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Abstract
Diabetic cardiomyopathy (DCM) is a diabetes mellitus–induced pathophysiological condition characterized by cardiac 
structural, functional, and metabolic changes that can result in heart failure (HF), in the absence of coronary artery disease, 
hypertension, and valvular heart disease. Metabolic alterations such as hyperglycemia, insulin resistance, hyperinsulinemia, 
and increased metabolism of free fatty acids result in oxidative stress, inflammation, advanced glycation end products forma-
tion, abnormalities in calcium homeostasis, and apoptosis that are responsible for structural remodeling. Cardiac stiffness, 
hypertrophy, and fibrosis eventually lead to dysfunction and HF with preserved ejection fraction and/or HF with reduced 
ejection fraction. In this review, we analyzed in detail the cellular and molecular mechanisms and the metabolic pathways 
involved in the pathophysiology of DCM. Different phenotypes are observed in DCM, and it is not clear yet if the restrictive 
and the dilated phenotypes are distinct or represent an evolution of the same disease. Phenotypic differences can be observed 
between T1DM and T2DM DCM, possibly explained by the different myocardial insulin action. Further studies are needed 
in order to better understand the underlying mechanisms of DCM and to identify appropriate therapeutic targets and novel 
strategies to prevent and reverse the progression toward heart failure in diabetic patients.
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Introduction

Diabetes mellitus and cardiovascular diseases

Diabetes mellitus (DM) has a current global prevalence of 
463 million individuals, estimated to rise to 700 million 
people by 2045. DM represents the eight leading cause of 
death, and it is responsible for 11.3% of deaths globally 
[1].

DM significantly increases the risk of cardiovascular 
diseases (CVD). Patients with DM have a significantly 
higher risk of all-cause mortality and cardiovascular 
mortality. Patients with DM and poor glycemic control 

(hemoglobin A1c (HbA1c) > 9.7%/83 mmol/mol) have 
a cardiovascular mortality risk tenfold higher among 
patients with type 1 DM (T1DM) [2] and fivefold higher 
in subjects with type 2 DM (T2DM) [3]. CVD represent 
the main cause of morbidity and mortality in patients with 
DM, accounting for about two-thirds of overall deaths in 
patients with T2DM, with coronary artery disease (CAD) 
and ischemic cardiomyopathy as main contributors. 
According to the Framingham study, patients with DM 
have a twofold to fourfold increased risk of developing 
CAD and myocardial infarction (MI) and a fourfold to 
sixfold increased risk of developing congestive heart fail-
ure (HF). The incidence of HF results increased in both 
male and female diabetic patients, and this association 
is independent of CAD, hypertension, dyslipidemia, and 
obesity [4].

HF prevalence in patients with DM ranges from 19 to 
26%. Each 1% increase in HbA1c is linked to a 30% increase 
in risk of HF in T1DM and 8% increase of risk of HF in 
T2DM [5].
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Diabetic heart disease: definition

Diabetic heart disease includes CAD, cardiac autonomic 
neuropathy (CAN), and diabetic cardiomyopathy (DCM), 
often underdiagnosed [6] (Fig. 1).

CAD in patients with DM is characterized by rapid pro-
gression of disease, multivessel involvement, and lesions 
with more vulnerable features, often requiring coronary 
revascularization, with worse revascularization outcomes 
and 86% higher rates of in-stent restenosis [7].

CAN affects up to 65% patients with DM, it is a 
major cause of silent myocardial ischemia and MI, and 
it increases the risk of cardiac arrhythmias and sudden 
cardiac death. Initially, there is a subclinical stage with 
parasympathetic involvement, while toward the end stage 
of disease, there is sympathetic denervation and patients 
become symptomatic because of a poor response of heart 
rate and blood pressure to exercise and sleep, with conse-
quent orthostatic hypotension, reduced exercise tolerance, 
and non-dipping or reverse dipping at night [8].

DCM is a DM-induced pathophysiological condition 
characterized by cardiac structural, functional, and meta-
bolic changes that can result in HF, in the absence of CAD, 
hypertension, and valvular heart disease. DCM is gener-
ally asymptomatic in the initial stages. DCM was tradition-
ally described with an earlier stage characterized by left 
ventricle (LV) hypertrophy, stiffness, and decreased LV 
compliance characterized by reduced early diastolic fill-
ing, increased atrial filling, and prolonged isovolumetric 
relaxation time, and a later stage characterized by cardiac 

fibrosis, LV dilation, and systolic dysfunction, with the 
onset of HF symptoms [9]. More recently, it was described 
a restrictive pattern with preserved ejection fraction (EF) 
and a dilated pattern with reduced EF [10]. Therefore, 
DCM may lead to both HF with preserved EF (HFpEF) 
and with reduced EF (HFrEF).

Studies that compared equal size myocardial infarct 
areas in non-diabetic and diabetic patients found out that 
the incidence of HF is statistically significant higher in the 
diabetic patients group than in those without DM, suggesting 
that ischemic and diabetic cardiomyopathy are interrelated 
entities, amplifying maladaptive contractile effects in DM 
patients [11].

Potential damage of hyperglycemia 
on cardiac muscle and coronary vessels

Metabolic alterations, such as hyperglycemia, insulin resist-
ance, and increased metabolism of free fatty acids (FFA), 
result in oxidative stress, inflammation, advanced glycation 
end products (AGEs) formation, abnormalities in calcium 
homeostasis, apoptosis, and fibrosis. These changes are 
responsible for cardiac remodeling and dysfunction [12] 
(Fig. 2). One of the most important mechanisms involved in 
the development of DCM is chronic hyperglycemia, which 
induces nonenzymatic glycation of proteins, lipids, and 
lipoproteins resulting in formation of AGEs, altering their 
functional properties [13].

Fig. 1  Diabetic heart disease 
is a complex disease, including 
coronary artery disease (CAD), 
diabetic cardiomyopathy 
(DCM), and cardiac autonomic 
neuropathy (CAN)
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The formation of AGEs on vascular cells and myocytes 
causes cross-linking of collagen molecules to each other. 
This leads to the loss of collagen elasticity and degradation, 
to an increase in cardiac interstitial and perivascular fibrosis, 
and subsequently to a reduction of arterial and myocardial 
compliance [14]. This can also lead to coronary microvas-
cular stenosis and microaneurysms.

Moreover, AGEs interact and upregulate their receptors 
RAGE (Receptors for AGE). This interaction activates tran-
scription factors, such as nuclear factor-κB (NFκB) and its 
target genes, with production of pro-inflammatory cytokines, 
such as interleukins (IL-1β, IL-6, IL-18), tumor necrosis fac-
tor (TNF-α), and myeloperoxidases, responsible for cardiac 
damage [15]. NF-kB activation is promoted not only by AGE-
RAGE’s interactions, but also directly by reactive oxygen spe-
cies (ROS) and by the renin–angiotensin–aldosterone system 
(RAAS) activation. Hyperglycemia also plays a key role in 
the development of myocardial fibrosis, because of increased 
transcription of collagen by enhanced expression of vascular 
growth factors (VGF) and tissue growth factor beta 1 (TGF-
β1), with dysregulation of extracellular matrix degradation. 
Cardiac fibrosis leads to increased LV stiffness and decreased 
ventricular wall compliance, resulting in both systolic and in 
particular diastolic dysfunction [16]. Moreover, high glucose 
concentrations increase ROS. Increased levels of superoxide 
anion react with nitric oxide (NO) released by endothelial 
nitric oxide synthase (eNOS). The lower bioavailability of 
myocardial NO reduces cyclic guanosine monophosphate 
(cGMP) with decreased protein kinase G (PKG) activity. PKG 
activity reduction in cardiomyocytes causes titin hypophos-
phorylation, which controls diastolic myocardial distensi-
bility [17]. In addition, in a healthy heart, the contraction is 
mediated by calcium  (Ca2+) entrance through L-type  Ca2+ 
channels. This triggers the release of  Ca2+ from the sarco-
plasmic reticulum via ryanodine receptors (RyR), leading to 

interaction between actin and myosin filaments. The relaxa-
tion occurs when  Ca2+ is removed from the cytosol, and it is 
brought into the sarcoplasmic reticulum by the sarco/endo-
plasmic reticulum  Ca2+-ATPase (SERCA) 2a [18]. In DCM, 
RyR activity is damaged by oxidative stress, and there is a 
decrease in SERCA2a protein levels; therefore, the final result 
is an increase in intracellular calcium  (Ca2+) and a decrease in 
sarcoplasmic  Ca2+ uptake [11]. These alterations are respon-
sible for cardiac diastolic stiffness and dysfunction in DCM 
[19].

Finally, hyperglycemia and lipotoxicity raise protein 
kinase C (PKC) activity in fibroblast, with deposition of 
collagen and fibrosis [20]. PKC signaling pathways are also 
induced by oxidative stress, inflammation and RAAS, and 
sympathetic nervous system (SNS) activity. The isoforms 
alpha, beta, delta, epsilon, and theta of PKC have been pro-
posed to contribute to the development of diabetic cardiac 
hypertrophy [21].

Metabolic pathways in the pathophysiology 
of DCM

Under normal conditions, cardiomyocytes generate energy 
mainly by fatty acid oxidation, with a small contribution 
from glucose that increases under stressful situations. Fatty 
acid enters cardiomyocytes through CD36 (also referred to 
as scavenger receptor B2), while glucose through GLUT-4 
[22].

Insulin resistance is associated with increased CD36-
mediated fatty acid uptake and decreased AMP-activated 
protein kinase (AMPK) activation and consequent reduced 
GLUT-4 expression and translocation to the plasma mem-
brane, reduced GLUT4-mediated glucose uptake, and 
reduced fatty acids oxidation and glycolysis. Chronic 

Fig. 2  Metabolic alterations in 
diabetic cardiomyopathy
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hyperglycemia and hyperinsulinemia are associated with 
increased ROS generation and oxidative stress that diverts 
glucose metabolism from glycolytic pathway to alterna-
tive pathways such as hexosamine pathway with enzymatic 
O-GlcNAcylation of cardiomyocyte proteins and polyol 
pathway, with AGEs generation.

AGEs accumulation lead to AGE/RAGE interaction, 
extracellular matrix (ECM) remodeling with collagen-
elastin cross-linkage, NF-kB signaling, pro-inflammatory 
cytokines and TGF-beta production, increased ROS pro-
duction and cardiac oxidative stress, depressed sarcoplas-
mic reticulum (SR) function with reduced  Ca2+ reuptake 
into SR, shift in myosin heavy chain (MHC) from alpha-
MHC to beta-MHC, atrial natriuretic peptide (ANP), and 
brain natriuretic peptide (BNP) upregulation. These altera-
tions lead to myocyte hypertrophy and myocardial fibrosis/
stiffness.

The increased fatty acid uptake via CD-36 leads to 
increased fatty acid oxidation that exceeds mitochondrial 
oxidative capacity and determines mitochondria dysfunc-
tion, with reduced ATP production and altered myocardial 
 Ca2+ handling. High glucose exposure determines decreased 
transcriptional expression of mito calcium uniporter (MCU) 
and of MCU-bracketing protein EMRE [23]. These changes 
determine reduced myocardial contractility, endothelial 
damage with microvascular dysfunction, increased ROS and 
oxidative stress, NO destruction and reduced bioavailable 
NO, pro-inflammatory cytokines and lipotoxic metabolites 
production, and induced lipoapoptosis of cardiomyocyte 
and myocardial fibrosis. High levels of fatty acids, hyper-
glycemia, and impaired insulin metabolic signaling activate 
the NACHT, LRR, and PYD domains-containing protein 3 
(NLRP3) inflammasome assembly and procaspase-1 acti-
vation that processes IL-1beta and IL-18 precursors and 
enhances NF-kB pathway [24].

The hexosamine pathway upregulation with sustained 
increased mitochondrial O-GlcNAc levels determines post-
translational modification of cardiac proteins and consequent 
altered myocardial calcium handling with contractile dys-
function and heart failure.

Insulin resistance, hyperinsulinemia, and hyperglyce-
mia also cause activation of RAAS, increased angiotensin 
II activity, vascular resistance, and aldosterone activity 
that lead to cardiomyocyte hypertrophy, hypertension, and 
increased cardiac fibroblast proliferation.

Insulin resistance also decreases insulin-stimulated 
coronary e-NOS activity and NO production, reducing NO 
coronary vasodilation and insulin-mediated capillary recruit-
ment that lead to an impaired delivery of insulin and glucose 
necessary for normal myocardial energetics. The result is a 
reduction of sarcoplasmic reticulum Ca + uptake. Impair-
ment of NO production also leads to phosphorylation of titin 

increasing the ratio of still titin isoform expression and to 
increased activation of collagen cross-linking enzymes and 
fibrosis.

Hyperinsulinemia induce cardiomyocyte hypertrophy 
by binding to insulin-like growth factor 1 (IGF-1) receptor. 
IGF1 produced by cardiomyocytes can also stimulate cardio-
myocyte hypertrophy through the insulin receptor, extracel-
lular signal-regulated kinase 1/2, and phosphatidylinositol 
3-kinase pathways [25].

SGLT-2 expression is significantly increased in dia-
betic patients, with consequent glomerular hyperfiltration, 
increased reabsorption of glucose, and elevated plasma glu-
cose levels [26].

In the pathogenesis of DCM have also been implicated 
PKC signaling pathways, that promote cardiac hypertrophy 
and fibrosis, and MAPK and JNK activation pathway, that 
contribute to oxidative stress, endoplasmic reticulum stress 
and interstitial fibrosis [27], and increased cardiomyocyte 
apoptosis.

Several lipid metabolites contribute to exacerbating 
DCM by impairing insulin metabolic signaling. Diacylg-
lycerols accumulation in the plasma membrane can acti-
vate PKC ε inducing insulin resistance and reducing NO 
production, while ceramides can directly activate PKCs 
and attenuate GLUT4 translocation and glucose uptake 
[5].

At nuclear level, DCM pathophysiology includes repres-
sion of NF-E2-related factor 2 (Nrf2) and activation of 
NF-kB and CAMP-responsive element modulator (CREM). 
The repression of Nrf2 expression promotes the expression 
of antioxidant proteins in response to oxidative stress, such 
as hemoxygenase. NF-kB is a transcriptional factor that 
promotes the expression of pro-inflammatory cytokines and 
profibrotic genes. CREM is a transcriptional factor that pro-
motes cardiac fibrosis [28] and may also promote epigenetic 
modifications in cardiac proteins.

Finally, also exosomes and miRNA abnormalities may 
play a role in DCM. Exosomes released from cardiomyo-
cytes of DCM patients contain high levels of miR320 and 
are transported to coronary endothelial cells, leading to a 
decreased NO production. Different miRNAs have been 
reported to be increased in T2DM and T1DM and were 
found to be involved in insulin sensitivity, cardiomyo-
cyte hypertrophy, fibrosis, and diastolic dysfunction [5]. 
Decreased levels of miR-494-3p upregulate activator pro-
tein 1 (AP-1) JunD activity that promotes PPARgamma-
dependent genes (such as CD-36, FAS, LpL) transcription, 
involved in myocardial lipid uptake, hydrolysis, and storage, 
therefore leading to cardiac steatosis, lipotoxic damage, and 
metabolic cardiomyopathy [29]. miR-122-5p, which targets 
the metalloproteinases MMP-16 and MMP-2, their regulator 
(tissue inhibitor of MMPs), and the ECM through MMP-2 
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modulation, results upregulated in T2DM. Increased lev-
els of miR-122-5p downregulate MMP-2 activity that is 
involved in ECM rearrangement. Subendocardial fibrosis 
leads to increased ventricular torsion, due to defective 
shortening of the fragile subendocardial fibers. The torsion 
eventually reaches a plateau and exhaust its compensatory 
role and decouples from strain that appears reduced in all 
stages of DCM. Within 5 years of DCM onset, cardiac 
magnetic resonance (CMR) assessment demonstrated that 
the progression of increasing cardiac hypertrophy is asso-
ciated with progressive impairment in strain, depletion of 
the compensatory role of torsion, and changes in viscoe-
lastic contraction dynamics. Cardiac remodeling reduces 
the potential energy stored during the systole, leading to a 
shorter and less effective systolic phase. Also the diastolic 
phase is less effective, with a reduced recoil rate and an 
impaired isovolumic relaxation. The progression toward LV 
dilation accompanied by an increased cardiac hypertrophy 
is independent from glycemic control [30]. Except in the 
very early stage, strict glycemic control was found to be 
not sufficient to revert the pathological cardiac processes 
in DCM [31].

DCM finally leads LV remodeling, cardiac diastolic and 
systolic dysfunction, and endothelial damage with microvas-
cular dysfunction [6].

Cell death in DCM

Molecular mechanisms that increase fibrosis and myocar-
dial inflammation in diabetic patients can activate both pro-
apoptotic and necrotic cell death signaling pathways [32].

Diabetes increases apoptosis of myocytes by an 85-fold 
and necrosis in myocytes by fourfold. Also endothelial cells 
and fibroblasts apoptosis and necrosis rate are significantly 
increased in DM patients [33].

Potential mechanisms underlying the increased cell death 
in DM patients are leptin deficiency, hyperglycemia through 
a Rac 1-mediated increase in nicotinamide adenine dinucleo-
tide phosphate (NADPH) and mitochondrial ROS produc-
tion and activation of RAAS [34].

In DCM we observe a decreased AMPK activity and 
consequent increased mammalian target of rapamycin 
(m-TOR) signaling pathway that leads to a reduction in 
cardiomyocyte autophagy and consequent exacerbated car-
diac dysfunction and apoptosis. Autophagy is a cytopro-
tective mechanism; indeed a reduced cardiac autophagic 
activity results in the accumulation of clustered and dam-
aged mitochondria and polyubiquitinated proteins that 
induce respectively the release of ROS and pro-apoptotic 
factors such as cytochrome c and an increase in endoplas-
mic reticulum stress, which both lead to cardiomyocyte 
apoptosis [35].

Phenotype adaptation according to myocyte 
and vascular cell alterations in DCM

In 1954, Lundbaek was the first to describe a specific vas-
cular disease of long-standing diabetes, named diabetic 
angiopathy [36]. Almost 20 years later, in 1972, Rubler 
et al. identified a new type of cardiomyopathy in diabetic 
patients characterized by myocardial hypertrophy, fibrosis, 
and diabetic microangiopathy, in the absence of major CAD 
[37]. Two years later, the Framingham study established the 
increasing risk of HF in the diabetic patients [38]. In 2011, 
Maisch et al. divided DCM into four stages: stage 1 included 
diastolic dysfunction with normal ejection fraction, often 
associated with hypertrophy; stage 2 included diastolic and 
systolic dysfunction with reduced ejection fraction. Both 
stages were not affected by CAD, valvular heart disease, 
and hypertension. Stage 3 included DCM with diastolic and 
systolic dysfunction with involvement of microvascular dis-
ease and/or microbial infection and/or inflammation and/or 
hypertension but without CAD, and stage 4 included DCM 
with HF that may also be attributed to clinical infarction or 
ischemia [39].

Nowadays, the improvement in non-invasive instrumental 
examinations, such as echocardiography and cardiac mag-
netic resonance, made it possible to learn more about the 
structural alterations of hearts affected by DM. DM causes 
concentric remodeling, both concentric and eccentric hyper-
trophy, increases left ventricular mass and wall thicknesses 
and finally causes contractile dysfunction of the LV [40, 41].

DCM was initially described by Rubler et al. as dilated 
phenotype with eccentric left ventricular remodeling and 
systolic dysfunction known as HFrEF [37]. However, in 
the last few years, a new distinct phenotype from dilated to 
concentric hypertrophic pattern has been recognized: the so 
called emerging restrictive phenotype. It is characterized by 
normal LV diameters and increased wall thickness, elevated 
LV filling pressures, diastolic dysfunction, and HFpEF. Cur-
rent paradigm arises few unanswered questions: (1) whether 
the two phenotypes (restrictive/HFpEF and dilated/HFrEF) 
are distinct or rather an evolution of the same disease; (2) if 
each subtype subtends different energetic cell dysfunction 
and metabolic derangement; and (3) the cardiovascular risk 
associated with distinct phenotype and the related therapeu-
tic strategies. However, a universal DCM definition based 
on translational data and epidemiologic and prognostic fea-
tures is still lacking, and several doubts remain about the real 
expression of cardiac remodeling, the influence of associated 
macro or microvascular CAD, and the possible mechanisms 
for the transition from one to the other pattern.

Seferovic and Paulus were the first authors purposing this 
distinction arguing that DCM evolves as two independent 
morphological phenotypes: restrictive, linked to coronary 
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microvascular endothelial dysfunction and prevalent in 
T2DM, and dilated, associated with cardiomyocyte cell 
death and more common in T1DM patients [10].

The main features observed in the two phenotypes are 
due to interactions and pathophysiological alterations 
between endothelial cells, cardiomyocytes, and fibro-
blasts (Fig. 3). In the restrictive phenotype, cardiomyo-
cyte hypertrophy and reactive fibrosis are the consequence 
of these alterations, with HFpEF development. First of 
all, hyperglycemia, lipotoxicity, and AGEs increase mito-
chondrial ROS in endothelial cells, which determines 
lower bioavailability of endothelial NO and consequently 
decreases PKG activity in adjacent cardiomyocytes lead-
ing to hypertrophy, stiffness, and LV diastolic dysfunc-
tion. In fibroblasts hyperglycemia and lipotoxicity raise 
PKC activity resulting in collagen deposition and reac-
tive interstitial fibrosis [12]. Instead, the dilated pheno-
type is characterized by cardiomyocytes cell death and 
fibrosis replacement, leading to HFrEF pattern. One of the 
most important mechanisms is ischemic injury because 
of microvascular rarefaction, AGEs, and autoimmun-
ity-related inflammatory cells. Tissue hypoxia leads to 
increased ROS and cardiomyocyte cell death resulting 
from oxidative stress. Hyperglycemia and lipotoxicity are 
responsible for replacement fibrosis deposition, through 
increased PKC activity in fibroblast. Lastly, a key con-
tributing role in development and progression of myocar-
dial injury and LV dysfunction is played by inflammatory 

cytokines such as IL-1β, IL-6, TNF-α, and TGF-β1 and 
the inflammatory transcriptional regulator NFκB, lead-
ing to dilated CMD [42, 43]. Therefore, the restrictive/
HFpEF phenotype is characterized by hypertrophied car-
diomyocytes with preserved sarcomeric structure and col-
lagen deposition in-between cardiomyocytes, while in the 
dilated/HFrEF phenotype, cardiomyocytes are small and 
damaged, sarcomeric structure disappeared, and collagen 
deposition covers larger areas.

Epigenetic modifications have an important role in 
regulating the pathways involved in HF. DNA methyla-
tion, histone modifications, and non-coding RNAs play 
a key role in cardiac fibrosis, hypertrophic remodeling, 
myocardial stiffness, and vascular remodeling, through 
reprogramming of gene expression and reactivation of 
fetal cardiac genes. Specific epigenetic patterns allow to 
identify patients with HF and also to discriminate between 
different HF phenotypes. Hypomethylations of CTGF and 
MMP-2 are potential epigenetic biomarkers in HFpEF, 
due to their strong involvement in cardiac fibrosis. Histone 
modifications H3K4me3, H3K9me3, and H3K36me3 are 
causal biomarkers of LV hypertrophy and remodeling in 
HFpEF and can be used for a direct, personalized inter-
vention. miR-183-3p is downregulated in both HFrEF and 
HFpEF. miR-190a could be useful to detect HFpEF and 
to discriminate between HFpEF and HFrEF but requires 
further validation [44].

Fig. 3  Morphological phenotypes in diabetic cardiomyopathy
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The differentiation between restrictive/HFpEF and 
dilated/HFrEF phenotypes has important clinical conse-
quences and therapeutic implications related to CV and met-
abolic management. When dilated pattern occurs, according 
to the heart failure guidelines, the traditional algorithm of 
HFrEF treatment can be applied: angiotensin-converting 
enzyme inhibitor (ACE-I), beta-blocker, angiotensin recep-
tor blocker (ARB), aldosterone antagonists, ivabradine, 
angiotensin receptor neprilysin inhibitor (ARNI), and resyn-
chronization therapy [45].

Unfortunately, most of diabetic patients develop a hyper-
trophic adaptation with restrictive pattern, probably because 
diabetes is often associated with hypertension and other met-
abolic disorders. In the latter case, therapeutic options are 
restricted to the monitorization of CV risk factors and glyce-
mic control, without any evidence of benefit on both risk of 
HF and CV mortality reduction. Current weaknesses involve 
also the hypoglycemic treatment that is mostly associated 
with mild risk reduction and scarce impact in HF devel-
opment particularly with traditional agents. The concern 
of HF became even more relevant considering that 2/3 of 
these patients develop HFpEF in which the role of both car-
diovascular and antidiabetic drugs is neutral or unexplored. 
However, despite the different response to medical therapy, 
HFrEF and HFpEF have a similar prognosis [46].

Sodium-glucose co-transporter-2 (SGLT2) inhibitors had 
deeply changed the natural history of diabetic HF, reducing 
CV mortality and HF hospitalizations. Left ventricular hyper-
trophy (LVH) is a negative prognostic marker in patients with 
HFpEF. DAPA-LVH trial and EMPA-HEART Cardiolink-6 
trial showed the beneficial effect of SGLT2 inhibitor dapa-
gliflozin and empaglifozin, respectively, on LVH regression 
(assessed as LV mass regression by cardiac MRI) in patients 
with T2DM. The underlying mechanisms proposed for SGLT2 
inhibitor-mediated LVH regression are decreased blood pres-
sure and afterload, reduced visceral adipose tissue, improved 
insulin sensitivity, and reduced levels of systemic inflamma-
tion, prevention of cardiomyocytes and endothelial cells dys-
function, and improvement of diastolic dysfunction [47].

Several drugs targeting epigenetic modifications 
underlying HFpEF have been developed (“epidrugs”), 
and some have already been approved by the Food and 
Drug Administration (FDA). Folates restore promoter 
CpG methylation of different genes regulating endothelial 
function, NO bioavailability, adipogenesis, and oxidative 
stress pathways implicated in HFpEF. Natural compounds 
such as sulforaphane (contained in broccoli sprouts) and 
epigallocatechin-3-gallate (found in green tea) improve 
microvascular endothelial function. Histone deacetylase 
inhibitor Vorinostat prevents pathological cardiac hyper-
trophic remodeling and diastolic dysfunction. MicroRNA 
therapeutics are currently under development in preclinical 
and clinical trials [44].

DCM in T1DM versus T2DM

The phenotypes and underlying mechanisms of DCM have 
been mostly investigated in T2DM animals and humans, 
while the impact of T1DM on diastolic and systolic impair-
ment is less clear [5], because results of human studies 
remain controversial and the metabolic derangements and 
the phenotype may be attenuated or masked by the fact that 
patients are treated with insulin. The underlying mechanisms 
and clinical features of DCM in T1DM and T2DM probably 
overlap, but some differences were observed in phenotypes 
[48], such as cardiomyocyte autophagy, increased in T1DM 
and suppressed in T2DM [49], systolic function, generally 
preserved in T1DM Akita diabetic mice, and cardiac hyper-
trophy, not observed in T1DM Akita diabetic mice [50]. 
These phenotypic differences may be explained by differ-
ences in myocardial insulin action, since T1DM is character-
ized by insulin deficiency while T2DM by insulin resistance 
with hyperinsulinemia, and this could have effects on cell 
survival, cell growth, and other cellular pathways. Glyce-
mic control reduces the prevalence of DCM and of CVD. 
In T1DM rodent models normalization of glycemic values 
through insulin replacement was associated with reduced 
myocardial hypertrophy, collagen content, and diastolic dys-
function [51]. In rats, chronic diabetes is associated with a 
shift in cardiac myosin heavy chain from V1 to V3 isoforms 
that correlates with depressed contractility, reversible with 
insulin treatment [52].

Conclusions

DM significantly increases the risk of heart disease. Dia-
betic heart disease is a complex disease, represented by three 
clinical entities: CAD, CAN, and DCM. This review focused 
on the metabolic, structural, and functional changes in the 
myocardium that occur in DCM, that is, a pathophysiologi-
cal condition characterized by cardiac structural, functional, 
and metabolic changes that can result in HF, in the absence 
of CAD, hypertension, and valvular heart disease.

Hyperglycemia, systemic insulin resistance, and hyper-
insulinemia are the key etiological factors in the develop-
ment of DCM, inducing impaired cardiac insulin signaling, 
increased levels of FFA and growth factors, impaired sub-
strate utilization and lipid metabolism, and altered calcium 
homeostasis. Structural changes are mainly represented by 
cardiac stiffness, hypertrophy, and fibrosis that eventually 
lead to HFpEF and/or HFrEF.

The signaling pathways underlying DCM pathophysio-
logical events include decreased AMPK activity, increased 
PKC activity, sustained increase of O-GlcNAcylation, 
increased MAPK and SGLT2 function, and dysregula-
tion of exosomes and of miRNA. At nuclear level, it was 
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demonstrated an increase of CREM expression and NF-kB 
signaling and a reduction of Nrf-2 expression. The patho-
physiological process of DCM involves mitochondria 
dysfunction, impairment of mitochondria  Ca2+ handling, 
inflammation, ROS production and oxidative stress, AGEs-
RAGE interactions, reduced bioavailability of NO, activa-
tion of RAAS, ER stress, autonomic neuropathy, lipotoxic-
ity, cardiomyocyte death, and microvascular dysfunction. 
Some mechanisms, such as autophagy and miRNA require 
further study.

Traditionally it has been described an initial stage of 
DCM, clinically asymptomatic and characterized by car-
diac stiffness, hypertrophy, and fibrosis, resulting in dias-
tolic dysfunction, eventually evolving in LV dilation, systolic 
dysfunction, and symptomatic heart failure. More recently, 
a new distinct phenotype has been recognized besides the 
dilated phenotype with HFrEF: the restrictive phenotype, 
characterized by normal LV dimensions, diastolic dysfunc-
tion, and HFpEF.

Glycemic control reduces the prevalence of DCM and of 
CVD, but glycemic control alone is not sufficient to prevent 
diabetic heart disease development.

A universal definition of DCM based on translational 
data and epidemiologic and prognostic features is still lack-
ing. Further investigations are needed in order to under-
stand potential differences in underlying mechanisms and 
phenotypes for DMC in T1DM and T2DM patients. It is 
not clear yet whether the two described phenotypes (restric-
tive/HFpEF and dilated/HFrEF) are distinct or rather an 
evolution of the same disease and what are the possible 
underlying metabolic mechanisms for the transition from 
one phenotype to the other. Greater efforts should be made 
to understand the precise molecular mechanisms involved 
in the initiation and progression of DCM and in order to 
identify potential appropriate therapeutic targets and novel 
pharmacological strategies that may help to prevent and 
reverse the progression toward HF in diabetic patients. 
The result of large epigenomic studies in the upcoming 
future will help to define the links between genetics, epige-
netic, and HF and validate epigenetic targeted personalized 
therapies.
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