, also causes hypertension. This
model recapitulates numerous systemic and cardiovascu-
lar features of HFpEF, including impaired cardiac filling,
cardiac hypertrophy, cardiac fibrosis, decreased myocar-
dial capillary density, pulmonary hyperemia, decreased
exercise tolerance, myocardial capillary rarefaction, and
increased levels of inflammatory markers [250]. Diastolic
dysfunction was associated with cardiac hypertrophy and
fibrosis [251]. This experimental model uses 60% kilo-
calories from fat (lard) and drinking water with 0.5 g/L of
L-NAME [252].
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