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Abstract
Heart failure is a debilitating clinical syndrome associated with increased morbidity, mortality, and frequent hospitalization,
leading to increased healthcare budget utilization. Despite the exponential growth in the introduction of pharmacological agents
and medical devices that improve survival, many heart failure patients, particularly those with a left ventricular ejection fraction
less than 40%, still experience persistent clinical symptoms that lead to an overall decreased quality of life. Clinical risk
prediction is one of the strategies that has been implemented for the selection of high-risk patients and for guiding therapy.
However, most risk predictive models have not been well-integrated into the clinical setting. This is partly due to inherent
limitations, such as creating risk predicting models using static clinical data that does not consider the dynamic nature of heart
failure. Another limiting factor preventing clinicians from utilizing risk prediction models is the lack of insight into how
predictive models are built. This review article focuses on describing how predictive models for risk-stratification of patients
with heart failure are built.
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Abbreviations
ANN Artificial neural networks
AUC Area under the curve
CI Confidence interval

INTER-CHF International Congestive Heart Failure
KNN K-nearest neighbors
LR Linear regression
LVEF Left ventricular ejection fraction
NB Naïve Bayes
NYHA New York Heart Association
PRAISE Prospective Randomized Amlodipine

Survival Evaluation
SHF Seattle Heart Failure
SVM Support vector machine

Introduction

Heart failure is estimated to affect at least 64.3 million indi-
viduals globally [1]. Despite the availability of therapeutic
agents and medical devices that aim to prolong survival, many
heart failure patients still experience progressive disease and
eventually death, particularly in developing countries. The
International Congestive Heart Failure (INTER-CHF) study
recruited 5823 patients with heart failure and studied them
over 1-year [2]. Forty-two percent of these patients were in
New York Heart Association (NYHA) functional class III or
IV. In the entire study cohort, the 1-year all-cause mortality
was 16.5% (95%CI 15.4–17.6). However, patients residing in
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Africa had a higher mortality of 34% (95% CI 30.2–37.4)
within 1 year of follow-up [2]. The high mortality rate em-
phasizes the need for new, innovative strategies such as
predictive models that aim to risk-stratify patients with
heart failure, ensuring that high-risk individuals are
identified early and subjected to interventions that delay
disease progression.

Both statistical and recently, machine learning techniques
are used to create risk predicting models. There is a significant
overlap between traditional statistical methods and machine
learning algorithms, and one method cannot be deemed supe-
rior to the other. While the focus with statistics is to make
inferences based on the sample studied, machine learning fo-
cuses on learning patterns in datasets and subsequently mak-
ing predictions based on the learned observations. This review
aims to describe what predictive models are, how they are
created, and their strengths and weaknesses.

Risk prediction models

Before describing what predictive models are, we will define
the verb “predict” and the noun “model.” The Oxford English
dictionary defines “predict” as “stating that a specified event
will happen in the future.”Amodel is defined as a “simplified
description, especially a mathematical one, of a system or
process, to assist calculations and predictions” [3].

Predictive models are built using both statistical methods
and machine learning techniques. However, a paradigm shift
has occurred, where machine learning algorithms are becom-
ing popular because of their ability to consider complex asso-
ciations between clinical parameters. The sophisticated math-
ematical formulas used in machine learning for automated
medical image interpretation have also led to increased confi-
dence in using machine learning algorithms in the health sec-
tor. Furthermore, a wider variety of machine learning algo-
rithms is available for classification and regression tasks,
allowing the user to handpick the best performing model.

Heart failure predictivemodels created with statistical
methods

Rahimi et al. identified 64 multivariate statistical models
used in heart failure patients published between January
1995 and March 2013 [4]. Another systematic review by
Di Tanna et al. found 58 multivariate statistical models
predicting outcomes in patients with heart failure, pub-
l ished between March 2013 and May 2018 [5].
Seventeen of the models identified by Di Tanna et al.
predicted all-cause mortality, nine predicted cardiovascu-
lar death, and the rest predicted heart failure hospitaliza-
tion and composite endpoints [5]. The next section will
describe the techniques used to create multivariate linear
and logistic regression models.

Linear regression

Linear regression (LR) is used to predict a numeral or contin-
uous outcome. In simple linear regression, the dependent var-
iable (outcome) is featured in the y-axis and the independent
variable in the x-axis (Fig. 1). The dependent variable only
changes when there is an adjustment of the values in the x-
axis. A scatterplot is used to establish a relationship between
the dependent and independent variables. A correlation coef-
ficient is then calculated if a linear relationship exists between
the variables in the x and y coordinates. The regression line or
straight line, is then plotted through the points [6]. The straight
line is given by the equation: y= a + β × x, where y is the
dependent variable; a is the y-intersect of the line; β is the
slope of the line, and x is the explanatory or independent
variable [6]. The predicted value (y), is found by sketching a
line that originates in the x-axis, connects to the regression
line, and ultimately a point in the y-axis (Fig. 1). For example,
the weight, plotted in the x-axis, will predict a numerical out-
come such as height (y). Multiple linear regression analysis
involves adding two or more predictor variables concurrently
and adjusting their respective regression coefficients [6]. This
statistical method is used to determine the relative contribution
of each of the predictors. The formula for multiple linear re-
gression is y = β0 + β1x1 + β2x2 + β3x3….βkxk + ε, wher y is
the dependent variable, x is the independent variable, β0 is
the y-intercept, ε the residual, and βk is the slope coefficient
for each predictor variables [7].

Logistic regression

Logistic regression predicts a binary outcome by estimating
the probability of an output belonging to a particular class.
When building a predictive model using logistic regression,
the first step is to utilize the univariable analysis to discover
the unadjusted association between each variable and the pre-
dicted class [8]. Categorical and continuous variables, usually
with a p value less than 0.25, are selected and included in the
multivariable analysis [9].

The second step entails placing all the selected variables
with a p value less than 0.25 in the multivariable logistic
regression model. In the final multivariable regression model,
variables with a p value more than 0.05 are subsequently
eliminated. In the third step, smoothed scatter plots are created
to assess the relationship between continuous variables and
the logit scale outcome. Step four entails evaluating for poten-
tial interactions between the selected predictor variables.
When building a model predicting mortality, the predicted
variable will be plotted in the y-axis and classified into two
categories: mortality (y = 1) and no mortality (y = 0). Predictor
variables such as age, left ventricular ejection fraction
(LVEF), NYHA, and serum sodium levels will be placed in
the x-axis. The log odds or logit of mortality will be calculated
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using the equation: log(p/1-p) = a + b × x, where p is the
probability, a is the intercept, b is the regression coefficient
of x, and x is the predictor variable [10].

Cox regression

The Seattle Heart Failure (SHF) model is one of the best
performing models built using data from 1125 heart failure
patients. A Cox regression model was used to select predic-
tors. The predicted versus actual 1-year survival rates in the
derivation cohort were 73.4% versus 74.3%. In the five vali-
dation cohorts, the predicted versus actual survival rates were
90.5% versus 88.5%, 86.5% versus 86.5%, 83.8% versus
83.3%, 90.9% versus 91.0%, and 89.6% versus 86.7% [11].
The data used to develop the model was obtained from a
registry of carefully screened patients from the Prospective
Randomized Amlodipine Survival Evaluation (PRAISE) trial,
possibly limiting generalizability in the wider population. The
online SHF risk calculator may be cumbersome for use in a
busy practice as it requires an imputation of 24 clinical and
laboratory parameters when estimating the risk of one and 5-
year mortality.

Cox proportional hazard is a regressionmodel used to mea-
sure an association between survival time and predictor vari-
ables. Patients are tracked from the time they enter the study
until the occurrence of an event. An event is defined as the
occurrence of a disease, relapse from therapy, discharge from
hospital, or death.Multiple predictors or covariates of survival
are added to the model to estimate their influence on survival,
analogous to a multivariate regression model. The Cox pro-
portional hazard model highlights how survival differs be-
tween the groups of patients studied by estimating the hazard
ratio, unlike the Kaplan-Meier survival curve, which only as-
sesses whether survival between groups differs (log-rank test
with a p value < 0.05).

The Cox proportional hazard model, as the name implies,
assumes that the covariates remain constant over time. This

assumption has been challenged by Giolo et al., who sug-
gested that heart failure prognostication models should be
built using covariates with time varying-effects [12]. In their
study, 500 patients with heart failure were followed between
2002 and 2006. Survival was analyzed using Cox proportional
hazard, variations of the Cox’s model and the Aalen’s additive
model. They used the patients’ age, serum sodium levels,
haemoglobin, serum creatinine, and the LVEF as covariates.
A high haemoglobin and LVEF were associated with a lower
risk of mortality, while the impact of age and sodium
remained constant over time [12].

Heart failure predictive models created with machine
learning techniques

The fundamental principle of machine learning is learning
from data and predicting an output, where y = f(x). The input
(x) is any group of features, commonly known as variables
used to predict an output (y). A machine is given a learning
task under any of the following conditions: supervised, unsu-
pervised, semi-supervised, and through reinforcement learn-
ing [13]. A computer can learn from a dataset with a labeled
output or outcome in supervised learning. For example, in a
dataset comprising of patients with heart failure, we may in-
clude a column header, mortality as the output. Within the
column “mortality,” we then capture whether the patient de-
mised or not by adding yes or no, respectively.

Unsupervised learning takes place when a computer learns
from unlabelled datasets. The data is subsequently clustered
into similar categories. Ahmad et al. used unsupervised learn-
ing in a large clinical data set of more than 40000 Swedish
heart failure patients to separate patients into four groups [14].
After 1 year of follow-up, there was a marked difference in
outcomes per cluster, with 1-year survival rates of 69%, 77%,
92%, and 93% [14].

In contrast, when the same heart failure patients were cat-
egorized based on the LVEF, only slight differences in 1-year

x1 x2

Predicted value of y

Intercept (a)

Slope (β)

Independent variable (x) 

Regression line
Dependent variable (y) 

y1

y2

Fig. 1 Linear regression model
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survival (80%, 81%, 83%, and 84%) were noted [14]. Semi-
supervised learning occurs when learning takes place using a
combination of labeled and unlabelled datasets [13]. In rein-
forcement learning, a computer learns by trial and error by
performing tasks and receiving penalty and reward scores
for inaccurate and accurate responses, respectively [15].

How are predictive models built with machine
learning techniques?

Prior to building a predictive model using machine learning,
the data must be cleaned. When cleaning continuous vari-
ables, one can create box plots and verify the values of all
the outliers. The next step is to train the model. Training in-
volves splitting the dataset, where the majority of the dataset
(e.g., 70%) is used to train the model. During the training
process, the selected algorithm learns patterns in the dataset.
The remaining dataset is used for testing and validating the
model. During the test phase, the labeled output variable, for
example, “mortality” is hidden, and the machine learning al-
gorithm attempts predicting whether the patient demised or
not.

Numerous supervised learning algorithms are available and
are selected based on the task at hand, be it for classification of
a binary outcome or regression analysis of continuous fea-
tures. Some of the commonly used machine learning algo-
rithms for classification or regression analysis include deci-
sion trees, random forests, support vector machines (SVM),
K-nearest neighbors (KNN), and Naïve Bayes (NB).

Decision trees

A decision tree is a simple tree-shaped algorithm used to pre-
dict a categorical (binary) or numerical outcome. To illustrate
how a decision tree classifies data with a categorical outcome,
we will use data from patients with heart failure to build a
model predicting mortality, as shown in Fig. 2. Each decision
tree comprises of branches, leaf, and root nodes [16]. The root
node is the most superiorly located node, and the leaf or ter-
minal node is the final node that carries the decision. Each
branch of the tree represents a decision, occurrence, or reac-
tion. Data is then partitioned into subsets containing similar
values by using mathematical equations such as the Gini in-
dex, Chi-square, information gain, and a reduction in variance
[17].

Based on the known predictors of mortality in heart failure
patients, the decision tree algorithm can categorize a patient
with heart failure into class A (high risk) and class B (low risk)
(Fig. 2). Decision trees require minimal data preparation be-
fore building a predictive model, and their performance is not
affected by non-linear data distribution. The main disadvan-
tage is overfitting, which occurs when a model demonstrates
high-accuracy levels during training, makes inaccurate

predictions during testing, or has significantly lower test ac-
curacy than the training accuracy [18].

Random forest

A random forest algorithm is an ensemble decision tree that
operates by constructing multiple decision trees, creating a
forest. When building a classification model using a random
forest algorithm, the first step is to select random samples
from a given dataset. A decision tree is then constructed for
each sample. Predicted results are obtained from each decision
tree. Lastly, the most voted class from the predictions made by
each decision tree is selected as the final predicted class [19].
In a regression model, where the output class is numerical, the
mean or average value of the predicted output is used. The
random forest algorithm is ideal for handling datasets with
missing values. It also performs well on large datasets and
can rank features in the order of importance. The random
forest algorithm’s main disadvantage is that it is computation-
ally expensive, requiring more training time than most algo-
rithms [18].

Support vector machines

Support vector machines (SVM) perform classification and
regression analysis for both linear and non-linear data. The
main advantage of SVM lies in their ability to classify more
than two classes within the same dataset simultaneously.
Support vector machines categorize data by focusing on the
observations on the edge of each class (Fig. 3). A line or
hyperplane is then placed between the classes. The maximum
distance between the classes (support vectors) and the hyper-
plane is then chosen [20]. When the data cannot be linearly
separable, the data is transformed using a kernel function from
low dimension to high dimensional structure, rendering the
data separable.

K-nearest neighbors

The K-nearest neighbors (KNN) algorithm does not require
training. It is used for predicting a binary or continuous output.
Data is separated into clusters, and the number of nearest
neighbors is specified by stating the value of “K”, a constant
[13]. IfK = 3, three nearest neighbors are selected based on the
distance measured between the new data point and nearest
neighbors. If K = 6, the distance between the new data and
the six nearest neighbors is calculated. The new data point is
then placed in the class with the majority of votes. Figure 4
depicts how a KNN algorithm classifies a new data point. The
biggest challenge with using K-nearest neighbors lies in de-
ciding on the optimal number of neighbors to consider when
classifying a new data point. K-nearest neighbors also do not
perform well in an imbalanced dataset, since the model will
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give preference to the class with the higher number of obser-
vations [18].

Naïve Bayes

Naïve Bayes is a probabilistic method borrowed from statis-
tics, based on the Bayes’ theorem, which describes the prob-
ability of an event occurring based on previous knowledge of

the conditions associated with that particular event [21]. For
classification tasks, a model learns the probabilities of an ob-
ject for belonging to a specific class. The name “naïve” is
derived from the fact that a Naïve Bayes model assumes that
the occurrence of a particular feature is not dependent on the
occurrence of other features [22]. Pakhomov et al. used a
Naïve Bayes classifier and another classification algorithm,
perceptron to train models capable of identifying patients’
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Fig. 2 A decision tree algorithm
based on predictors ofmortality in
heart failure patients. BMI, body
mass index; BNP, beta natriuretic
peptide; LVEF, left ventricular
ejection fraction; NYHA, New
York Heart Association
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Fig. 4 K-nearest neighbor algorithm. The circle shows five data points
closest to the new data point (yellow). Since the majority of the neighbors
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Fig. 3 Support vector machine algorithm depicting classification of
linearly separable data using a decision boundary, the optimal
hyperplane. D− and D+ represent the shortest distance to the closest
negative and positive classes, respectively and the optimal hyperplane
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clinical notes with a diagnosis of congestive cardiac failure
[23]. The Naïve Bayes classifier yielded better recall on pos-
itive samples (95% vs 86%) but had low accuracy (57% vs
65%) [23]. Although the Naïve Bayes classifier is more com-
fortable implementing and has a lesser training period, its
main limitation is the assumption that all features are mutually
independent. For example, in the study by Pakhomov et al.,
the terms “heart” and “failure” were considered to occur inde-
pendently of each other, rendering the classifier unattractive
for text categorization [23].

Artificial neural networks

Artificial neural networks (ANNs) resemble neurons, the
functional unit of the central nervous system. Each ANN is
characterized by an input layer, a hidden layer, and an output
layer [24]. The input layer represents features extracted by the
model. A feature can be any continuous or categorical vari-
able, such as the left ventricular ejection fraction, weight, or
gender. The features in the input layer are used to predict an
output, represented by one or more categories. The nodes
displayed in the input layer communicate with each node in
the hidden layer (Fig. 5). Initially, an arbitrary value between
zero and one is used to grade the connection between the input
and hidden layers. The weighted sum of the input layers' sig-
nal is then passed through the activation function. The sig-
moid function transforms each inputs' weighted sum with a
negative value to a value close to zero. Positive values are
transformed into a value close to one. Most neural networks
are now designed with more than one hidden layer, increasing
their capacity to classify non-linear data.

Kwon et al. studied 2165 patients with acute heart failure to
predict in-hospital mortality, 1-year and 3-year risk of mortal-
ity using deep neural networks, random forest, logistic regres-
sion, support vector machines, and a Bayesian network. Deep
neural networks had the largest area under the curve (AUC) of
0.880, 0.782, and 0.813 for predicting in-hospital, 1-year and
3-year risk of mortality, respectively [25].

Model performance

Models predicting a binary outcome

The AUC is the most common parameter used to evaluate the
performance of classification models [26]. Models with good
discriminatory abilities have larger AUC, generally greater
than 0.70, whereas those with AUC less than 0.50 lack dis-
criminatory abilities [26]. Model performance is also evaluat-
ed with a confusion matrix, allowing one to calculate accura-
cy, precision, sensitivity, and specificity. Other performance
metrics include the F measure or F score, geometric mean,
and logarithmic loss [27].

Models predicting a continuous outcome

The overall fit of a linear regression model is evaluated with
the r-squared (r2). Simply put, the r2 is a measure of how
much the prediction error is reduced, relative to how much
potential error there is [28]. The error is estimated with indices
such as the mean absolute error, mean squared error, and the
root mean squared error [29].

Model flexibility

Model overfitting and underfitting are the most common
problems encountered when evaluating performance.
Overfitting occurs when a model shows high accuracy
scores during training and low accuracy scores during
validation. Model overfitting is minimized by adding
more data to the training set and reducing the number
of layers in the neural network. Underfitting occurs
when the model fails to classify data or make predictions
during the training phase. A low accuracy score and a
high loss identify a model that is underfitting [30].

Limitations of statistical and machine learning
predictive models

Despite numerous models predicting outcomes in pa-
tients with heart failure, only a few are easily accessible
online as risk score calculators [11, 31, 32]. Although
the lack of external validation of the predictive models
is the driving factor for the limited availability, several
inherent limitations exist for the relatively unhurried in-
tegration of predictive models into clinical practice.

Some clinicians find risk calculation cumbersome
[33]. Also, most risk prediction models were designed
before new heart failure drugs that further reduce mor-
tality and the rate of heart failure hospitalizations were
discovered [34, 35].

Class imbalance refers to the disproportionality be-
tween the classes of data used to train the predictive

Input 
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Fig. 5 An artificial neural network showing nodes in the input layer
communicating with each node in the first hidden layer
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model [36], a common problem that is not unique to med-
ical data. When the training data with the negative out-
come (e.g., dead) has significantly fewer observations
than the class (e.g., alive) with the majority of observa-
tions, the classification algorithm is inclined to favor the
majority class. This poses problems as the minority class,
which bears the outcome of interest, will have a low ac-
curacy score. Fortunately, it is possible to address class
imbalance problems by manipulating data, algorithms, or
both [36].

Conclusion

Both machine learning techniques and statistical methods
should be employed when creating predictive models. Prior
to clinical application, the best performing model should be
externally validated in a cohort of patients not used for model
derivation.

Future directions and recommendations

Unsupervised machine learning algorithms should be consid-
ered for the detection of data patterns not recognized by clini-
cians. Incorporating genomic data, biomarkers, imaging data,
and features representing the patients' socioeconomic and psy-
chological standing can further improve the accuracy levels of
predictive models. Risk predictive models should be created
with dynamic data and ideally be embedded in automated data
capturing tools. The increase in training data volume will ul-
timately lead to a robust predictive model with higher accura-
cy levels.
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