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Abstract
Dilated cardiomyopathy (DCM) is an umbrella term entailing a wide variety of genetic and non-genetic etiologies, leading to 
left ventricular systolic dysfunction and dilatation, not explained by abnormal loading conditions or coronary artery disease. 
The clinical presentation can vary from asymptomatic to heart failure symptoms or sudden cardiac death (SCD) even in previ-
ously asymptomatic individuals. In the last 2 decades, there has been striking progress in the understanding of the complex 
genetic basis of DCM, with the discovery of additional genes and genotype–phenotype correlation studies. Rigorous clinical 
work-up of DCM patients, meticulous family screening, and the implementation of advanced imaging techniques pave the 
way for a more efficient and earlier diagnosis as well as more precise indications for implantable cardioverter defibrillator 
implantation and prevention of SCD. In the era of precision medicine, genotype-directed therapies have started to emerge. In 
this review, we focus on updates of the genetic background of DCM, characteristic phenotypes caused by recently described 
pathogenic variants, specific indications for prevention of SCD in those individuals and genotype-directed treatments under 
development. Finally, the latest developments in distinguishing athletic heart syndrome from subclinical DCM are described.
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Introduction

Dilated cardiomyopathy (DCM) is characterized by left ven-
tricular (LV) systolic dysfunction and LV enlargement, in 
the absence of abnormal loading conditions such as hyper-
tension, valvular disease, or coronary artery disease (CAD) 
that could explain the myocardial abnormality [1–3]. The 
presence of the disorder is defined by an LV end-diastolic 
diameter (LVEDD) greater than 2 standard deviations (SD) 
of the predicted values and LV fractional shortening < 25% 
or an LV ejection fraction (EF) < 45% [2]. Predicted val-
ues are calculated according to the formula of Henry, cor-
rected for age and body surface area, and are expressed as a 
percentage of the predicted diameter as follows: Predicted 

LVEDD = (45.3 × body surface area0.3) − (0.03 × age) − 7.2 
[4]. A value of LVEDD > 112% (> 2SD) is a diagnostic cri-
terion for DCM while a value > 117% (2SD + 5%) increases 
specificity. Until recently, the management of DCM 
patients has involved traditional heart failure management 
approaches including drugs, devices, and heart transplanta-
tion when indicated. The prognosis of DCM patients has 
significantly improved over the last decades due to phar-
macological and non-pharmacological advances, earlier 
diagnosis due to familial screening, and pre-participation 
cardiac evaluation and individualized long-term follow-up. 
In the past few decades the prognosis of DCM has signifi-
cantly improved, and survival along with no need for heart 
transplantation has risen to > 80% at 8-year follow-up [5].

Classification of cardiomyopathies

Over the years there have been several attempts to classify 
cardiomyopathies. The American Heart Association (AHA) 
has adopted a different approach from the European Society 
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of Cardiology (ESC). The AHA firstly differentiates primary 
cardiomyopathies (i.e., those predominantly affecting the 
heart) which are further subdivided to genetic, acquired, 
or mixed according to their etiology  [6]. In 2007 the ESC 
proposed a classification of cardiomyopathies based on their 
phenotypic and morphological characteristics, further subdi-
viding them to familial and non-familial (secondary) forms 
[1]. However, due to overlapping phenotypic expression 
and variable penetrance, cardiomyopathies often cannot be 
clearly assigned to a specific category [1, 3, 6, 7].

Classification concepts of dilated 
cardiomyopathy

Over the past few decades, the etiology and natural history 
of DCM have been further elucidated [1, 8–11]. It has been 
demonstrated that various etiologies, causing LV dysfunc-
tion may manifest with the same clinical phenotype as DCM 
[12–14]. According to the ESC classification of cardiomy-
opathies, DCM can be further subdivided into two main 
groups, genetic or acquired. There are, however, several 
cases in which the phenotypic expression is strongly affected 
by the environmental stressors of the individual. The final 
phenotypic expression seems to be an amalgam of the geno-
type along with the environmental factors. In 2016. Pinto 
et al. published a position paper for a revised definition of 
DCM, introducing a new clinical phenotype and diagnostic 
criteria for relatives, allowing for better recognition of rela-
tives at risk, while simultaneously emphasizing that DCM 
may develop after gradual escalation through a continuous 
spectrum of milder clinical expressions [2].

Epidemiology

DCM is the commonest indication for heart transplantation 
and the third most common cause of heart failure [6]. The 
continuous reclassification and definition amendments of 
DCM throughout the past decades led to ambiguous data 
regarding its epidemiology [15]. In 2007, the ESC Working 
Group on Myocardial and Pericardial Diseases published a 
position statement that defined cardiomyopathies, segregated 
them into morphological groups and set diagnostic criteria 
for each group for both, the probands and their relatives [1]. 
The prevalence of DCM is estimated to be about 1:2500 in 
the general population, but this ratio may be an underesti-
mation [16, 17]. Familial DCM has been reported to have a 
prevalence of 30–50% of the total DCM cases, while a gene 
is identified in 20–40% of those [18–20]. The prevalence 
seems to be slightly higher in men, with a female to male 
ratio between 1:1.3 and 1:1.5 [21–23]. DCM has an annual 
incidence of sudden cardiac death (SCD) between 2 and 4% 

[24]. In a registry of survivors of aborted SCD, DCM was 
found to be the underlying etiology in 10–19% [25]. SCD 
may occasionally be the initial manifestation of DCM [24, 
26, 27] including victims with no abnormal autopsy find-
ings [27, 28].

Etiology

DCM entails a broad group of diseases, acquired or genetic, 
which result in a similar phenotype. The clinician should 
always exclude secondary causes before giving the diagno-
sis of “idiopathic DCM” since some causes may be revers-
ible [29]. The causes of DCM can be classified into genetic 
and acquired, though the two are not mutually exclusive. 
Sometimes a genetic predisposition along with the additional 
effect of environmental factors is what leads to the appear-
ance of the phenotype of the disorder [30, 31].

Acquired DCM

Drugs and toxins

Several drugs and toxins, the most common being excess 
ethanol consumption, cocaine, chloroquine, psychiatric 
drugs (clozapine, olanzapine), and antineoplastic drugs 
such as anthracyclines, may directly damage the myocar-
dium causing an acquired form of DCM. Some drugs or 
toxins can cause acute LV dysfunction, while exposure in 
toxins such as anthracyclines may lead to LV dysfunction 
several years after treatment (late-onset cardiotoxicity) [32]. 
Alcoholic cardiomyopathy accounts for up to 32% of cases 
of DCM [33]. Alcohol affects the heart in a dose-dependent 
manner, while abstinence has the potential for LV systolic 
dysfunction reversal. On the other hand, anthracycline treat-
ment has typically irreversible cardiotoxic effects [32].

Inflammatory dilated cardiomyopathy

Myocardial injury caused by infectious agents (viral or bac-
terial myocarditis), autoimmune disorders (i.e., sarcoidosis), 
toxic agents (i.e., cocaine), or other factors [34] may trig-
ger an inflammatory response starting with the activation 
of a proinflammatory cascade of cytokines, followed by an 
immune response and eventually leading to LV dysfunction 
and dilatation [35]. Myocarditis progresses to DCM in up to 
30% of cases [34]. Almost half of DMC cases show evidence 
of inflammation in the myocardium [36].

The entity of autoimmune myocardial inflammation has 
also been recognized. Patients presenting with infection-
negative myocarditis may progress to DCM [37]. These 
cases often occur with a familial inheritance pattern. 
Serum organ-specific anti-heart antibodies may be found 
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in symptom-free relatives of DCM patients and are asso-
ciated with mild LV dysfunction as well as potential pro-
gression to DCM [37–39].

COVID‑19 and myocardial damage

Myocardial damage, as indicated by elevated cardiac tro-
ponin (cTn) levels and evidence of myocardial edema, 
and myocardial fibrosis in cardiac magnetic resonance 
(CMR), are well-recognized cardiac complications of the 
novel coronavirus, Sars-CoV-2. These abnormalities may 
occur independently of illness severity, time from the orig-
inal diagnosis, and preexisting conditions [40]. Elevated 
cTn is associated with adverse outcomes and may dictate 
decisions for hospitalization and further imaging tests in 
COVID-19 patients [41]. It is suggested that inflammation 
due to COVID-19 may increase the risk for the develop-
ment of heart failure with preserved LVEF or DCM. In a 
case series of 21 COVID-19 patients, 33% developed car-
diomyopathy [42]. Prospective evaluation of COVID-19 
patients is required to evaluate this hypothesis.

Peripartum cardiomyopathy

Peripartum cardiomyopathy (PPCM) is a rare and poten-
tially life-threatening entity in which heart failure develops 
during the last trimester of pregnancy or in the first few 
months after delivery [43]. It has been associated with 
older age, multiparity, presence of hypertension with or 
without pre-eclampsia, and Afro-Caribbean ethnicity 
[44]. The conversion of prolactin to an angiostatic factor 
mediated by oxidative stress is a critical step in the patho-
genesis of the disease [45]. Pathogenic variants in genes 
associated with typical DCM (TTN, MYBPC3) have been 
detected in cases of PPCM, reinforcing the notion that the 
combination of genetic predisposition and environmental 
stressors may decrease the threshold for the expression of 
the DCM phenotype [44–46].

Combined factors

All the abovementioned etiologies are not mutually exclu-
sive and may occur in combination [2]. For instance, 
patients who are carriers of pathogenic variants may also 
suffer episodes of myocarditis or report excessive etha-
nol intake, which may sequentially aggravate their overall 
clinical picture. It is thus required to recognize and remove 
any environmental risk factors that may worsen the pheno-
type of someone already at risk of the disease.

Genetic causes of DCM

Genetic background and inheritance patterns

Various patterns of inheritance have been recognized, 
including autosomal dominant, X-linked, autosomal reces-
sive and matrilinear transmission [1, 8, 9, 16, 47, 48]. The 
genetic yield of DCM is estimated to be about 20–37% [16, 
49, 50]. Until now, more than 50 DCM related genes have 
been reported [46, 51]. With the development and advances 
of sequencing technologies, the analysis and discovery of 
more genes involved in DCM has become feasible, decreas-
ing the frequency of “idiopathic DCM”. Studies using next-
generation sequencing have identified the presence of two or 
more variants in more than 38% of affected cases of DCM 
[52] suggesting a pattern of oligogenic rather than mono-
genic inheritance in some patients. Of note, there is a consid-
erable overlap of genes involved in the pathogenesis of DCM 
and other forms of cardiomyopathy, or channelopathies such 
as Brugada syndrome [2, 7]. The presence of more than one 
pathogenic or likely pathogenic variants in an individual, as 
well as variants that cause an overlapping cardiomyopathy 
phenotype, may explain the variable penetration and pheno-
typic expression, even within the same family.

Most common genes involved in DCM

A vast array of DCM causative variants have been described 
so far. These can be classified according to the functional 
disruption caused at the cellular level. Some of the most 
studied groups include:

•	 Sarcomeric DCM — deficit in force generation This 
group represents the most frequent genetic cause of DCM 
and consists of genes encoding sarcomeric proteins: titin, 
myosin, actin, troponin, and tropomyosin. Titin (TTN) is 
the largest sarcomeric protein within the myocardium. 
Truncating-TTN variants result in abnormally truncated 
proteins and are present in 25% of end-stage disease [30, 
53], 20–25% of familial cases of DCM and in 18% of 
sporadic cases, following an autosomal dominant inher-
itance pattern [53, 54]. Further research is required to 
establish whether all truncating TTN variants are patho-
genic.

•	 Nuclear envelope defects (laminopathies) Variants in 
the Lamin A/C gene (LMNA) are found in up to 6% of 
DCM cases [25, 55]. They are inherited in an autosomal 
dominant pattern and are characterized by an aggressive 
phenotype with conduction abnormalities and malignant 
ventricular arrhythmias (VAs). A high incidence of SCD 
often occurring before the development of significant 
LV dysfunction [56–58], with a mortality rate of 30% 
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at 12 years of follow-up has been reported [59]. The 
median age of onset is between 30 and 40 years while 
the penetrance is almost complete by the age of 70 [59]. 
The detection of a pathogenic LMNA variant lowers the 
threshold for an implantable cardioverter defibrillator 
(ICD) for primary prevention of SCD regardless of the 
LVEF [60].

•	 Force transmission deficit (cytoskeletal cardiomyopa-
thy) This group involves genes encoding proteins com-
prising the cytoskeleton like filamins, dystrophin, and 
desmin. Pathogenic variants in these genes can lead to 
muscular dystrophies that are very often associated with 
DCM. Desmin (DES) encodes a cytoskeletal protein, a 
muscle-specific intermediate filament, that helps inte-
grate the sarcolemma, parts of the nuclear membrane, 
and the Z-disk. Variants in DES may cause a wide pheno-
typic spectrum of different or overlapping cardiomyopa-
thies, skeletal myopathies, or mixed myopathies (skeletal 
and cardiac). Cardiac manifestations may be expressed in 
the form of restrictive cardiomyopathy, DCM, conduction 
system disorders, Vas, or SCD [61]. Dystrophin (DMD) 
is located in the X chromosome, showing an X-linked 
pattern of inheritance. It has an important role in the 
formation of a mechanical link between the intracellular 
cytoskeleton and the extracellular matrix. Heart involve-
ment is found in 90% and 70% of the cases of Duchenne’s 
and Becker’s muscular dystrophies respectively [62, 63]. 
Filamins are large proteins that are responsible for the 
stabilization of actin filaments and their linkage to the 
cell membrane. Filamin C truncation variants are asso-
ciated with a severe arrhythmogenic DCM phenotype, 
without the presence of overt skeletal muscle disorder 
[64].

•	 Deficits of intercellular adhesion (desmosomal car-
diomyopathies) Pathogenic variants in genes encoding 
desmosomes have been described in both arrhythmogenic 
right ventricular cardiomyopathy (ARVC) and DCM. Up 
to 13% of DCM cases have been associated with desmo-
somal mutations [65].

Other  Variants in the RBM20 gene, involved in the regula-
tion of titin splicing, cause a DCM phenotype with frequent 
malignant VAs [7, 66]. BAG3, a gene encoding an antiapop-
totic protein has also been implicated in the development of 
LV dysfunction and DCM phenotype [7, 67].

Diagnosis

DCM patients often show intermediate phenotypes not ful-
filling the standard diagnostic criteria due to variable phe-
notypic expression and age-dependent penetrance [68, 69]. 

Advanced imaging techniques such as CMR are able to iden-
tify subtle or even extensive myocardial scar in patients with 
normal LV dimensions and function. Significant VAs and 
SCD may precede any evident structural or morphological 
changes. Pinto et al. attempted to overcome these limita-
tions, by proposing a revised definition for DCM in 2016 
and updating the diagnostic criteria for relatives of DCM 
patients. Three intermediate categories were proposed: iso-
lated ventricular dilation, arrhythmic cardiomyopathy, and 
hypokinetic non-dilated cardiomyopathy (HNDC) [2] which 
filled the gap between no phenotypic expression and fully 
expressed DCM. HNDC was defined as “left ventricular or 
biventricular global systolic dysfunction without dilatation 
(defined as LVEF < 45%), not explained by abnormal loading 
conditions or CAD.” Furthermore, the concepts of variable 
penetrance and gradual progression of the disease from the 
preclinical to the clinical phase were emphasized, as well as 
the need for reclassification of the relatives after each follow-
up. A preclinical phase with no or mild cardiac abnormalities 
such as the expression of anti-heart antibodies or mild LV 
dilatation was recognized in carriers of DCM-causing vari-
ants who were identified through family screening [37–39]. 
The spectrum of DCM was therefore segregated into different 
stages, some belonging in the preclinical, early phase with no 
clear phenotypic expression and others belonging to the clini-
cal phase, as shown in Fig. 1. In 2019, Towbin et al. intro-
duced the term “arrhythmogenic cardiomyopathy” via the 
HRS expert consensus statement on evaluation, risk stratifi-
cation, and management of arrhythmogenic cardiomyopathy 
(ACM). ACM was described as a primary arrhythmogenic 
disorder of the myocardium incorporating genetic, systemic, 
infectious, and inflammatory disorders [70]. There is a sig-
nificant overlap of the ACM phenotype with other cardiomy-
opathies, particularly DCM and should not be confused with 
the arrhythmic cardiomyopathy described as the preclinical 
phase of DCM by Pinto et al.

Diagnostic criteria of DCM in relatives

Family screening is essential in relatives of patients with 
DCM or HNDC, as it allows early detection of the disease 
and early treatment that may help improve prognosis and 
delay progression [34, 68]. Pinto et al. described diagnos-
tic criteria in DCM relatives and defined what is considered 
familial DCM. Major and minor diagnostic criteria were 
proposed in DCM relatives (see Table 1). According to the 
findings, relatives are placed into the following 3 categories: 
definite disease, probable disease, or possible disease. This 
helps overcome the limitation of having several non-diagnos-
tic abnormalities overlapping with normal phenotypes or may 
be seen in very common diseases such as hypertension. As 
the clinical picture is often dynamic, relatives should be re-
categorized if more criteria are met after each follow-up visit.
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In the absence of a definite pathogenic variant in a family, 
familial disease is defined as the presence of: (i) 2 or more 
individuals (first- or second-degree relatives) with definite 

DCM or HNDC or (ii) 1 patient fulfilling the diagnostic cri-
teria for DCM or HNDC and a first-degree relative who suf-
fered SCD < 50 years of age and autopsy-proven DCM [2].

Fig. 1   Clinical spectrum of 
dilated cardiomyopathy. DCM, 
dilated cardiomyopathy; HNDC, 
hypokinetic non-dilated cardio-
myopathy; CM, cardiomyopa-
thy; AHA, anti-heart antibodies

DCM
(LV dila�on +
hypokinesia)

HNDC

Arrhythmic CM -
arrhythmias or

conduc�on defect

Isolated ventricular
dila�on - no hypokinesia

No cardiac expression -
muta�on carrier and/or AHA

posi�ve

Progressive phenotypic
expression

Preclinical phase

Clinical phase

Table 1   Diagnostic criteria for 
DCM relatives

CMR cardiac magnetic resonance, EMB endomyocardial biopsy, LGE late-gadolinium enhancement, LVED 
left ventricular end-diastolic, LVEF left ventricular ejection fraction, NSVT non-sustained ventricular tach-
ycardia, RWMA regional wall motion abnormalities, VPB ventricular premature beats

Major criteria

1. LVEF > 45% and ≤ 50%, unexplained by other causes
OR
2. Unexplained LVED dilatation according to normograms (> 2SD + 5%)
Minor criteria
1. Complete LBBB, or AV block (1st degree or higher)
2. Unexplained ventricular arrhythmia (> 100 VPBs/24 h or NSVT at ≥ 120 bpm
3. RWMA in the LV without an intraventricular conduction defect
4. Late gadolinium enhancement of non-ischemic origin in CMR
5. Non-ischemic myocardial abnormalities (inflammation, necrosis ± fibrosis) on EMB
6. Serum organ-specific and disease-specific anti-heart antibody by ≥ 1 autoantibody tests
Disease probability
Definite disease:
Criteria for DCM or HNDC are met
Probable disease:
1 major + ≥ 1 minor criterion
OR
1 major + causative mutation identified in the proband
Possible disease:
2 minor criteria
OR
1 minor + causative mutation identified in the proband
OR
1 major (no major or genetic data in family)
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Diagnostic workup in patients and relatives

The broad spectrum of disorders leading to DCM mandates a 
systematic approach to facilitate the identification and man-
agement of rarer but specific forms of DCM. It should be 
emphasized that the diagnostic workup, management, and fol-
low-up of DCM patients are a multifactorial process. Figure 2 

depicts a management algorithm including the indications for 
ICD implantation according to the genetic substrate of DCM.

Basic evaluation should include personal and family his-
tory, physical examination, electrocardiogram (ECG), car-
diac imaging and lab testing. The identification of disease-
specific diagnostic clues (red flags) is critical and should 
guide further diagnostic workup [68]. This may include 

Fig. 2   A clinical management algorithm for DCM. CMR, cardiac 
magnetic resonance; CRT, cardiac resynchronization therapy; DCM, 
dilated cardiomyopathy; EPS, electrophysiological study; hs-Tn, high-
sensitivity troponin; ICD, implanted cardioverted defibrillator; LGE, 
late gadolinium enhancement; LVEF, left ventricular ejection fraction; 
NSVT, non-sustained ventricular tachycardia; SCD, sudden cardiac 

death. * A diagnosis of myocarditis or peripartum cardiomyopathy 
does not exclude the possibility of familial disease. # Genetic testing 
should be considered in all cases of DCM, including sporadic cases. An 
implanted cardioverted defibrillator may be still considered for patients 
not fulfilling established criteria of high risk of extensive myocardial 
fibrosis, ventricular arrhythmogenicity, elevated biomarkers

1178 Heart Failure Reviews (2022) 27:1173–1191
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CMR, endomyocardial biopsy (EMB), and genetic testing. 
If myocarditis is clinically suspected, EMB for detecting 
infectious agents via histology, immunohistology, and poly-
merase chain reaction is recommended [2]. When storage or 
metabolic diseases are suspected and cannot be confirmed 
otherwise, EMB may also be considered. Secondary eti-
ologies leading to DCM, especially CAD should always be 
excluded. Exclusion of CAD in patients older than 35 years 
of age or younger patients with family history of early CAD 
or with significant CAD risk factors is recommended [2].

Laboratory testing should include hemoglobin and 
complete blood cell count, liver and kidney function tests, 
thyroid-stimulating hormone, serum iron, ferritin, calcium, 
phosphate, natriuretic peptides, Troponin, anti-heart anti-
bodies, and urine analysis for detection of proteinuria [68]. 
Further testing may be required according to the yield of 
first-line testing if suspicion of a specific etiology arises.

Dysfunctional hearts are often metabolically deranged. 
However, the extent to which this might be detectable before 
the appearance of DCM phenotype is currently unknown. 
Different biomarkers may be released according to the patho-
physiological process, such as strain, myocyte injury, and 
oxidative stress. The most commonly used biomarkers for 
heart failure patients are natriuretic peptides, brain natriu-
retic peptide (BNP) and NT-proBNP that are released during 
myocardial stretching. Galectin-3 (Gal-3) is an inflammatory 
component involved in the pathogenetic mechanisms of myo-
cardial fibrosis and has been described as a prognostic marker 
since the presence of myocardial fibrosis poses a worse prog-
nosis in DCM. The higher the Gal-3 levels the more intense 
the myocardial fibrosis and LV remodeling [71–73]. Interleu-
kin-33/ST2, belonging to the family of Interleukin-1 (IL-1), 
is another biomarker reflecting inflammation and myocardial 
fibrosis [74] that may be used for risk stratification and prog-
nosis in DCM. As a biomarker, it is considered superior to 
others such as BNP, troponins, and Gal-3 because it is not 
affected by age, sex, renal function, heart failure history, and 
body mass index (BMI) [75]. Other more common biomark-
ers or conditions reflecting a worse prognosis are increased 
troponins, anemia, and renal failure.

Electrocardiogram (ECG) abnormalities are reported in 
up to 80% of patients with DCM [76–78]. A distinct ECG 
phenotype seems to be related to specific genetic or acquired 
forms of DCM. Sinus node disease, AV conduction defects, 
and marked bradycardia are common in LMNA and SCN5A 
variants. Conduction abnormalities are characteristic of 
DMD and DES. Low voltage on the ECG, especially in 
the limb leads, are characteristic of FLNC, PLN, and DSP 
and may precede any echocardiographic changes. T wave 
inversion is found in FLNC and DSP. VAs are frequently 
observed before overt LV dysfunction in LMNA, FLNC, 
DES, DSP, and SCN5A carriers. The combination of conduc-
tion abnormalities and complex VAs is highly suggestive of 

an LMNA variant. A “posterolateral infarction” pattern with 
pathologic Q waves (pseudonecrosis) in the inferior and lat-
eral leads should raise suspicion of muscular dystrophy [79].

Specific ECG characteristics have been recognized as 
prognosticators in DCM. A meta-analysis suggested the 
potential use of QRS fragmentation and T wave alternans 
as prognostic markers for VAs [24]. Atrial fibrillation (AF) 
has been associated with a worse outcome and need for 
heart transplantation in DCM [80]. Left bundle branch block 
(LBBB), present in about a third of patients with DCM, may 
precede the development of structural changes in the heart 
and may serve as a poor prognostic indicator [81].

Current criteria for the diagnostic workup of DCM rela-
tives include LBBB, AV block (PR > 200 ms or higher 
degree AV block), or unexplained VAs (> 100 ventricular 
premature beats in 24 h or NSVT at a rate of > 120 bpm 
[2]. In athletes, LBBB, QRS duration > 140 ms, frequent 
or complex ventricular arrhythmias, T wave inversion, 
and pathological Q waves are considered pathological and 
should prompt further investigation [82, 83].

Echocardiography

Echocardiography is vital in the diagnosis, follow-up, and 
family screening of DCM. LVEF is a vital parameter and an 
independent predictor of outcome, since low LVEF values 
and NYHA functional classes III–IV at baseline have been 
associated with a higher incidence of death or heart trans-
plantation, in both adults and children [84]. LV dilatation 
has been described as a predictor of early VAs [29, 85]. 
Diffuse LV hypokinesia is usually seen but regional wall 
motion abnormalities may also be present. It is important 
to distinguish these from wall motion abnormalities due to 
CAD, especially if the abnormalities correspond to the ana-
tomic perfusion of a coronary artery. Usually, LV eccentric 
hypertrophy is present in DCM, along with LV diastolic dys-
function. A restrictive LV filling pattern is independently 
associated with a poor outcome and heart transplantation 
[86]. Functional mitral regurgitation, if present, is inde-
pendently associated with poor prognosis [87]. One of the 
strongest prognostic indicators in DCM is left ventricular 
reverse remodeling (LVRR), defined as an LVEF increase 
of > 10% or an LVEF > 50% and a decrease in indexed 
LVEDD of > 10% or indexed LVEDD of > 33 mm/m2 at 24 
months [88]. Right ventricular dilatation and dysfunction 
have prognostic significance and are correlated with a worse 
functional status and advanced LV failure [89].

Newer echocardiographic techniques, including assess-
ment of myocardial strain and speckle-tracking deforma-
tion analysis have been used to detect early phase DCM 
in relatives with normal LVEF [90]. Global-longitudinal 
strain is currently being used as a predictor of mortality in 
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symptomatic DCM patients but also seems promising in 
identifying early ventricular dysfunction in asymptomatic 
variant carriers [90, 91].

Cardiac magnetic resonance

CMR is very helpful in assessing ventricular size and func-
tion along with tissue characterization, especially through 
the detection of fibrosis via late-gadolinium enhancement 
(LGE) [34].

In patients with desmoplakin disease who have a normal 
ECG and VAs of LV origin, the only abnormality detected 
has been LGE in LV [92]. Sepehrkhouv et al. demonstrated a 
distinct LGE pattern in patients with pathogenic PLN R14del 
variants in relation to the pattern seen in other hereditary car-
diomyopathies [93]. Both of the aforementioned cardiomyo-
pathies demonstrated fibrosis in the posterolateral wall of the 
LV, while PLN R14del also showed significantly more fibrosis 
in the free wall of the LV than the desmosomal variants.

Exercise stress imaging

Exercise stress imaging has shown some promising results as 
a potential tool in the diagnosis and prognosis of DCM. The 
distinction between individuals with DCM and otherwise 
healthy, athletic individuals is frequently challenging since 
the two may share an overlapping phenotype due to cardiac 
remodeling. Millar et al. indicated that an LVEF increase 
of > 11% during exercise echocardiography, may distinguish 
athlete’s heart from early DCM [94]. Another study showed 
the utility of exercise stress CMR in distinguishing asympto-
matic patients with suspected DCM from healthy individuals 
with exercise-induced cardiac remodeling. Patients who had 
genotype-positive and phenotype-positive DCM had a peak 
exercise cardiac index below the 35th percentile specific for 
their age and sex in contrast to healthy individuals [95]. The 
availability of tools that enable clinicians in distinguishing 
athlete’s heart from DCM is vital for the prevention of SCD 
since athletes with a clinical diagnosis of DCM should be 
excluded from most competitive sports [96].

Familial screening

Familial evaluation is critical in the diagnostic workup of 
patients with DCM as it allows the identification of relatives 
with clinical or subclinical DCM in familial cases and pro-
vides critical information regarding the phenotypic expres-
sion of the condition [26]. Thus, families with an aggressive 
arrhythmic profile, high ventricular arrhythmia burden, or 
extensive myocardial fibrosis may be identified. Impor-
tantly, a negative family history of DCM does not exclude 

familial disease, since systematic clinical screening may 
reveal asymptomatic or subclinical DCM cases [97].

All first-degree relatives should be screened with ECG 
and echocardiogram. Ambulatory Holter monitoring should 
be considered if there is evidence of an arrhythmic familial 
phenotype or symptoms suggestive of arrhythmia. Family 
screening should begin in childhood and repeated annually 
through adolescence and every 2–3 years in adulthood if no 
abnormalities are detected.

Genetic testing

According to the latest HRS expert consensus statement 
on arrhythmogenic cardiomyopathy, genetic testing should 
be performed in all individuals with a clinical diagnosis of 
cardiomyopathy or in decedents who were diagnosed with 
cardiomyopathy at necropsy [70]. The initially selected gene 
panel and subsequent interpretation should both be based 
on the phenotype of the patient. Cascade genetic screening 
and genetic counseling should be offered to first degree rela-
tives if a pathogenic or likely pathogenic variant has been 
detected in the family [2].

Practice until today suggested that genotype and phe-
notype negative family members were assured that they 
carry no risk for developing DCM, and their follow-up was 
ceased. However, non-monogenic DCM cases have been 
described [98], and numerous variants that may potentially 
affect the phenotypic expression are still classified as vari-
ants of unknown significance [99, 100]. At the same time, 
environmental factors play a vital role in the expression of 
DCM. It is therefore plausible to say that genotype-negative 
relatives have a lower risk of developing DCM rather than no 
risk at all. Continuous surveillance but at more sparse inter-
vals, possibly excluding genes with high penetrance such as 
LMNA, is an alternative strategy for these individuals.

Risk stratification

For years, risk stratification of DCM patients was based on 
the degree of LV dysfunction and the presence of symptoms. 
In symptomatic patients with LVEF < 35% and a predicted 
survival of more than 1 year, ICD implantation for primary 
prevention of SCD is indicated [60, 70, 101]. However, 
a considerable fraction of patients who experience SCD 
have an LVEF > 35% [102, 103]. An increasing amount of 
research supports the utilization of late gadolinium enhance-
ment (LGE) in the risk stratification of DCM patients. LGE 
is an effective predictor of mortality, hospitalization, and 
SCD [104, 105]. The presence, extent, and patterns of LGE 
may also provide predictive data for malignant VAs or LV 
reverse remodeling [71, 105, 106]. In a meta-analysis by di 
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Marco et al., no significant correlation was found between 
LVEF (above or below 35%) and malignant VAs [105]. 
Instead, there was a significant correlation between VAs and 
the presence and extent of LGE. The correlation between 
LGE and VAs was maximal in studies that included only 
patients with primary prevention ICDs.

Due to systematic familial and preparticipation sports 
screening, DCM patients are commonly detected at an ear-
lier and asymptomatic stage. The risk of heart failure-related 
events in these patients is low while the risk of life-threatening  
VAs and SCD may be high. Myocardial fibrosis and specific 
genetic substrate related to an arrhythmic phenotype have 
emerged as additional risk stratification markers.

Genotype–phenotype studies have led to the realiza-
tion that patients with specific genotypes benefit from an 
ICD for primary prevention even in the absence of severe 
LV dysfunction. Patients carrying malignant LMNA var-
iants were firstly recognized as a distinct group with a 
higher SCD risk [101]. In a recent HRS expert consen-
sus document, recommendations for ICD placement in 4 
more genes associated with an increased arrhythmic risk 
in moderately reduced LVEF (BAG3, PLN, FLNC, and 
TMEM43) were provided [107–111].

More specifically:

–	 LMNA In a cohort comprising 269 LMNA carriers, 
the presence of 2 or more of the following risk factors 
were associated with malignant VAs and SCD: non-
sustained ventricular tachycardia (NSVT), LVEF < 45% 
at first evaluation, male sex, and non-missense muta-
tions [59]. An ICD implantation is a class IIa indication 
for LMNA carriers and ≥ 2 of these risk factors [60, 70, 
101].

–	 BAG3 Various pathogenic BAG3 variants have been 
associated with DCM, characterized by high pen-
etrance > 40 years and a high risk of progressive heart 
failure (HF) [67] (p. 3), [112–114]. A point mutation 
in BAG3 gene is already known for causing myofibril-
lar myopathies with HCM or restrictive cardiomyopa-
thy [67] (p. 3), [110] [113]. There was large phenotypic 
variability, with 8 out of 18 mutation carriers with DCM 
undergoing heart transplantation or dying of advanced 
heart failure, while 3 other carriers showed no penetrance 
[67]. Risk factors for adverse outcomes in patients with 
BAG3 pathogenic variants include: male sex, decreased 
LVEF, and enlarged LVEDD [112].

–	 PLN A large multicenter cohort study found that carriers 
of the founder pathogenic R14del PLN variant were at 
high risk for malignant VAs or end-stage HF. Sustained 
or NSVT and LVEF < 45% were independent risk factors 
for the aforementioned outcomes [111]. High mortality 
and a poor prognosis were noted from late adolescence. 
Of note, R14del may cause both, DCM, and ARVC. 

Therefore, in patients with phospholamban cardiomyo-
pathy and LVEF < 45% or NSVT, an ICD should be con-
sidered (class IIa indication) [7].

–	 FLNC Filamin C plays an essential role in the attachment 
of sarcomeres to the plasmatic membrane. Truncating-
FLNC variants have been associated with skeletal and 
cardiac myofibrillar myopathies [115] and an overlapping 
phenotype of left-dominant arrhythmogenic cardiomyo-
pathy and DCM with high risk of malignant VAs and 
premature SCD. An autosomal dominant inheritance 
pattern was indicated with very high penetrance above 
40 years old (97%). The phenotype comprised LV dila-
tion and LV dysfunction, myocardial fibrosis, inferolat-
eral negative T waves, and low QRS voltages on ECG. 
VAs were observed in 82% of the patients with a frequent 
family history of SCD (40 cases in 21 out of 28 families) 
[64]. Twelve carriers experienced sudden cardiac arrest 
with a mean LVEF of 39.6% ± 12% (range 21 to 54%). 
Accordingly, in individuals with FLNC mutation and 
LVEF < 45% an ICD is a class IIa indication [7].

–	 TMEM43 A study in carriers of a transmembrane pro-
tein 43 variant (p.S358L-TMEM43) found better survival 
in those treated with an ICD rather than those under the 
conventional non-ICD management [110]. Males seem 
to have a worse prognosis than female carriers since 
affected males were hospitalized 4 times more often 
than affected females and died younger [116]. The most 
frequent ECG abnormality was poor R wave progression 
and was mostly seen in males [110].

–	 DSP Desmoplakin has been implicated in the develop-
ment of LV dysfunction and may be involved in DCM 
and left dominant ARVC [117]. LGE in the LV may be 
the only abnormality found in patients carrying patho-
genic variants of DSP with a normal ECG and arrhyth-
mias of LV origin [92]. The mutation follows an autoso-
mal dominant inheritance pattern.

Non-invasive parameters that have been used in ischemic 
cardiomyopathy such as premature ventricular complexes, 
NSVT, late potentials, and prolonged QTc [118] may also be 
relevant in DCM [119], though further studies are warranted.

Mild DCM in athletes vs. athletic heart syndrome

Left ventricular dilatation and low-normal left ventricu-
lar function (LVEF < 55%) occurs in 10–15% of competi-
tive athletes, especially those engaging in intense endur-
ance training. We demonstrate a practical diagram (Fig. 3) 
for differentiating between physiological left ventricular 
enlargement and subclinical DCM in athletes, adapted 
from Millar et al. [94].The combination of ECG, BNP, 
24 h-Holter monitoring, and CMR failed to diagnose more 
than 30% of athletic individuals with mild DCM. Exercise 
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echocardiography has a much better diagnostic ability. The 
inability of an individual to increase LVEF by > 11% or an 
increase of peak LVEF > 63% has more than 80% sensitivity 
and 90% specificity for DCM [94].

Genotype dictates sports participation eligibility

In the 2020 ESC Guidelines on Sports Cardiology, specific 
recommendations have been described for sports participation 
in individuals with DCM. In the absence of limiting symptoms 
or exercise-induced VAs, participation in low to moderate-
intensity recreational exercise should be considered in all DCM 
patients regardless of the LVEF [120]. In the presence of LMNA 
or FLNC genotype, high intensity exercise is prohibited, even in 
phenotype-negative individuals [120]. In contrast, participation 
in high- or very high-intensity exercise including competitive 
sports may be considered in asymptomatic individuals with 
the following: LVEF 45–50%, no frequent or complex VAs on 
Holter monitoring or during exercise testing, absence of LGE 
on CMR, ability to increase LVEF by 10–15% during exercise, 
and no high-risk genotype (LMNA or FLNC).

Genetics: the key to the future of DCM

Genetics have a promising potential to unlock and demystify 
many of the “blind spots” of the current management of 
DCM. The rapid expansion and advancements in genetics 
have come with its own challenges. The interpretation of 
genetic test results and accurate categorization of variants 
is a laborious and complicated process and should ideally 
be performed by multidisciplinary teams of molecular car-
diologists, molecular pathologists, clinical geneticists, and 
genetic counselors.

Genotype‑directed treatment

With the development of genetics, the concept of direct-
ing the treatment according to the genotype seems promis-
ing [121]. Τhe understanding of gene-specific pathogenetic 
mechanisms and the unraveling of the functional effects of 
each variant should dictate different therapeutic strategies. 
The first attempts towards personalized management of 
DCM patients based on precision medicine have been made:

•	 The gain-of-function variant pR222Q in the SCN5A gene 
is associated with a severe form of arrhythmic DCM 
[122–124]. Standard heart failure therapies are relatively 
ineffective in these patients while a dramatic improve-
ment was seen after administration of sodium-channel 
blocking drugs [123, 125, 126].

•	 The study of molecular changes involved in LMNA-
mutated mice revealed increased cardiac activity of the 

ERK1/2, JNK and p38 MAP kinases. Treatment with a 
p38 inhibitor in LMNA-mutated mice showed preven-
tion of LV dilation and LV dysfunction [127]. Increas-
ing evidence of beneficial effects of p38 inhibition led to 
an international phase 3 clinical trial (NCT03439514), 
investigating the benefit of ARRY-371797 in symp-
tomatic DCM patients carrying the pathogenic LMNA 
variant. This randomized, double-blind study is the first 
genotype-specific treatment study which will hopefully 
pave the way for other gene-specific treatments.

•	 Truncating mutations in the TTN gene seem to cause an 
increase in the cardiac metabolism that eventually leads 
to sarcomere dysfunction [128, 129]. Targeting the meta-
bolic alterations caused by TTN mutations could offer a 

Fig. 3   Diagram for distinguishing between subclinical DCM and ath-
letic heart syndrome. BNP, brain natriuretic peptide; DCM, dilated 
cardiomyopathy; ECG, electrocardiogram; EF, ejection fraction; NT-
proBNP, N-terminal pro hormone BNP; SCD, sudden cardiac death; 
VO2, oxygen consumption. # For a pathogenic or likely pathogenic 
variant in a gene associated with dilated cardiomyopathy, * excluding 
Troponin rise after strenuous exercise
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potential gene-directed treatment for preventing progres-
sion into the DCM phenotype.

•	 Several gene-editing methods that may directly alter vari-
ants are currently under investigation. One such method 
is the genome-editing tool known as CRISPR/Cas9 
which can target specific single-gene mutations such as 
DMD [130]. An in vivo genome editing study showed 
restoration of dystrophin expression and cardiac function 
in dystrophic mice [131].

•	 Another attractive approach is the utilization of induced 
pluripotent stem cells (iPSCs) and their subsequent dif-
ferentiation into cardiomyocytes (iPSCs-CMs). Stud-
ies using iPSC-CM modeling have been used in LMNA 
[132], DES [133], TNNT2 [134, 135], PLN [136], RBM20 
[137], TTN [138], and BAG3 [139] variants, with a great 
fraction of these describing disruption of sarcomeres, 
decreased contractile force and dysfunctional regulation 
of calcium. In vivo use of β-blockers and calcium antago-
nists showed phenotype attenuation. Two iPSC-CM stud-
ies on PLN R14Del used targeted gene correction and 
lead to full phenotype reversion in vitro [136, 140].

Therefore, functional genomics may help in guiding treat-
ment after the identification of the specific function-altering 
effects of genetic defects. The main challenges in this field 
are to identify the specific functional change and study any 
modifier genes or environmental factors that possibly affect 
the phenotype expression.

Genetic screening and variant classification

The most important step in genetic testing is the correct 
identification and interpretation of a pathogenic variant. Not 
only there is a multitude of variants of unknown significance 
(VUS), but also already published genes are currently being 
re-analyzed and re-classified. The ClinGen Cardiovascular 
Clinical Domain Working Group for cardiovascular disor-
ders is currently in the process of adapting some guidelines 
of variant interpretation in the genes known to be involved 
in DCM [141]. Table 2 shows a list of the most up-to-date 
genes that should be included in the screening of DCM 
according to the latest position papers and guidelines. In 
addition, specific ICD indications and genotype–phenotype 
correlations are included.

Decoding the impact of disease‑modifying factors

The large heterogeneity in phenotype expression of a spe-
cific genetic variant is a common clinical conundrum. It 
highlights the complex genetic architecture of DCM includ-
ing the presence of multiple variants in the same individual, 

modifier genes, and the effect of environmental and demo-
graphic variables such as age, ethnicity [142], sex, and life-
style. For example, deleterious TTN variants are more likely 
to manifest with a DCM phenotype in Europeans than in 
African-Americans [141]. A multi-parametric score, predict-
ing the likelihood of DCM expression or arrhythmic risk, 
while considering the genotype and disease-modifying fac-
tors of each individual would be an ideal clinical tool but 
an enormous amount of research is needed before this is 
achieved and applied in practice.

Prognostic markers and genotype 
correlation: the importance of long term 
follow‑up

An important parameter used during follow-up of DCM patients, 
that reflects improvement and a better prognosis is LVRR.

With adequate pharmacological and device treatment, 
about 40% of DCM patients experience significant LVRR 
[143]. After treatment initiation, the process of LVRR usually 
needs from 6 months to 2 years to take place [144]. LVRR and 
the time required to achieve it seem to be strongly related to 
the long-term prognosis of DCM patients [145]. Some impor-
tant parameters shown to be affecting the prognosis of the dis-
ease and the likelihood of LVRR in the first stages of DCM, 
should be systematically assessed both at diagnosis and during 
follow-up. These include right ventricular function [146, 147], 
functional mitral regurgitation (MR) [148, 149], the presence 
of LBBB at diagnosis or during follow-up [81, 143].

Recent studies researched the correlation between genotype 
and the likelihood of LVRR independent of other clinical param-
eters. Verdonshot et al. suggest an increased likelihood of LVRR 
with TTN pathogenic variants [150]. In contrast, LMNA muta-
tions seem to be strongly associated with a lower rate of LVRR. 
Likewise, another study by dal Ferro et al. demonstrated a lack 
of LVRR with specific genotypes including FLNC, DES, DMD, 
and other cytoskeletal Z-disk genes, followed by LMNA while 
again TTN mutations seemed to be associated with higher rates 
of LVRR under optimal medical treatment [151].

About 15% of DCM patients show normalization of their LV 
size and function after sufficient medical treatment. It seems 
that they maintain an apparently normal cardiac function during 
a 10-year follow-up. However, in a longer follow-up duration 
(15 years) 5% of these patients seem to deteriorate again. Their 
cardiac function progressively worsens and may die of refractory 
heart failure, require heart transplantation or ICD implantation 
[29, 152]. This is known as the “apparent healing phenomenon”. 
Therefore, even patients that have apparently healed should con-
tinue their lifelong follow-up and medical treatment.
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Table 2   Genes to be screened in the workup of DCM — genotype–phenotype correlation and ICD indications [20, 68–70, 154]

Gene (protein) Frequency in 
patients with 
DCM  [155]

Inheritance pattern Phenotype [77, 156]

TTN [157] (Titin) Truncating 
variants 
18–25% 
[30, 53, 54]

AD, AR Low prevalence of LBBB, atrial fibrillation
Higher frequency of LVRR [158, 159]

ACTC1 [160] (Actin — alpha cardiac 1)  < 1% AD p. Gly247Asp variant is associated with atrial 
septal defect and late onset DCM [161]

p.(H175R) and p.(Y220H) have been associated 
with severe forms of childhood DCM [160]

LDB3 [162] (LIM domain binding 3)  < 1% AD Associated with LVNC phenotypes [163]
MYBPC3 [164] (Myosin-binding protein C) 2% AD Weak evidence — has been reported in end stage 

(burned out phase) HCM
LVNC phenotype

MYH6 [165] (Myosin heavy chain 6, alpha) 4% AD AV conduction defects, sick sinus syndrome
MYH7 [166] (Myosin heavy chain 7) 4% AD AV conduction defects may coexist with myopathy 

early onset
TAZ [167] (Tafazzin) Unknown X-linked DCM with syndromic features: Barth syndrome 

(DCM, myopathy, neutropenia, short stature)
TNNC1 [168] (Troponin C)  < 1% AD
TNNI3 [169] (Troponin I)  < 1% AD, AR
TNNT2 [166] (Troponin T)  < 1% AD
TPM1 [170] (Tropomyosin 1)  < 1% AD
LMNA [171] (Lamin A/C) 6% [25, 27] AD Accelerated disease

Atrial fibrillation
VAs often before overt LV dysfunction
AV conduction defects (marked bradycardia/AV 

block)
BAG3 [67] (BCL2–associated anthanogene) Unknown AD High penetrance > 40 years

worse prognosis in nonsense variants
Male sex, reduced LVEF and increased LVEDD 

associated with a worse prognosis [172] (p. 3)
May coexist with myopathy

FLNC [173] (Filamin C) 0–3% AD VAs often before overt LV dysfunction
Low QRS voltage
Overlapping phenotype of dilated and left-dominant 

arrhythmogenic cardiomyopathies complicated by 
frequent premature SCD

RBM20 [66] (RNA binding motif protein 20) Unknown AD Malignant VAs
High risk of SCD

TMEM43 [174] (Transmembrane protein 43)  < 1% AD Poor R wave progression in precordial leads
Founder variant in Newfoundland
SCD (M > F) [174]

PLN [175] (Phospholamban) 0–12% AD Low QRS amplitude, RBBB and loss of inferior 
R waves

Founder mutation in Netherlands
High risk of SCD
Significant posterolateral and free wall fibrosis in 

PLN R14del
DSP [107] (Desmoplakin) 1–13% AD, AR (Carvajal syndrome), Low QRS Voltage, VAs

Extensive fibrosis may precede LV systolic 
dysfunction and LV dilatation

Episodic myocardial injury
Cardiocutaneous syndrome

DSG2 [176] (Desmoglein 2) 4–15 AD Frequent LV involvement
DSC2 [155] (Desmocollin 2) Unknown AD, AR
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Conclusions

Dilated cardiomyopathy, an “umbrella” term describing the final 
common phenotype of various etiologies and gene–environment 
interactions, is now entering a new epoch. We are witnessing 
the end of the “one-size-fits-all” approach aiming to alleviate 
symptoms or possibly delay disease progression and the begin-
ning of the precision medicine era. We endorse the concept that 
we are no longer targeting symptomatic treatment, but instead, 
we are searching and targeting for the root of the disorder in each 
individual, with disease prevention or even disease reversal as 
a goal [153]. We believe that the creation of multi-disciplinary 
teams in healthcare units may form the core of the individual-
ized management of DCM patients bringing the best patient 
care possible.
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