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Abstract
Almost half of all heart failure (HF) disease burden is due to HF with preserved ejection fraction (HFpEF). The primary 
symptom in patients with HFpEF, even when well compensated, is severe exercise intolerance and is associated with their 
reduced quality of life. Recently, studies showed that HFpEF patients have multiple skeletal muscle (SM) abnormalities, and 
these are associated with decreased exercise intolerance. The SM abnormalities are likely intrinsic to the HFpEF syndrome, 
not a secondary consequence of an epiphenomenon. These abnormalities are decreased muscle mass, reduced type I (oxida-
tive) muscle fibers, and reduced type I-to-type II fiber ratio as well as a reduced capillary-to-fiber ratio, abnormal fat infiltra-
tion into the thigh SM, increased levels of atrophy genes and proteins, reduction in mitochondrial content, and rapid depletion 
of high-energy phosphate during exercise with markedly delayed repletion of high-energy phosphate during recovery in mito-
chondria. In addition, patients with HFpEF have impaired nitric oxide bioavailability, particularly in the microvasculature. 
These SM abnormalities may be responsible for impaired diffusive oxygen transport and/or impaired SM oxygen extraction. 
To date, exercise training (ET) and caloric restriction are some of the interventions shown to improve outcomes in HFpEF 
patients. Improvements in exercise tolerance following aerobic ET are largely mediated through peripheral SM adaptations 
with minimal change in central hemodynamics and highlight the importance of targeting SM to improve exercise intoler-
ance in HFpEF. Focusing on the abnormalities mentioned above may improve the clinical condition of patients with HFpEF.
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Introduction

Heart failure (HF) is a known cause of significant mortality 
and morbidity worldwide in middle-aged and older adults. 
In the USA, the lifetime risk of HF is estimated to be 1 
in 5 at age 40 [1], and is projected to increase by 46% by 
2030 [2]. Almost half of all HF disease burden is due to HF 
with preserved ejection fraction (HFpEF) [2]. In the high-
est age decile (≥ 90 years old), nearly all patients with HF 

have preserved EF. HFpEF is a clinical syndrome associated 
with poor health-related quality of life (HRQOL), substantial 
healthcare resource utilization, and mortality, in large part 
related to high rates of hospitalizations in patients with HF 
[3]. After HF hospitalization, the 5-year survival of HFpEF 
is a dismal 35%, worse than many cancers [4], although 
HFpEF was initially considered a hemodynamic disorder 
characterized by hypertension, cardiac hypertrophy, and 
diastolic dysfunction, which is now recognized as a systemic 
syndrome involving the heart, lungs, kidneys, skeletal mus-
cle (SM), adipose tissue, and vascular system [5].

The primary symptom in patients with HFpEF is 
reduced exercise tolerance (peak exercise oxygen uptake, 
VO2peak) and is associated with their reduced HRQOL [6, 
7]. In addition, declines in VO2peak in older HF patients 
are compounded by comorbidities, aging, sarcopenia, and 
myosteatosis (increased muscle fat infiltration), malnutri-
tion, and physical inactivity [6–8]. VO2peak is defined as the 
highest achievable rate at which oxygen can be transported 
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from air to tissues and utilized by the mitochondria dur-
ing maximal exercise. In accordance with the Fick principle 
[VO2 = Cardiac output (CO) × Arterial-venous oxygen differ-
ence (a-vO2Diff)], the decreased VO2peak in HFpEF may be 
due to abnormalities in convective and diffusive O2 transport 
and/or impaired SM extraction and utilization [9].

It has traditionally been assumed that reduced exercise 
CO was the primary factor limiting exercise intolerance in 
HFpEF. Later, other investigators found that the blunted 
CO was secondary to chronotropic incompetence (CI) [7, 
10, 11]. Indeed, approximately 30 to 50% of patients with 
HFpEF are thought to have CI manifested by a lower than 
predicted maximal HR during symptom-limited exercise 
[7, 10, 11]. Although VO2peak has been observed to cor-
relate with both changes in CO and a-vO2Diff, recent stud-
ies showed that reduced O2 extraction accounts for at least 

50% of the reduction in VO2peak and is a stronger inde-
pendent predictor of VO2peak than exercise CO (Fig. 1) 
[6, 12, 13]. Moreover, Haykowsky et al. has shown that the 
improvement in peak a-vO2Diff accounted for the nearly 
all of the increase VO2peak following exercise training 
(ET) [14]. The mechanisms responsible for this impaired 
ability to augment a-vO2Diff during peak exercise might 
relate to impaired diffusive oxygen transport due to periph-
eral/microvascular dysfunction and/or SM abnormalities 
that result in impaired oxygen extraction and utilization 
(Fig. 2) [6, 9, 12–21].

This review combines current clinical knowledge and 
fundamental biological mechanisms to address the essential 
and emerging issue of SM abnormalities in HFpEF. We will 
briefly discuss the role of ET and novel treatment strategies 
to improve SM morphology and function.

Fig. 1   Comparison at seated rest, 12  W, 25  W, and peak exercise 
between HFpEF patients and HCs. A Oxygen consumption, B arte-
riovenous oxygen content difference, C heart rate, D cardiac output, 
E systemic vascular resistance (SVR), and F systolic blood pres-
sure. All variables adjusted for sex (*p < 0.05). The p-value at the 

upper left of each panel represents the group-by-intensity interac-
tion. Dashed lines represent healthy controls (HC), and solid lines 
represent patients with heart failure with preserved ejection fraction 
(HFpEF) (reproduced from JACC with permission. J Am Coll Car-
diol. 2011; 58:265–74)
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Impaired SM blood flow in HFpEF

SM is one of the largest organs in the human body, account-
ing for approximately 40% of total body mass, and acts as a 
major site for protein storage and glucose disposal. Muscle-
specific blood flow can increase almost 100-fold from rest 
to maximal exercise [22, 23]. The overall regulation of SM 
blood flow is achieved through sympathetic-mediated redis-
tribution of blood from non-exercising regions to the work-
ing muscles coupled with metabolic-mediated vasodilation 
“autoregulation” in the exercising muscles [24, 25]. Within 
SM, blood flow regulation and oxygen delivery result from 
integrating several stimuli, including the mechanical effects 
of contraction, local metabolic and endothelium-derived 
substances, vasoactive factors associated with erythrocytes, 
and the sympathetic nervous system.

Prior animal studies showed that obese-HFpEF rats dem-
onstrated an abnormal leg blood flow response to contrac-
tions with fiber type-specific structural capillary loss [26, 
27]. Supporting this finding, clinical studies found that non-
invasive (ultrasound) measurements of leg blood flow and 
vascular conductance are markedly decreased in patients 
with HFpEF during exercise [28–31]. This suggests that 
impaired autoregulation in the exercising SM vasculature 

may play a key role in exercise intolerance. However, abnor-
mal blood flow response to exercise is inconsistent in HFpEF 
studies [15, 21, 32, 33]. This may be due to differences in 
the muscles studied or different measurement techniques or 
heterogeneity.

Additionally, Houstis et  al. found that the deficit in 
a-vO2Diff was related to a 36% reduction in the patient’s SM 
diffusion capacity, and improved diffusion capacity resulted 
in increased VO2peak [15]. Regional vasodilation in SM is 
mediated in part by nitric oxide (NO) and prostaglandin-
induced vasodilation. Patients with HFpEF have impaired 
NO availability, particularly in the microvasculature, which 
might contribute to SM diffusion capacity (Fig. 3) [7, 34, 
35]. Borlaug et al. found that systemic vascular conduct-
ance and microvascular reserve were positively related to 
VO2peak in HFpEF [7]. Similarly, microvascular endothe-
lial dysfunction was an independent predictor of poorer 
prognosis, mainly readmission, in patients with HFpEF 
[36]. A consequence of the blunted microvascular reserve 
is that it may be associated with decreased diffusive oxy-
gen transport to the exercising muscle, which would reduce 
exercise tolerance. Indeed, peripheral endothelial dysfunc-
tion might impair matching of perfusion to regional demand 
in SM microcirculation [37].

Fig. 2   Potential causes for the skeletal muscle abnormalities in 
HFpEF. HFpEF, heart failure with preserved ejection fraction; RAAS, 
renin angiotensin aldosterone system; NO, nitric oxide; GH, growth 
hormone; ROS, reactive oxygen species; cGMP, cyclic guanosine 

monophosphate; PKG, protein kinase; SM, skeletal muscle; VO2, oxy-
gen consumption; ATP, adenosine triphosphate; Pcr, phosphocreatine
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In addition, Kitzman’s group reported that compared with 
healthy controls (HCs), older HFpEF patients had a reduced 
capillary-to-fiber ratio (1.35 ± .32 versus 2.53 ± 1.37, 
p = .006) (Fig. 4) [18] and were a significant independent 
predictor of VO2peak (partial r = .34, p = .02). Capillary 

rarefaction disrupts the microvascular oxygenation dynam-
ics in SM, and one of the mechanisms that could contribute 
to such rarefaction is impaired NO-mediated vasodilation 
[38, 39]. Of note, the reduced microvascular density in SM 
in older HFpEF patients matches a similar finding in cardiac 

Fig. 3   Role of nitric oxide in skeletal muscle autoregulation. eNOS, 
nitric oxide synthase; NO, nitric oxide; sGC, soluble guanylate 
cyclase; GTP, guanosine-5′-triphosphate; cGMP, cyclic guanosine 

monophosphate; HFpEF, heart failure with preserved ejection frac-
tion; O2-, superoxide; ONOO-, peroxynitrite

Fig. 4   Relationship of capillary-to-fiber ratio (A) and percentage of 
type I muscle fibers (B) with peak O2 uptake (VO2) in older patients 
with heart failure with preserved ejection fraction (■) and age-

matched healthy control subjects (▲) (reproduced from Heart Failure 
Clinic with permission. Heart Fail Clin. 2017; 13: 485–502)
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muscle as reported by Mohammed et al. [40]. If a systemic 
process is responsible, then adverse effects on striated mus-
cle in both cardiac and SM compartments would be expected 
[41]. In addition, HFpEF patients are commonly obese. The 
obligate perfusion to excess adipose tissues might diminish 
proper flow matching to metabolism, contributing to a lower 
peak a-vO2Diff [42, 43].

Abnormalities in SM mass and composition

Most of the oxygen consumed during exercise occurs 
in the active muscles; therefore, a loss in metabolically 
active tissue (sarcopenia) may contribute to exercise 
intolerance in HFpEF patients. Animal models of HFpEF 
(hypertensive or cardiometabolic) have shown decreased 
muscle mass [26, 27]. A recent cardiometabolic obese-
HFpEF rat model induced multiple SM alterations in 
the rat hindlimb, including impaired muscle mechanics 
related to shortening velocity, fiber atrophy, and the cap-
illary loss that implies a perfusive oxygen delivery limi-
tation [26]. Haykowsky et al. measured lean body mass 
and VO2peak in older HFpEF patients and age-matched 
HCs using dual-energy X-ray absorptiometry and maximal 

exercise testing [17]. Older HFpEF patients had signifi-
cantly reduced total and lean leg mass and decreased 
VO2peak indexed to lean body mass versus HCs. Also, 
the change in VO2peak with increasing percent leg lean 
mass was blunted in HFpEF compared to HCs (the slope 
of the relationship of peak VO2 with percent leg lean 
mass, HFpEF (11 ± 5 ml/min) versus HCs (36 ± 5 ml/
min; p < .001)), suggesting that SM hypoperfusion or 
impaired O2 utilization by the active muscles may play an 
important role in limiting exercise performance in older 
HFpEF patients. Haykowsky et al., using phase-contrast 
magnetic resonance imaging, extended these results by 
directly characterizing thigh muscle composition and 
found that older patients with HFpEF had increased thigh 
intramuscular fat (IMF), whether expressed as absolute 
area or as a proportion of the thigh compartment (TC) 
despite the similar amount of subcutaneous fat. Further-
more, the ratio of IMF/SM was increased, and both IMF 
area (partial r =  −.51, p = .002) and IMF/SM ratio (partial 
r =  −.45, p = .006) were significant independent predictors 
of peak exercise VO2 (HFpEF versus HC group, IMF area 
(35.6 ± 11.5 versus 22.3 ± 7.6 cm2, p = .01), percent IMF/
TC (26 ± 5 versus 20 ± 5%, p = .005), and the ratio of IMF/
SM (.38 ± .10 versus 0.28 ± .09, p = .007)) (Fig. 5) [20]. 

Fig. 5   Magnetic resonance imaging axial image of the mid-thigh in a patient with heart failure with preserved ejection fraction (HFpEF) and 
healthy controls (HC) ( reproduced from Heart Failure Clinic with permission. Heart Fail Clin. 2017; 13: 485–502)
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Increased myosteatosis is inversely related to the mito-
chondrial density and suppresses mitochondrial biogenesis 
[44]. Weiss et al. also found markedly increased inter-
muscular adipose tissue in HFpEF compared to HF with 
reduced ejection fraction (HFrEF) patients (SM fat frac-
tion was increased almost threefold in HFpEF patients as 
compared to HCs, in contrast, nonsignificantly increased 
in HFrEF patients) [45].

Myosteatosis may reduce VO2peak in patients with HFpEF 
through several mechanisms described previously. Heinonen 
et al. using positron emission tomography found that adipose 
tissue blood flow adjacent to the active muscles increased sev-
enfold during continuous isometric knee-extension exercise 
in nonobese younger healthy sedentary women [46]. Inter-
estingly, Zamani et al. recently found that body composition 
(measured by whole-body DEXA), particularly the degree 
of adiposity, was correlated with a-vO2Diff, with increasing 
fat associated with decreased a-vO2Diff (correlation coeffi-
cient − .61. p < .001) [21]. Thus, increased thigh IMF in older 
patients with HFpEF may “steal” the blood usually delivered 
to the active muscles during exercise, thereby reducing oxy-
gen delivery to active muscles. Adipose within the SM is also 
metabolically active and can impair oxidative metabolism and 
mitochondrial function. Inflammatory cytokines produced by 
adipocytes also have direct catabolic effects on SM [41, 44].

SM is divided into two broad types based on fiber types—
type I (slow-twitch “oxidative”) and type II (fast-twitch “gly-
colytic”) muscle fibers. At the microscopic level, SM biop-
sies (vastus lateralis muscle) from HFpEF patients showed a 
reduced percentage of type I fibers and reduced type I-to-type 
II fiber ratio as well as a reduced capillary-to-fiber ratio (in 
HFPEF versus HC patients, the percentage of type I fibers 
(39.0 ± 11.4% versus 53.7 ± 12.4%, p < .001), type I-to-type II 
fiber ratio (.72 ± .39 versus 1.36 ± .85, p = .001)) (Fig. 4) [18]. 
The lower type 1 fibers correlate to decreased VO2peak (par-
tial r = .40, p = .004). Similarly, recently, Zamani et al. identi-
fied a marked difference in myofibre type present in HFpEF 
subjects, with a much lower percentage of type I fibers than 
either HCs or hypertensive subjects of similar age (70% in 
HCs versus 50% in HFpEF (p < 0.01) [47]. Compared with 
type II fibers, type I fibers have the greater oxidative capacity 
and mitochondrial density and contribute disproportionately 
to the ability to perform sustained aerobic exercise. While 
speculative, a reduction in the percentage of type I fibers 
could be associated with reduced oxidative capacity and 
mitochondrial density and contribute to prolonged oxygen 
uptake kinetics and reduced VO2peak in HFpEF [48].

Recently, a study demonstrated increased levels of SM 
atrophy genes and proteins (transforming growth factor-β1, 
cathepsin L, myostatin-2, F-box only protein-32) in stable 
outpatients with HFpEF compared with HF HFrEF and 
HCs [49]. They also showed reduced gene expression of 
Akt-2, which is a rate limiting and a crucial step in protein 

synthesis. Cathepsin L plays a significant role in autophagy, 
a further important mechanism of muscle atrophy. Myostatin 
is a highly conserved member of the transforming growth 
factor-beta superfamily that signals through the activin 
receptor type IIB. The activation of the myostatin pathway 
was shown to negatively regulate muscle size primarily by 
inhibiting the Akt pathway leading to reduced protein syn-
thesis and increased protein degradation [50].

Abnormalities in SM oxidative function 
in HFpEF

There are multiple SM abnormalities in HFpEF that impair 
oxygen utilization and appear to contribute to reduced 
VO2peak (Fig. 2). Among these, growing evidence indicates 
that impaired mitochondrial function may be among the 
most consequential. When a muscle repeatedly contracts for 
long periods, the ATP supply needs to be constantly replen-
ished through mitochondrial oxidative phosphorylation. If 
the intricate metabolic pathways within the mitochondria 
were to become altered and less efficient, endurance within 
the SM would decrease. As the sole mechanism for utilizing 
oxygen and fuel substrate to produce energy, mitochondrial 
health is obviously a critical determinant of VO2peak. The 
rate of breakdown and resynthesis of high-energy phos-
phates during and following exercise are fundamental deter-
minants of whole-body VO2 during exercise and recovery.

In an animal model of HFpEF, Bowen et  al. found 
multiple abnormalities, including reduced in situ mito-
chondrial respiratory reserve capacity, a key measure of 
SM oxidative phosphorylation that correlates well with 
VO2peak in humans [27]. Among the patients with mito-
chondrial myopathies, VO2peak is decreased despite 
normal cardiac function. These patients suffer from 
impaired oxidative metabolism in SM. SM relies more 
on substrate-level phosphorylation for energy production 
during exercise, leading to exaggerated circulatory and 
ventilatory responses (decreased VO2 and increased CO 
response to exercise) [51]. Using [30] Phosphate magnetic 
resonance spectroscopy, Bhella and colleagues found the 
abnormal hemodynamic response to exercise, similar to 
that observed in patients with mitochondrial myopathies; 
however, only two patients were studied [13]. They sug-
gested that HFpEF patients might display a hyperdynamic 
cardiac response to exercise with CO higher than expected 
for a given VO2. This impairment may limit functional 
capacity by two mechanisms: (1) early SM fatigue and (2) 
metabolic signals to increase the CO response to exercise, 
which a left ventricle may poorly tolerate with elevated 
filling pressure [13]. Due to the relatively smaller sample 
size, these results cannot be generalized to broader patient 
populations with HFpEF. These preliminary results were 
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confirmed by Weiss et al., who performed serial mag-
netic resonance spectroscopy measurements of creatinine 
phosphate during calf extensor exercise to exhaustion and 
recovery in HFpEF patients compared with HFrEF patients 
and HCs. HFpEF patients had severe exercise intolerance 
associated with rapid high-energy phosphate depletion, 
which was observed early during exercise [45]. Further-
more, HFpEF patients had markedly delayed repletion of 
high-energy phosphate during recovery [45]. There was a 
strong correlation between the average rate of phosphocre-
atine decline during exercise and the maximum exercise 
time (R2 = .83, p < .001).

Analyzing muscle biopsies from 20 HFpEF patients and 
17 age-matched HCs, Molina et al. measured the expression 
of mitofusins 1 and 2 (Mfn1 and Mfn2), proteins localized 
to the mitochondrial outer membrane that plays an essen-
tial role in the fusion of these organelles (Mfn2 plays an 
important role in mitochondrial quality control by mediating 
complementation of organelles and the elimination of dys-
functional mitochondria by autophagy and citrate synthase 
is the key enzyme regulating oxidative metabolism). Protein 
expression of porin, Mfn2 (normalized to porin), and citrate 
synthase was significantly lower (p = .01, p =  < .001, and 
p = .01 respectively) in SM tissue of patients with HFpEF 
compared to HCs (Fig. 6) [19]. In a recent study, Zamani 
et al. showed (mass spectrometry in muscle biopsy samples 
from 13 HFpEF participants) broad reductions in the pro-
teins and complexes involved in energy fuel metabolism, 
including tricarboxylic acid cycle enzymes and the mito-
chondrial complexes that make up the electron transport 
chain in patients with HFpEF SM that correlated with exer-
cise capacity, independent of peak oxygen delivery [47]. 
Bekfani et al. identified smaller mitochondria and reduced 
mitochondrial volume density in HFpEF SM compared with 
similarly aged controls [49]. They also described reductions 
in gene expression of key proteins involved in fatty acid oxi-
dation and carbohydrate metabolism, alongside increased 
gene expression of proteins associated with muscle atrophy 
[49].

These observations suggest that HFpEF patients relied 
less on oxidative pathways during exercise, as evidenced 
by decreased oxidative phosphorylation ATP production 
rates, and more on anaerobic metabolism, as evidenced by 
increased anaerobic glycolysis ATP production rates [13, 15, 
17–19, 45, 47, 49]. In addition, a previous study showed that 
AMP-activated protein kinase/glucose transporter-4 signaling 
is suppressed in SM in obese/hypertensive HFpEF rats and 
patients with metabolic syndrome (but not HFpEF), but might 
suggest that SM glucose metabolism is diminished in HFpEF 
[52]. It has also been described that increased circulating lipid 

metabolites, particularly the long-chain acylcarnitine metab-
olites derived from β-oxidation of free fatty acids (FFA) in 
HFpEF patients, may indicate that FFA metabolism is pre-
dominant in HFpEF [53]. Interestingly, and in contrast to 
HFrEF or HCs, patients with HFpEF cannot lower venous PO2 
during exercise and therefore demonstrate a blunted periph-
eral O2 extraction response [13, 15, 171819, 45, 47, 49]. The 
extent of this impaired muscle O2 extraction in HFpEF is 
likely explained, at least in part, by the significant mitochon-
drial abnormalities reported in patients with HFpEF [13, 15, 
171819, 45, 47, 49]. Clearly, more studies are warranted to 
clarify the role of limitations to muscle O2 diffusion in HFpEF. 
Potential causes for the SM abnormalities in HFpEF are shown 
in Fig. 2.

In addition to locomotory muscle, studies also linked 
respiratory muscle dysfunction to exercise intolerance in 
HFpEF, as shown by direct diaphragm contractility measures 
in experimental models. Multiple alterations to the diaphragm 
have been reported in the HFpEF rat model, including in vitro 
muscle weakness and fatigue alongside a type II-to-I fiber-
type shift, fiber atrophy, and impaired in situ mitochondrial 
respiration [27]. These diaphragm alterations and dysfunction 
are not reversed following 8 weeks of aerobic ET [54]. Inspira-
tory (i.e., diaphragm) muscle weakness is evident and closely 
associated with symptoms of dyspnea and poor prognosis in 
patients with HFpEF [55–58].

Fig. 6   Representative western blot bands from 3 patients with HFpEF 
and 3 healthy controls (HCs). For each protein, images were obtained 
from the same blot and exposure. A potential difference in skeletal 
muscle mitochondrial content was determined by analysis of porin 
expression. The samples were electrophoretically transferred to nylon 
polyvinyl difluoride (PVDF) membrane and the blots were incubated 
with commercially available primary antibodies to Mfn1 (1:1000), 
Mfn2 (1:1000), porin (1:1000), and GAPDH (1:2000) (Abcam, Cam-
bridge, MA). Densitometry values for Mfn1 and Mfn2 were normal-
ized to porin in order to account for differences in mitochondrial 
content. Measurement of porin was normalized to GAPDH. Normali-
zation of mitofusins to porin, rather than GAPDH, was appropriate 
because these proteins reside on the mitochondrial outer membrane 
(reproduced from JACC with permission. JACC Heart Fail.  2016; 
4:636–645)
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Interventions to improve exercise 
intolerance and SM function in HFpEF

Exercise interventions

To date, ET, in addition to caloric restriction (CR), is one 
of the interventions shown to improve outcomes in HFpEF 
patients [59–61]. Several randomized controlled trials have 
examined the efficacy of ET to improve VO2peak, 6-min 
walk distance, and HRQOL in patients with HFpEF [14, 
61–71]. It appears that structured and supervised mod-
erate continuous training, high-intensity interval train-
ing, and resistance training can benefit the patients with 
HFpEF [59]. Currently, no studies have examined the role 
of ET on SM morphology or function in HFpEF. How-
ever, studies suggested that peripheral mechanisms, such 
as improved SM perfusion and metabolism, likely play a 
major role in adapting ET in HFpEF [59, 60]. Specifically, 
Kitzman group demonstrated that 84% of the improvement 
in VO2peak following 16 weeks of aerobic ET was attrib-
uted to increases in peak exercise a-vO2Diff [14]. This is 
further supported by Fu et al. who reported that 12 weeks 
of high-intensity interval ET significantly increased VO2 
with the improvements in VO2peak driven by increases 
in estimated peak exercise a-vO2Diff and leg muscle oxy-
genation, with little or no change in peak exercise CO 
[67]. In fact, Bhella et al. reported that ET could favora-
bly shift to more efficient muscle O2 utilization in older 
HFpEF patients [13]. In addition, studies showed that ET 
in patients with HFpEF is associated with an improve-
ment in VO2 and HRQOL without significant changes 
in LV systolic or diastolic function [72, 73]. Even small 
muscle mass exercises, single-leg knee extensor exercises 
where the limiting role of the heart is minimized have 
been shown to induce various peripheral structural and 
functional adaptations improving VO2 without changing 
CO in HF patients [74]. The possible mechanisms respon-
sible for these exercise-mediated peripheral adaptations 
that underlie improvements in peak exercise a-vO2Diff 
may be related to improved peripheral muscle perfusion 
and enhanced mitochondrial function. SM oxidative capac-
ity and efficiency conceivably improved by ET in HFpEF 
patients since ET increased capillary and mitochondrial 
density, changed muscle fiber subtypes distribution, leg 
oxygen delivery, and diffusive conductance, and increased 
red blood cell capillary transit time through the SM vascu-
lature in an animal model of HFpEF [26, 27, 54]. Bowen 
et al. showed that in Dahl salt-sensitive HFpEF rats, ET 
could prevent SM contractile dysfunction in the diaphragm 
and soleus, associated with preserved mitochondrial func-
tion [27]. Theoretically, improvement in SM mitochondrial 
function may significantly contribute to training-related 
improvements in VO2peak in human HFpEF, which is 

known to be the case for HFrEF [60]. This can make a 
strong case for targeting SM, particularly mitochondrial 
function, to improve exercise intolerance in HFpEF.

Nutritional interventions

In contrast to nutritional supplements, CR has been dem-
onstrated to trigger vital subcellular benefits in older adults 
through molecular signaling pathways (e.g., mTor and AMP 
kinase) that are suppressed or stimulated, with downstream 
clinical benefits [75]. In older, obese individuals without HF, 
CR has improved SM function. Kitzman et al. showed that 
CR improved muscle leg muscle quality and reduced abdomi-
nal and thigh subcutaneous fat in older HFpEF patients. 
In addition, the change in VO2peak was positively corre-
lated with both the change in percent lean mass (r = 0.32; 
p = 0.003) and the change in thigh SM to IMF ratio (r = .27; 
p = .02) [61].

Novel pharmacological interventions

Pharmacological approaches to SM growth remain an active 
area of research. The randomized clinical trial INDIE-
HFpEF (Inorganic Nitrite Delivery to Improve Exercise 
Capacity in Heart Failure With Preserved Ejection Frac-
tion) showed that inhaled inorganic nitrite (NO donor) 
did not improve VO2peak and exercise capacity in HFpEF 
patients. However, inadequate drug delivery from the nebu-
lizer was raised as an issue [76]. Recently, the same group 
showed the beneficial effects of inhaled and intravenous 
sodium nitrite on SM O2 conductance, VO2 kinetics, O2 uti-
lization during submaximal exercise, and alveolar-capillary 
membrane O2 conductance HFpEF patients [77]. Several 
promising biologic and small molecule interventions are 
currently developing to rejuvenate SM, including myostatin 
inhibitors, selective androgen receptor modulators, and an 
activator of the fast SM troponin complex [78]. Nonethe-
less, trials of myostatin inhibitors have revealed many side 
effects that heretofore have diminished enthusiasm for clini-
cal application.

There are now multiple agents in phase 2 clinical trials, 
primarily of older patients with physical disability associ-
ated with sarcopenia, targeting a variety of SM abnormalities, 
including mitochondrial dysfunction. Neladenoson bialanate 
is a partial adenosine A1 receptor agonist that has been shown 
in preclinical models to improve SM mitochondrial function, 
enhance sarco/endoplasmic reticulum 2a activity, and optimize 
energy substrate utilization [77]. Among the HFpEF patients, 
the Partial AdeNosine A1 Receptor Agonist in Patients With 
Chronic Heart Failure and Preserved Ejection Fraction 
(PANACHE) study showed no significant dose–response rela-
tionship detected for neladenoson with regard to the change in 
exercise capacity from baseline to 20 weeks [79].
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Key knowledge gaps

1.	 How much do aging and non-cardiac comorbidities con-
tribute to the SM abnormalities in HFpEF?

2.	 Are SM alterations a consequence of the disease process?
3.	 In future studies, do we need to study the SM morphol-

ogy and function of much older, sedentary, and older 
active non-HF controls?

4.	 Are there overarching, systemic processes in HFpEF that 
trigger SM impairments?

5.	 Do pre-existing SM characteristics determine responses 
to HF?

6.	 Does exercise training ameliorate SM alterations in 
HFpEF, and what are the improvement mechanisms?

Conclusions

HFpEF is associated with multiple SM abnormalities, includ-
ing (1) decreased muscle mass, reduced type I fibers, and type 
I-to-type II fiber ratio; (2) reduced capillary-to-fiber ratio; 
(3) myosteatosis; (4) reduction in mitochondrial content; (5) 
rapid depletion of high-energy phosphate during exercise with 
markedly delayed repletion of high-energy phosphate during 
recovery in mitochondria; (6) reductions in gene expression of 
key proteins involved in fatty acid oxidation and carbohydrate 
metabolism; and (7) increased gene expression of proteins 
associated with muscle atrophy. These abnormalities may be 
responsible for impaired diffusive oxygen transport and uti-
lization by the active muscles and contribute significantly to 
exercise intolerance. To date, ET, in addition to CR, is one 
of the interventions shown to improve outcomes in HFpEF 
patients. In patients with HFpEF, improvements in VO2peak 
following aerobic ET are largely mediated through peripheral 
“non-cardiac” factors with minimal change in CO. Specifi-
cally, SM oxidative capacity and efficiency can be improved 
by ET, which increases capillary and mitochondrial density, 
changes muscle fiber subtypes distribution, and increases red 
blood cell capillary transit time through the SM vasculature. 
Accordingly, SM may be an important target of therapy to 
improve HFpEF patients’ aerobic endurance and VO2peak.
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