Quality of life of chronic heart failure patients: a systematic review and meta-analysis

Mandana Moradi¹ · Fereshteh Daneshi² · Razieh Behzadmehr³ · Hosien Rafiemanesh⁴ · Salehoddin Bouya⁵ · Mohammad Raeisi⁶

Published online: 19 November 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Despite various individual studies on the quality of life (QOL) in patients with CHF, a comprehensive study has not yet been conducted; therefore, this study aims to assess the QOL of CHF patients. In the present systematic review and meta-analysis, PubMed, Scopus, and the Web of science databases were searched from January 1, 2000, to December 31, 2018, using QOL and heart failure as keywords. The searches, screenings, quality assessments, and data extractions were conducted separately by two researchers. A total of 70 studies including 25,180 participants entered the final stage. The mean QOL score was 44.1 (95% confidence interval (CI) 40.6, 47.5; $l^2 = 99.3\%$) using a specific random effects method in 40 studies carried out on 12,520 patients. Moreover, according to the geographical region, heart failure patients in the Americas had higher scores. In 14 studies, in which a general SF-36 survey was implemented, the average physical component score (PCS) and mental component score (MCS) were 33.3 (95% CI 31.9, 34.7; $l^2 = 88.0\%$) and 50.6 (95% CI 43.8, 57.4; $l^2 = 99.3\%$), respectively. The general and specific tools used in this study indicated moderate and poor QOL, respectively. Therefore, it is necessary to carry out periodic QOL measurements using appropriate tools as part of the general care of CHF patients.

Keywords Heart failure · Quality of life · Meta-analysis

Introduction

Today, chronic heart failure (CHF) is a serious global health challenge. According to the most recent 2019 data, more than

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10741-019-09890-2) contains supplementary material, which is available to authorized users.

Salehoddin Bouya hresearchh@gmail.com

- ¹ Clinical Pharmacy Department, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
- ² Department of Pediatric Nursing, School of Nursing and Midwifery, Jiroft University of Medical Sciences, Jiroft, Iran
- ³ Associate Professor of Radiology, Department of Radiology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
- ⁴ Student Research Committee, Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- ⁵ Internal Medicine and Nephrology, Clinical Immunology Research Center, Ali-ebne Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
- ⁶ Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran

6.2 million people in the USA are afflicted with CHF, which is projected to reach over 8 million by 2030 [1]. World Health Statistics from 2012 alone show that heart failure (HF) has created an additional burden of 180 million dollars in the health system [2]. Different physical and mental complications such as fatigue, depression, anxiety, edema, shortness of breath due to the chronic and prolonged disease course, and therapeutic processes have a serious and negative impact on the quality of life (QOL) of CHF patients resulting in lower QOLs compared with healthy individuals and other patients with chronic illnesses [2–9]. Lower QOLs correlate with increased hospitalization times and mortality rates, and higher costs imposed on health systems, families, and patients [10–12].

Therefore, the regular assessment of a patients' QOL and health promotion are key measures in increasing their survival rates [13, 14]. QOL is a multidimensional concept that is affected by economic and social factors, life satisfaction, and the severity and stage of their HF (15, 16). QOL is usually assessed using general and specific tools with previous studies primarily having been focused on the identification of QOL measuring tools (17). Despite numerous individual studies, there have been no comprehensive studies on the exact QOL status of CHF patients. This comprehensive study will help to determine the exact QOL status of HF patients at global and regional levels and on the various income levels of their countries.

QOL has been also studied on the basis of separate specific and general tools, so that we can help healthcare personnel and patients identify the elements needed to support a better QOL. The aim of the present study was to assess the QOL of CHF patients.

Methods

Eligibility criteria and search strategy

This systematic review and meta-analysis was carried out using the Cochran's book and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was used to report [15]. The study protocol has been registered in PROSPERO (CRD42019135720).

Inclusion criteria included all the studies that used at least one of the standard specific or general tools for measuring QOL and were published in peer-reviewed journals in English language, descriptive observational articles, and clinical trials containing basic information about participants' QOL. The target participants with CHF aged over 15 years old, studies which have been conducted on at least 25 people and from 1 January 2000 to 31 December 2018.

Exclusion criteria included the studies that were published in non-English language and published before 2000, also review, qualitative, letter to editor studies were excluded. Studies that did not meet the minimum quality scores were also excluded. Since only studies using standardized scores were used to calculate quality of life included, studies that used raw scores to determine quality of life were excluded.

Three databases (PubMed, Scopus, and Web of science) were searched. The latest search process was carried out on 10 January 2019 to prepare the search strategy, the Boolean operators (AND, OR, and NOT), Medical Subject Headings (MeSH), truncation "*" and related text words was used. Keywords used included quality of life and heart failure.

Selection of studies and data extraction

Searching, screening, data extraction, and quality assessment were performed by two researchers (R.A.G, S.B). According to the study protocol, the studies were reviewed, and the duplicates were excluded. Studies were then reviewed by title and abstract, respectively, and the unrelated ones were excluded. Then the remaining studies entered the final stage. The extracted data items included the first author; year of publication; region based on WHO category, socioeconomic status based on world bank category, country; sampling method; age; design; stage of HF; and instrument characteristics, gender, risk of bias, and quality of life score.

Quality assessment and data synthesis

To evaluate the methodological quality of the studies, two different tools were used based on the type of study. To evaluate the quality of descriptive studies, Hoy et al.'s 10-item tool was used and assessed the studies for external and internal validity [16]. Moreover, Jadad's tool was used to assess the risk of bias in two clinical trials [17]. All the eligible studies were included in the synthesis after a systematic review. Data were combined with the forest plot. The quality of life in heart failure patients was evaluated by random-effects model. The heterogeneity of the preliminary studies was evaluated with I2 tests. Sub-group analysis was conducted to determine heterogeneity based on the type of tools, gender, and publication year. Meta-analysis was performed using STATA 14 (StataCorp, Texas, USA) statistical software.

Results

Study selection

A total of 5022 articles were found while searching four databases. After excluding duplicate articles, 2349 articles entered the next phase where articles were reviewed in terms of title and abstract, of which 2149 articles were excluded due to lack of meeting the inclusion criteria. At the last phase, 200 full-text articles were reviewed, of which 70 articles had the inclusion criteria. Out of 130 articles were also excluded for reasons included review (n = 13), qualitative (n = 3), no quality (n = 3), no full text (n = 18), non-English n = (34), letter to editor (n = 18), and used raw score to determine the QOL (1) [18] (Fig. 1).

Study characteristics

A total of 70 studies carried out 25,180 patients with HF in 23 countries from 2001 to 2018 entered the final phase. Most studies were conducted in Americans (n = 27) and European (n = 25). Most studies were conducted in countries with high SDI (n = 67). Most studies (n = 40) used consecutive sampling. The most commonly used general and specific tools used included SF-36 (n = 15) and MLHFQ (n = 41). The type of studies included descriptive (n = 65), cohort (n = 2), and RCT studies (n = 3). Also, most of studies were multicenter studies (n = 53). Of the 50,916 people, 28,371 were nurses. All of the studies entered had low bias risk and good quality (Table 1)

Main results

Instruments

Various general and specific tools were used in 70 studies entered. Similar type of general or specific tool was used to measure quality of life in 53 studies, and more than one type of tool was used in other studies. The general tools included SF-36 (n = 14), ED-5Q (n = 6), WHOQOL-BREF (n = 3), and SF-12(n = 3). Specific tools included MLHFQ (n = 41), KCCQ (n = 9), MQOL (n = 2), and other tools included DHP, CDC HRQOL, CCHFQ, HFSS, LVD-36, MacNew , MILQ, NHP, QLI, and quality of life index. The full details of used instruments including full name, abbreviation, type of questioner (general/specific), dimensions and items, scores mentioned in Supplementary Table 1.

Quality of life

Quality of life based on specific tools: *MLHFQ* Using 41 studies and 12,578 participants, the QOL was assessed by The Minnesota Living with Heart Failure Questionnaire (MLHFQ). In these studies, the mean of the total QOL score reported in 40 studies (12,520 patients) was between 13.0 and 66.9. Based on the results of the random effects model, the pooled mean of the total QOL was 44.1 (95% CI 40.6, 47.5; $I^2 = 99.3\%$). Subgroup analyses based-on continents, showed the pooled mean of the total QOL score in Americans (48.0) was higher than Europe (45.5) and Asia (35.1), and the

difference with Asia was statistically significant (p value = 0.014) (Fig. 2). Therefore, based on total MLHFQ scores, the health-related quality of life (HRQOL) in Asian HF patients was better than in American patients, indicating less of a disease impact in Asians.

Target population in five studies and mean age of 15 studies was higher than 60 years. Nineteen studies with 4080 participants and 20 studies with 8046 participants were categorized as adult and elderly age groups, respectively. Subgroup analysis based on age groups revealed that the pooled mean total QOL score in the adult group [41.2 (95% CI 33.5, 48.9; $I^2 = 99.4\%$)] was lower than in the elderly group [46.6 (95% CI 43.0, 50.2; $I^2 = 99.1\%$)] (*p* value = 0.154) indicating that heart failure in elderly patients probably has a larger effect on their QOLs.

The physical and emotional subscales of quality of life scale were assessed and reported in 24 out of 40 studies. Based on the results of the random effects method, the pooled mean of the physical and emotional subscales was 20.1 (95% CI 17.4, 22.9; $I^2 = 99.3\%$) and 8.8 (95% CI 7.5, 10.1; $I^2 = 98.6\%$), respectively. Subgroup analysis based on continents showed that the pooled mean of the physical and emotional subscales in America were higher than in Europe or Asia. For

Tabl	e 1 Methodology characteri	istic of i	included studies									
Ð	Author	Year	Country	Region	SDI	Sampling method	Questionnaire1.Name2.Type of questionnaire	Participants	Age (m)	Male	Female	Risk of bias
_	Aburuz, M. E. [19]	2015	Saudi Arabia	EMRO	High SDI	Convenience	1.SF-362.General	103	50.3	60	43	Low
0 m	Alaloul, F. [20] Alla. F. [21]	2017 2002	Saudi Arabia France	EMRO European	High SDI High SDI	Consecutive Consecutive	1.SF-362.General 1.Duke Health Profile.	99 108	56.9 64	64 83	35 25	Low Low
4	Arestedt, K. [22]	2013	Sweden	European	High SDI	Consecutive	LIHFE2.General, and specific 1.SF-12, MLHFQ2.General,	349	79	186	163	Low
	(ţ	, I		-	and specific		ç	ļ		,
ŝ	Audı, G. [23]	2017	Greece	European	High SDI	Convenience	1.MLHFQ 2.Specific	300	60	167	133	Low
9	Auld, J. P. [24]	2018	NSA	Americas	High SDI	Convenience	1.MLHFQ 2 Smarific	202	57	101	101	Low
7	Azevedo, A. [25]	2008	Portugal	European	High SDI	Simple random	1.SF-36	424	61.6	184	240	Low
8	Bean, M. K. [26]	2009	USA	Americas	High SDI	Available	2. General 1. MLHFQ	67	53	65	32	Low
6	Bennett, S. J. [27]	2001	NSA	Americas	High SDI	Census	2. Specific 1. CHFQ	227	65	110	117	Low
10	Berg, J. [28]	2014	Sweden	European	High SDI	Consecutive	2.Specific 1.NHP	177	75.5	66	78	Low
11	Blinderman, C. D. [29]	2008	USA	Americas	High SDI	Convenience	2.Specific 1.MILQ	103	67.1	74	29	Low
12	Borumandpour, M. [30]	2016	Iran	EMRO	High middle SDI	Convenience	2.Specific 1.WHOQOL-BREF,	147	63	77	70	Low
13	Britz, J. A. [31]	2010	USA	Americas	High SDI	Convenience	2.General 1.MLHFQ	30	70.69	19	Ξ	Low
14	Brostrom, A. [32]	2004	Sweden	European	High SDI	Convenience	2.Specific 1.SF-36, MLHFQ2.General	223	75	133	06	Low
15	Buck, H. G. [33]	2012	USA, Australia	Americas, Australia	High SDI	Available	and specific 1.MLHFQ	207	72.9	121	86	Low
16	Cal, A. [34]	2017	Turkey	European	High middle SDI	Convenience	2.Specific 1.MacNew	180	65.97	93	87	Low
17	Carels, R. A. [35]	2004	USA	Americas	High SDI	Consecutive	2.Specific 1.MLHFQ	58	67.7	33	25	Low
18	Carson, P. [36]	2009	USA	Americas	High SDI	Simple random	2.Specific 1.MLHFQ	1050	56.0	630	420	Low
19	Chan, H. Y. [37]	2016	China	Western Pacific	High SDI	Convenience	1.MQOL	112	82.9	65	47	Low
20	Chen, H. M. [38]	2010	Taiwan	South-East Asia	High SDI	Convenience	2.Specific 1.KCCQ	125	67.79	69	56	Low
21	Chu, S. H. [39]	2014	South Korea	Western Pacific	High SDI	Consecutive	2.Specific 1. WHOQOL-BREF	114	65.8	55	59	Low
22	Comin-Colet, J. [40]	2016	Spain	European	High SDI	Consecutive	мынғQ 2. General and specific 1. ED-50, КССО2.	1037	70.6	728	309	Low
23	De Leon, C. F. M. [41]	2009	USA	Americas	High SDI	ND	General and specific 1.SF 36, QLI2.General	695	63.3	368	327	Low
24	De Rivas, B. [42]	2008	Spain	European	High SDI	Consecutive	and specific	2161	70.9	1200	961	Low

 $\underline{\textcircled{O}}$ Springer

Tabl	le 1 (continued)											
Ð	Author	Year	Country	Region	SDI	Sampling method	Questionnaire1.Name2.Type of questionnaire	Participants	Age (m)	Male	Female	Risk of bias
25	Demir. M. [43]	2011	Turkev	European	High middle SDI	Convenience	 ED-5Q, MLHFQ2. General and specific I.LVD-36 	75	63.7	38	37	Low
				X	0		2.Specific					
26	DeWolfe, A. [44]	2012	USA	Americas	High SDI	Convenience	1.MLHFQ2.Specific	314	63.2	233	81	Low
28	Edwards, M. K. [45] Fkman I [46]	2010	USA Sweden	Americas Furonean	High SDI High SDI	Consecutive	1.CDC HKUUL, 2.General 1 SF-36	190 158	66.7 81	106 76	8 % 8 %	Low
0		1001		molomi	1000 0001	A lead in t	2.General	0	10	2	1	
29	Enjuanes, C. [47]	2014	International	ND	ND	Consecutive	1.MLHFQ 2 Spacific	1278	68	882	396	Low
30	Erceg, P. [48]	2013	Serbia	European	Upper middle SDI	Consecutive	1.MLHFQ	136	77.8	LL	59	Low
31	Fotos, N. V. [49]	2013	Greece	European	High SDI	Census	2.Specific 1.MLHFQ 2 Specific	199	uk	124	75	Low
32	Franzén, K. [50]	2007	Sweden	European	High SDI	Convenience	1.SF-12, MLHFQ2.General	357	79.3	187	170	Low
33	Gallagher, A. M. [51]	2018	United Kingdom	European	High SDI	Consecutive	and specific 1. ED-5Q, KCCQ, and MLHFQ2. General and	152	68.3	111	41	Low
34	Gott, M. [52]	2006	United Kingdom	European	High SDI	Convenience	specific 1.SF-36, KCCQ2.General	542	ŊŊ	293	249	Low
35	Hägglund, L. [53]	2007	Sweden	European	High SDI	Consecutive	and specific 1.SF-36	49	7.7 <i>.</i>	21	28	Low
36	Hallas, C. N. [54]	2011	United Kingdom	European	High SDI	Consecutive	2.General 1.WHOQOL-BREF,	146	48.6	120	26	Low
37	Hatmi, Z. N. [55]	2007	Iran	EMRO	High middle SDI	Simple Random	MLRFQ2.General and specini 1.SF-36, MLHFO2.General	230	51.4	112	118	Low
38	Heo, S. [56]	2007	USA	Americas	High SDI	Consecutive	and specific	06	74.8	48	42	Low
39	Heo, S. [57]	2012	USA	Americas	High SDI	Consecutive	2.Specific 1.MLHFQ	147	61.2	103	44	Low
40	Hou, N. [58]	2004	USA	Americas	High SDI	Convenience	2.Specific 1.MLHFQ	165	57.6	62	86	Low
41	Huang, T. Y. [59]	2010	Taiwan	South-East Asia	High SDI	Consecutive	1.MLHFQ	175	72.5	94	81	Low
42	Hwang, S. L. [60]	2014	Taiwan	South-East Asia	High SDI	Consecutive	2.Specific 1.MLHFQ	133	64.2	104	29	Low
43	Iqbal, J. [61]	2010	United Kingdom	European	High SDI	Consecutive	2.Specific 1.ED-5Q, MLHFQ2.General	179	71	128	51	Low
44	Jaarsma, T. [62]	2005	Netherland	European	High SDI	Convenience	and specific 1.MLHFQ	231	75	123	108	Low
45	Jorge, A. J. L. [63]	2017	Brazil	Americas	High middle SDI	Consecutive	2.Specific 1.SF-36	59	71.1	23	36	Low
46	Juenger, J. [4]	2002	Germany	European	High SDI	Consecutive	z.General 1.SF-36 2.General	205	54	173	32	Low

Tab	ole 1 (continued)											
Ð	Author	Year	Country	Region	SDI	Sampling method	Questionnaire1.Name2.Type of questionnaire	Participants	Age (m)	Male	Female	Risk of bias
47	Kato, N. [64]	2011	Japan	Western Pacific	High SDI	Consecutive	1.MLHFQ 2 Suscific	114	64.7	84	30	Low
48	Kaul, P. [65]	2013	Canada, USA	Americas	High SDI	Consecutive	1.ED-5Q	3141	72	2045	1096	Low
49	Lee, K. S. [66]	2014	USA	Americas	High SDI	Consecutive	2.General 1.MLHFQ	209	61	158	51	Low
50	Lesman-Leegte, I. [67]	2009	NSA	Americas	High SDI	Consecutive	1.SF-36	781	72	500	281	Low
51	Liu, M. H. [68]	2011	Taiwan	South-East Asia	High SDI	Consecutive	2.General 1.MLHFQ	105	64	54	51	Low
52	Loo, D. W. [69]	2016	Singapore	Western Pacific	High SDI	Convenience	2.Specific 1.MLHFQ	121	64.08	81	40	Low
53	Luo, N. [70]	2018	USA	Americas	High SDI	Simple Random	2.Specific 1.KCCQ 2.Szzzific	2038	60	1457	581	Low
54	Lupon, J. [71]	2013	Spain	European	High SDI	Consecutive	2.specific 1.MLHFQ 2.Szzzific	1151	69	825	326	Low
55	Macabasco-O'Connell, A. [72]	2011	USA	Americas	High SDI	Block random	2.Specific 1.KCCQ	585	60.7	314	271	Low
56	Masoudi, F. A. [73]	2004	USA	Americas	High SDI	Consecutive	2.Specific 1.KCCQ	546	52	416	130	Low
57	Pantilat, S. Z. [74]	2016	USA	Americas	High SDI	Consecutive	2.Specific 1.MLHFQ	104	53	69	35	Low
58	Patidar, A. B. [75]	2011	India	South-East Asia	Low middle SDI	Consecutive	2.Specific 1.KCCQ 2.Siff.	50	43.26	37	13	Low
59	Pelegrino, V. M. [76]	2011	Brazil	Americas	High middle SDI	Convenience	2.Specific 1.MLHFQ	130	55.1	77	53	Low
09	Pressler, S. J. [77]	2010	USA	Americas	High SDI	Consecutive	2.Specific 1.MLHFQ	249	62.9	158	91	Low
61	Ramos, S. [78])	2017	Portugal	European	High SDI	Consecutive	2.Specific 1.SF-36, KCCQ2.General	130	69	86	44	Low
62	Riegel, B. [79]	2003	USA	Americas	High SDI	Consecutive	and specific 1.MLHFQ	640	66.7	320	320	Low
63	Rodriguez-Artalejo, F. [14]	2005	Spain	European	High SDI	Consecutive	2.Specific 1.SF-36, MLHFQ2.General	394	77.21	173	221	Low
64	Saccomann, Icrd [80])	2010	Brazil	Americas	High middle SDI	Convenience	and specific 1.SF-36	170	67.5	66	71	Low
65	Silavanich, V. [81]	2018	Thailand	South-East Asia	High middle SDI	Consecutive	2.General 1.MLHFQ	180	63.1	110	70	Low
99	Son, Y. J. [82]	2012	South Korea	Western Pacific	High SDI	Consecutive	2.Specific 1.MLHFQ	134	67.8	49	85	Low
67	Sousa, M. M. [83]	2017	Brazil	Americas	High middle SDI	Consecutive	2.Specific 1.MLHFQ	84	58.82	39	45	Low
68	Yu, D. S. [84]	2004	China	Western Pacific	High SDI	Consecutive	2.Specific 1.CHFQ	227	77.1	118	109	Low
69	Yu, D. S. [85]	2016	China	Western Pacific	High SDI	Consecutive	2.Specific 2.Specific	119	82.9	62	57	Low

 $\underline{\textcircled{O}}$ Springer

Risk

Female

Male

Participants Age

Sampling method Questionnaire1.Name2.Type

SD

Region

Country

Year

ID Author

[able 1 (continued)

				of questionnaire		(II)			of bias
70 Zachariah, D. [86]	2017 United Kingdom European	High SDI	Consecutive	1.SF-12, MLHFQ2.General and specific	240	77	141	66	Low
<i>SF</i> -36 The Short Form-36, <i>LI</i> Failure Questionnaire, <i>NHP</i> of Life, <i>KCCQ</i> Kansas City C unknown, <i>M</i> month	<i>HFE</i> Minnesota Living with Heart Failure Que. tottingham Health Profile, <i>MILQ</i> The Meaning ardiomyopathy Questionnaire, <i>QLI</i> quality of	stionnaire, <i>SF-12</i> The in Life Questionnaire, <i>IVD-36</i> T	Short Form-36, <i>MLH</i> , <i>WHOQOL-BREF</i> W .he left ventricular dy	<i>IFQ</i> The Minnesota Living with I HO Quality of Life-BREF, <i>MacN</i> sfunction questionnaire-36, <i>CDC</i>	Heart Failure (<i>Vew</i> MacNew I <i>C HRQOL</i> CDO	Questionna Heart Dise: C- Health-1	uire, <i>CHF</i> ase Health related qu	<i>Q</i> Chroni <i>n</i> -related ality of 1	c Heart Quality ife, <i>UK</i>

the physical subscale, the difference between America and Asia was significant (21.4 vs. 12.5; p value < 0.001) (Supplementary Table 2).

The pooled mean of the physical subscale in elderly patients was 1.5 times greater than that of the adult age group (22.9 (95% CI 20.0, 25.9; $I^2 = 99.0\%$) vs. 15.4 (95% CI 10.5, 20.3; $I^2 = 99.2\%$); *p* value = 0.014). The pooled mean of the emotional subscale in elderly patients was 1.4 times greater than that of the adult age group (9.8 (95% CI 8.5, 11.0; $I^2 =$ 97.5%) vs. 7.0 (95% CI 5.1, 9.0; $I^2 = 97.9\%$); *p* value = 0.028).

The total MLHFQ score by gender was reported in 15 out of 40 studies. For 2174 male and 1,724 female patients, the pooled mean total MLHFQ score was 40.7 (95% CI 36.6, 44.9; $l^2 = 96.7\%$) and 45.6 (95% CI 42.1, 49.1; $l^2 = 93.3\%$), respectively (*p* value = 0.087). The QOL for female patients was lower than that in male patients, and this difference was also apparent in continental subgroups (Fig. 2). Out of 15 studies, 7 included physical and emotional subscales. The pooled means of the physical subscales in male and female patients were 19.2 (95% CI 16.2, 22.2; $l^2 = 97.0\%$) and 20.4 (95% CI 17.7, 23.1; $l^2 = 95.6\%$), respectively (*p* value = 0.562), and 8.5 (95% CI 7.4, 9.6; $l^2 = 91.9\%$) and 9.3 (95% CI 7.7, 10.9; $l^2 = 94.5\%$), respectively for the emotional subscales (*p* value = 0.413) (Supplementary Fig. 1).

Quality of life based on general tools: SF-36 Twenty-one studies used the short form (SF) health survey to assess the QOL. Fourteen out of 21 studies used the SF-36 with all eight scaled scores, but one study reported using only the physical functioning (PF) scale. Three studies used the shorter SF-12 version and reported the physical component summary (PCS) and the mental component summary (MCS). Four studies using the SF-36 assessed and reported two summary scales (PCS, MCS). Each of the eight health concepts was measured on a scale from 0 to 100 with higher scores indicating better health.

Based on the results of the random effects method, the pooled means of the PCS and the MCS scales for 2034 patients (1061 male and 973 female) were 33.3 (95% CI 31.9, 34.7; $I^2 = 88.0\%$) and 50.6 (95% CI 43.8, 57.4; $I^2 = 99.3\%$), respectively.

The mean score of general health perception was between 26.8 and 67.0, and the global pooled mean was 44.9 (95% CI 40.8, 49.0; $I^2 = 97.4\%$). Subgroup analysis showed that the pooled mean of general health perception in America was 1.4 times higher than that in Asia (*p* value = 0.036) (Fig. 3).

Using a seven scale SF-36 (vitality, body pain, mental health, physical functioning, physical role, emotional role, and social functioning), the global pooled mean for physical role functioning (40.5) produced the lowest QOL scores and social role functioning produced the highest (64.8). In America, the pooled mean of physical functioning (47.2)

Author	Year	Country	-		_	ES (9	95% CI)	% Weight
* America Riegel, B. Hou, N. Heo, S. Bean, M. K. Carson, P. Huang, T. Y. Pressler, S. J. Britz, J. A. Pelegrino, V. M. Heo, S. DeWolfe, A. Lee, K. S. Pantilat, S. Z. Sousa, M. M. Auld, J. P. Subtotal (I-squared	2003 2004 2007 2009 2010 2010 2010 2011 2012 2014 2016 2017 2018 5 2018 5 2018	USA USA USA USA USA USA USA USA USA USA		* *	╲ŧ╶╁╶╶┿╶╶┿╼┾╪ ╴╴╴	5429878609997 4509.54569.9979 4502.556634379.09051 4639.99151 480 480 480	(52.2, 55.9) (388, 47.0) (46.0, 55.4) (49.3, 55.4) (47.8, 57.4) (47.8, 57.4) (47.8, 57.4) (41.1, 739.2) (30.7, 47.7) (30.7, 39.2) (339.7, 47.7) (535.6, 37.3) (42.8, 37.3) (242.8, 37.3) (243.8, 52.2)	22222222222222222222222222222222222222
* Europe Brostrom, A. Rodriguez-Artalejo, Jaarsma, T. Franzén, K. De Rivas, B. Igbal, J. Hallas, C. N. Lupon, J. Erceg, P. Fotos, N. V. Arestedt, K. Enjuanes, C. Zachariah, D. Audi, G. Gallagher, A. M. Subtotal (I-squared	2004 F2005 2007 2008 2010 2013 2013 2013 2013 2013 2013 2014 2017 2017 2018 = 99.3	Sweden Spain Netherland Sweden Spain United kingdor Spain Serbia Greece Sweden International United kingdor Greece United kingdor %, p = 0.000)	n n	* * *	* * * *	382200 59909 50090 56904 43009 4409 44095	(35.2, 41.2) (46.9, 49.6) (56.3, 61.7) (39.0, 40.8) (49.7, 50.3) (27.8, 30.2) (27.8, 30.2) (27.8, 30.2) (27.8, 30.2) (27.8, 30.2) (37.1, 42.3) (38.6, 41.4) (38.6, 41.4) (40.4, 4, 45.0) (41.2, 49.7)	22222222222222222222222222222222222222
* Asia Hatmi, Z. N. Huang, T. Y. Liu, M. H. Kato, N. Son, Y. J. Hwang, S. L. Chu, S. H. Loo, D. W. Silavanich, V. Subtotal (I-squared	2007 2010 2011 2012 2014 2014 2016 2018 = 99.5	Iran Taiwan Japan South Korea Taiwan South Korea Singapore Thailand %, p = 0.000)	•	·** *** ()	- *** - *	46.3 43.8 38.4 34.6 54.8 34.5 29.4 13.0 35.1	(44.1, 48.5) (38.6, 49.0) (34.5, 42.3) (52.6, 56.6) (52.6, 56.6) (21.5, 28.1) (30.3, 38.7) (25.1, 33.7) (11.7, 14.3) (22.5, 47.8)	2.54 2.42 2.48 2.47 2.50 2.47 2.46 2.55 2.45 2.42
* America, Austra Buck, H. G. Subtotal (I-squared	lia 2012 = .%, p	USA, Australia				43.3 43.3	(40.6, 46.0) (40.6, 46.0)	2.52 2.52
Överall (I-squared = NOTE: Weights are	= 99.3% e from ra	o, p = 0.000) andom effects a	nalysis		¢	44.1	(40.6, 47.5)	100.00
			0	25	50	75		

Fig. 2 Forest plot of total QoL score of MLHFQ based-on random effect model in chronic heart failure patients by continent

had the lowest QOL score, and the emotional role functioning (79.1) had the highest QOL score. The pooled mean of mental health (52.6) had the highest QOL score in Asia. The mean scores for general health perceptions and for the other seven scales were higher in America than in Europe or Asia. The differences of the pooled means between America and Asia were significant in bodily pain, mental health, and social role functioning (*p* value < 0.05) (Table 2).

Quality of life based on other tools The QOL in HF patients was assessed in 8 global studies using the Kansas City Cardiomyopathy Questionnaire (KCCQ). In seven of these, the overall summary score was calculated and reported by summing the scores of the physical limitations, symptoms, QOL, and social-functioning domains. The mean overall summary score for 4272 participants was 55.0 to 70.5 and the pooled mean was 60.9 (95% CI 56.2, 65.5; $I^2 = 96.9\%$). The KCCQ subscale was assessed in only three studies.

The QOL in 6 global studies was assessed using the ED-5Q questionnaire. In the health state description component, 4 studies reported an overall score and the pooled mean was 0.608 (95% CI 0.569, 0.647; $I^2 = 97.6\%$) with the lower pooled mean score being self-care and the higher pooled mean score being daily activities. In the evaluation component of the ED-5Q, five studies used a visual analog scale (VAS) and the pooled mean of the VAS was 54.6 (95% CI 48.4, 60.8; $I^2 = 99.3\%$). Sixteen studies investigated the QOL of HF patients with 13 other tools (Supplementary Table 3).

Meta-regression

The results of univariate meta-regression analyses based-on MLHFQ, showed gender of participants (male-to-female ratio) variable not significantly contributed to heterogeneity of total mean score and sub-scale of QoL in the world (P > 0.05); but, publication year of study and continent showed a significant heterogeneity (Coef. = -0.93, P = 0.023, and Coef. = -6.1, P = 0.006), that explained 10.9% and 16.8% of betweenstudy variation. Based-on sub-scale of MLHFQ, significant association only shown in physical sub-scale and continent (Coef. = -4.1, P = 0.020) (Supplementary Fig. 3).

Discussion

Quality of life

The goal of all physical and mental treatments is to improve the QOL for CHF patients. This systematic review and metaanalysis was conducted to evaluate the QOL of CHF patients from 2000 to 2018. A total of 70 studies performed on 25,180 patients entered the final stage. The most commonly used special tool was the MHLFQ. The MHLFQ tool was used as a specific tool to assess patients' QOLs in 40 studies. Metaanalysis results indicated that the mean QOL in HF patients was 44.1. Based on the cutoff point in the MHLFQ tool, a higher score indicated a lower QOL, so that scores less than 24, 24–45, and above 45 indicated a good, moderate, and poor QOL, respectively [87]. Therefore, the results of the present study indicate a moderate to poor QOL in HF patients. According to the literature searches carried out by researchers, there have been no systematic reviews that investigated the QOL of HF patients based on the MHLFQ tool.

The results also showed that HF patients had a poorer QOL in the USA compared with other parts of world, yet the exact cause of this difference is not known. However, this result could have been due to the differences in the sample sizes of the studies from different parts of the world selected for this review, most of which were from the Americas. It is also possible that these results are due to an inequality of access to HF care services and the differences in the severity of symptoms in various racial groups [88].

The results also showed that the physical and mental scores in the elderly age group were 1.5 and 1.4 times higher than that of the adult age group, although these differences were not statistically significant. The results also showed that the QOL in the elderly age group was more disrupted than in adults with HF, which was consistent with previous studies in terms of disrupted dimensions, but it is inconsistent with previous studies regarding overall QOL scores [89–91].

The difference may be due to the type and sample size of the comparative studies since the present study is a review with sample sizes higher than in previous individual studies. The average QOL score was 40.7 in men and 45.6 in women, which indicated that the female QOL was more disrupted, which is consistent with the previous individual study [92]. This difference can be attributed to the effect of the different sample sizes of women and men surveyed in the present study. It can also be due to the difference in the time taken for

Fig. 3 Forest plot and meta-analysis of general health perception of SF-36 in heart failure patients in the world and continent sub-groups

Table 2 Meta-analysis c	of seven sca	lle of SF-36 in h	eart failure patients ir	n the world and contin	ent sub-groups			
First author (year)	Country ¹	Vitality ES (95%CI)	Body pain ES (95%CI)	Mental health ES (95%CI)	Physical functioning ES (95%CI)	Physical role ES (95%CI)	Emotional role ES (95%CI)	Social functioning ES (95%CI)
Lesman-Leegte (2009)	America 4	40.0 (38.3, 41.7)	66.0 (63.7, 68.3)	66.0 (64.4, 67.6)	49.3 (47.5, 51.1)	19.0 (16.6, 21.4)	51.0 (48.6, 53.4)	54.0 (51.8, 56.2)
Saccomann (2010) [80]	America 5	53.7 (50.7, 56.7)	70.4 (65.8, 75.0)	65.7 (62.5, 68.9)	35.0 (33.2, 36.8)	64.1 (57.4, 70.8)	86.3 (79.6, 93.0)	77.4 (73.4, 81.4)
Jorge (2017) [63]	America (55.0 (57.2, 72.8)	80.0 (70.1, 89.9)	78.0 (70.4, 85.6)	51.6 (48.6, 54.6)	100 (100, 100)	100 (100, 100)	87.0 (77.9, 96.1)
De Leon (2009) [41]	America				55.0 (44.3, 65.7)			
Sub-group pooled ES	41	52.4 (39.9, 65.0)	70.5 (64.5, 76.5)	68.2 (63.9, 72.6)	47.2 (37.7, 56.8)	61.0 (0.0, 122.6)	79.1 (42.1, 116.1)	72.5 (52.5, 92.4)
Juenger (2002) [4]	Europe 4	42.8 (39.8, 45.8)	63.1 (58.8, 67.4)	61.2 (58.4, 64.0)	48.3 (44.6, 52.0)	25.5 (20.4, 30.6)	49.1 (44.0, 54.2)	68.5 (64.8, 72.2)
Ekman (2002) [46]	Europe 3	35.4 (31.7, 39.1)	61.8 (57.0, 66.6)	68.9 (65.4, 72.4)	39.9 (36.4, 43.4)	25.3 (20.0, 30.6)	61.6 (56.3, 66.9)	75.4 (70.7, 80.1)
Brostrom (2004) [32]	Europe 4	45.4 (42.1, 48.7)	58.6 (54.7, 62.5)	71.4 (68.7, 74.1)	43.9 (40.4, 47.4)	31.2 (27.1, 35.3)	54.1 (50.0, 58.2)	70.2 (66.5, 73.9)
Rodriguez-Artalejo (2007) [14]	Europe 3	34.8 (33.2, 36.5)	63.8 (62.1, 65.5)	55.0 (53.3, 56.7)	34.7 (33.1, 36.4)	26.7 (25.0, 28.3)	62.5 (60.9, 64.2)	63.3 (61.7, 65.0)
Hägglund (2007) [53]	Europe 4	44.1 (38.3, 49.9)	57.1 (49.9, 64.3)	74.5 (69.9, 79.1)	44.9 (37.6, 52.2)	32.3 (22.2, 42.4)	69.4 (59.3, 79.5)	70.4 (63.8, 77.0)
Azevedo (2008) [25]	Europe 5	57.8 (55.8, 59.8)	62.5 (60.1, 64.9)	67.0 (64.9, 69.1)	71.8 (69.7, 73.9)	74.6 (72.1, 77.1)	76.5 (74.0, 79.0)	77.9 (75.8, 80.0)
Ramos (2017) [78]	Europe 4	41.5 (36.3, 46.7)	85.9 (80.7, 91.1)	57.4 (51.7, 63.1)	41.8 (34.7, 48.9)	26.4 (16.7, 36.1)	50.0 (40.3, 59.7)	70.8 (62.8, 78.8)
Sub-group pooled ES	4	43.1 (35.1, 51.2)	64.7 (59.8, 69.5)	65.1 (59.3, 70.8)	46.5 (33.4, 59.6)	34.6 (15.8, 53.4)	60.6(53.0, 68.1)	70.9 (65.3, 76.5)
Hatmi (2007) [55]	Asia 5	50.5 (48.3, 52.7)	42.8 (39.5, 46.1)	56.6 (54.5, 58.7)	39.5 (36.5, 42.5)	21.9 (18.6, 25.2)	21.5 (18.2, 24.8)	43.1 (40.4, 45.8)
AbuRuz (2015) [19]	Asia 5	51.6 (50.3, 52.9)	33.9 (31.7, 36.1)	53.4 (51.8, 55.0)	42.9 (40.2, 45.6)	43.2 (41.0, 45.4)	45.2 (43.0, 47.4)	45.0 (42.9, 47.1)
Alaloul (2017) [20]	Asia 3	34.8 (30.9, 38.7)	37.9 (33.6, 42.2)	47.2 (43.8, 50.6)	38.9 (34.2, 43.6)	36.4 (31.6, 41.2)	42.3 (37.5, 47.1)	42.8 (37.8, 47.8)
Sub-group pooled ES	4	45.9 (38.4, 53.3)	38.1 (32.4, 43.9)	52.6 (48.4, 56.9)	40.8 (38.2, 43.3)	33.8 (19.8, 47.9)	36.3 (20.5, 52.2)	44.2 (42.6, 45.7)
Overall pooled ES	4	45.8 (41.0, 50.6)	60.1 (52.3, 67.9)	63.0 (58.9, 67.2)	45.5 (39.0, 51.9)	40.5 (14.8, 66.2)	59.2 (41.2, 77.2)	64.8 (57.4, 72.3)

EF [**55**])

patients to adapt to the disease since men adapted in a shorter time period. This difference can also be due to the different life status and roles played by the two genders since men are more likely to be physically and socially supported than are women. The most commonly used general tool was the SF-36 health survey, which showed that the mean score of the physical component dimension was 33.3 (31.9–34.7), and the mental component dimension was 50.6 (43.8–57.4).

The mean general health dimension was 44.9, which was consistent with previous individual studies on cardiac patients other than those with HF (46.56) [93] and less than in patients with acute coronary artery disease (55.63) [94]. It was also consistent with previous individual studies on other heart diseases in terms of the physical dimension (31.67) [93] and less than in acute coronary artery disease (58.37) [94]. The results also showed that HF patients have a lower QOL in the physical dimension as compared with other chronic patients, such as thalassemic patients (56.78 (52.74-74.5) [95] and in the mental dimension in thalassemic patients (51.64 (59.6-71.1) [95]. Regular QOL measurements can help identify patients with poor QOLs, and help healthcare providers more accurately identify specific dimensions that require more attention. In addition, it can be used as a tool to assess the effect of different treatment interventions on the disease process. It is essential to take into account factors affecting the QOL in HF patients to manage them more effectively and to use effective interventions to improve their QOLs.

According to the International Guideline and ACCF/AHA guideline, considering the multidimensional concept of quality of life, it is necessary to pay attention to the physical and psychological dimensions of patients; the following recommendations can improve the quality of life of patients with heart failure: disease confidence indicates a person's sense of illness that is higher than the individual's dimensions of illness. This feeling improves through self-care. Understanding CHF, due to the different order of occurrence of the symptoms of the disease in different patients of CHF, which makes the disease unique to each individual, it helps the patient to obtain adequate information about the disease. The first step in managing the disease and enhancing the quality of life is to get enough information about the disease. Symptom monitoring, a daily checkup of the most common symptoms of the disease, such as shortness of breath, weight loss, blood pressure changes and coughing, will prevent the patient from becoming acutely ill. Family support, due to the long-term and chronic illness of the patient, family support can lead to improved quality of life for patients [96–98].

Limitations

Although studies included were carried out on patients with varying degrees of disease severity, the QOI score was not expressed in terms of severity and history of disease in most studies; however, it has been shown that the disease severity can have a significant impact on QOI. Attempts were also made to contact with authors of studies lacking relevant information. Most of the studies were descriptive studies, which have their specific limitations.

Strengths

To the best of researchers' knowledge, this is the first study that reviews QOI of HF patients at the global level. In this study, QOI was also assessed based on the geographical area determined by World Health Organization (WHO) and the income level identified by Bank World, which could help health policy-makers and healthcare staffs in the region to help improve QOI more accurately. The present study also assessed the QOI separately using specific and general tools. Another strength of this study was the use of a variety of tools to measure the quality of life in patients with HF.

Conclusion

The present systematic review and meta-analysis were conducted to evaluate the QOL of HF patients. The results showed a moderate to poor QOL in the physical dimension and a moderate to high QOL in the mental dimension using specific and general tools, respectively. The results of the present study, using specific and general tools, indicated the importance of QOL assessment at appropriate time periods, determining the exact treatment dimensions required, and implementing comprehensive QOL promotion programs in all physical and mental dimensions.

References

- Benjamin EJ, Muntner P, Bittencourt MS (2019) Heart disease and stroke statistics-2019 update: A report from the American Heart Association. Circulation 139(10):e56–e528
- Cook C, Cole G, Asaria P, Jabbour R, Francis DP (2014) The annual global economic burden of heart failure. Int J Cardiol 171(3):368–376
- Dokainish H, Teo K, Zhu J, Roy A, AlHabib KF, ElSayed A, Palileo-Villaneuva L, Lopez-Jaramillo P, Karaye K, Yusoff K (2017) Global mortality variations in patients with heart failure: results from the International Congestive Heart Failure (INTER-CHF) prospective cohort study. Lancet Glob Health 5(7):e665–e672
- Juenger J, Schellberg D, Kraemer S, Haunstetter A, Zugck C, Herzog W, Haass M (2002) Health related quality of life in patients with congestive heart failure: comparison with other chronic diseases and relation to functional variables. Heart 87(3):235–241
- Park J, Moser DK, Griffith K, Harring JR, Johantgen M (2019) Exploring symptom clusters in people with heart failure. Clin Nurs Res 28(2):165–181

- Salyer J, Flattery M, Lyon DE (2019) Heart failure symptom clusters and quality of life. Heart Lung 48(5):366-372
- Sokoreli I, De Vries J, Pauws S, Steyerberg E (2016) Depression and anxiety as predictors of mortality among heart failure patients: systematic review and meta-analysis. Heart Fail Rev 21(1):49–63
- Van Jaarsveld CH, Sanderman R, Miedema I, Ranchor AV, Kempen GI (2001) Changes in health-related quality of life in older patients with acute myocardial infarction or congestive heart failure: a prospective study. J Am Geriatr Soc 49(8):1052–1058
- Zambroski CH, Moser DK, Bhat G, Ziegler C (2005) Impact of symptom prevalence and symptom burden on quality of life in patients with heart failure. Eur J Cardiovasc Nurs 4(3):198–206
- Alla F, Briançon S, Guillemin F, Juillière Y, Mertès PM, Villemot JP, Zannad F, Investigators E (2002) Self-rating of quality of life provides additional prognostic information in heart failure. Insights into the EPICAL study. Eur J Heart Fail 4(3):337–343
- Angermann CE, Gelbrich G, Störk S, Gunold H, Edelmann F, Wachter R, Schunkert H, Graf T, Kindermann I, Haass M (2016) Effect of escitalopram on all-cause mortality and hospitalization in patients with heart failure and depression: the MOOD-HF randomized clinical trial. Jama 315(24):2683–2693
- Gupta A, Allen LA, Bhatt DL, Cox M, DeVore AD, Heidenreich PA, Hernandez AF, Peterson ED, Matsouaka RA, Yancy CW (2018) Association of the hospital readmissions reduction program implementation with readmission and mortality outcomes in heart failure. JAMA Cardiol 3(1):44–53
- Binanay C, Califf RM, Hasselblad V, O'connor C, Shah M, Sopko G, Stevenson L, Francis G, Leier C, Miller L (2005) Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. Jama 294(13):1625–1633
- Rodriguez-Artalejo F, Guallar-Castillon P, Pascual CR, Otero CM, Montes AO, Garcia AN, Conthe P, Chiva MO, Banegas JR, Herrera MC (2005) Health-related quality of life as a predictor of hospital readmission and death among patients with heart failure. Arch Intern Med 165(11):1274–1279. https://doi.org/10.1001/archinte. 165.11.1274
- Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(4):264–269
- Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, Baker P, Smith E, Buchbinder R (2012) Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol 65(9):934–939
- Clark HD, Wells GA, Huët C, McAlister FA, Salmi LR, Fergusson D, Laupacis A (1999) Assessing the quality of randomized trials: reliability of the Jadad scale. Control Clin Trials 20(5):448–452
- Piotrowicz E, Stepnowska M, Leszczyńska-Iwanicka K, Piotrowska D, Kowalska M, Tylka J, Piotrowski W, Piotrowicz R (2015) Quality of life in heart failure patients undergoing homebased telerehabilitation versus outpatient rehabilitation—a randomized controlled study. Eur J Cardiovasc Nurs 14(3):256–263
- AbuRuz ME, Alaloul F, Saifan A, Masa'deh R, Abusalem S (2015) Quality of life for Saudi patients with heart failure: a cross-sectional correlational study. Global J Health Sci 8(3):49–58. https://doi.org/ 10.5539/gjhs.v8n3p49
- Alaloul F, AbuRuz ME, Moser DK, Hall LA, Al-Sadi A (2017) Factors associated with quality of life in Arab patients with heart failure. Scand J Caring Sci 31(1):104–111. https://doi.org/10.1111/ scs.12324
- Alla F, Briancon S, Guillemin F, Juilliere Y, Mertes PM, Villemot JP, Zannad F (2002) Self-rating of quality of life provides additional prognostic information in heart failure. Insights into the EPICAL study. Eur J Heart Fail 4(3):337–343
- 22. Arestedt K, Saveman BI, Johansson P, Blomqvist K (2013) Social support and its association with health-related quality of life among

🖄 Springer

older patients with chronic heart failure. Eur J Cardiovasc Nurs 12(1):69–77. https://doi.org/10.1177/1474515111432997

- Audi G, Korologou A, Koutelekos I, Vasilopoulos G, Karakostas K, Makrygianaki K, Polikandrioti M (2017) Factors affecting health related quality of life in hospitalized patients with heart failure. Cardiol Res Pract 2017:4690458. https://doi.org/10.1155/2017/4690458
- Auld JP, Mudd JO, Gelow JM, Hiatt SO, Lee CS (2018) Self-care moderates the relationship between symptoms and health-related quality of life in heart failure. J Cardiovasc Nurs 33(3):217–224. https://doi.org/10.1097/jcn.00000000000447
- Azevedo A, Bettencourt P, Alvelos M, Martins E, Abreu-Lima C, Hense HW, Barros H (2008) Health-related quality of life and stages of heart failure. Int J Cardiol 129(2):238–244. https://doi. org/10.1016/j.ijcard.2007.07.091
- Bean MK, Gibson D, Flattery M, Duncan A, Hess M (2009) Psychosocial factors, quality of life, and psychological distress: ethnic differences in patients with heart failure. Prog Cardiovasc Nurs 24(4):131–140. https://doi.org/10.1111/j.1751-7117.2009. 00051.x
- Bennett SJ, Perkins SM, Lane KA, Deer M, Brater DC, Murray MD (2001) Social support and health-related quality of life in chronic heart failure patients. Qual Life Res Int J Qual Life Asp Treat Care Rehab 10(8):671–682
- Berg J, Lindgren P, Kahan T, Schill O, Persson H, Edner M, Mejhert M (2014) Health-related quality of life and long-term morbidity and mortality in patients hospitalised with systolic heart failure. JRSM Cardiovasc Dis 3:2048004014548735. https://doi.org/ 10.1177/2048004014548735
- Blinderman CD, Homel P, Billings JA, Portenoy RK, Tennstedt SL (2008) Symptom distress and quality of life in patients with advanced congestive heart failure. J Pain Symptom Manag 35(6): 594–603. https://doi.org/10.1016/j.jpainsymman.2007.06.007
- Borumandpour M, Valizadeh G, Dehghan A, Pourmarjani A, Ahmadifar M (2016) Application of WHOQOL-BREF for the evaluation of the quality of life in elderly patients with heart failure. Biosci Biotechnol Res Commun 9(4):878–883
- Britz JA, Dunn KS (2010) Self-care and quality of life among patients with heart failure. J Am Acad Nurse Pract 22(9):480– 487. https://doi.org/10.1111/j.1745-7599.2010.00538.x
- Brostrom A, Stromberg A, Dahlstrom U, Fridlund B (2004) Sleep difficulties, daytime sleepiness, and health-related quality of life in patients with chronic heart failure. J Cardiovasc Nurs 19(4):234– 242
- Buck HG, Lee CS, Moser DK, Albert NM, Lennie T, Bentley B, Worrall-Carter L, Riegel B (2012) Relationship between self-care and health-related quality of life in older adults with moderate to advanced heart failure. J Cardiovasc Nurs 27(1):8–15. https://doi. org/10.1097/JCN.0b013e3182106299
- Cal A, Altay B (2017) The quality of life and home care needs of patients treated for heart failure. Pakistan Heart J 50(1):6–13
- Carels RA (2004) The association between disease severity, functional status, depression and daily quality of life in congestive heart failure patients. Qual Life Res Int J Qual Life Asp Treat Care Rehab 13(1):63–72. https://doi.org/10.1023/b:qure.0000015301.58054.51
- Carson P, Tam SW, Ghali JK, Archambault WT, Taylor A, Cohn JN, Braman VM, Worcel M, Anand IS (2009) Relationship of quality of life scores with baseline characteristics and outcomes in the African-American heart failure trial. J Card Fail 15(10):835–842. https://doi.org/10.1016/j.cardfail.2009.05.016
- Chan HY, Yu DS, Leung DY, Chan AW, Hui E (2016) Quality of life and palliative care needs of elderly patients with advanced heart failure. J Geriatr Cardiol 13(5):420–424. https://doi.org/10.11909/j. issn.1671-5411.2016.05.016
- Chen HM, Clark AP, Tsai LM, Lin CC (2010) Self-reported healthrelated quality of life and sleep disturbances in Taiwanese people

with heart failure. J Cardiovasc Nurs 25(6):503–513. https://doi. org/10.1097/JCN.0b013e3181e15c37

- Chu SH, Lee WH, Yoo JS, Kim SS, Ko IS, Oh EG, Lee J, Choi M, Cheon JY, Shim CY, Kang SM (2014) Factors affecting quality of life in Korean patients with chronic heart failure. Jpn J Nurs Sci 11(1):54–64. https://doi.org/10.1111/jjns.12002
- Comin-Colet J, Anguita M, Formiga F, Almenar L, Crespo-Leiro MG, Manzano L, Muniz J, Chaves J, de Frutos T, Enjuanes C (2016) Health-related quality of life of patients with chronic systolic heart failure in Spain: results of the VIDA-IC study. Rev Esp Cardiol (English ed) 69(3):256–271. https://doi.org/10.1016/j.rec. 2015.07.030
- 41. De Leon CFM, Grady KL, Eaton C, Rucker-Whitaker C, Janssen I, Calvin J, Powell LH (2009) Quality of life in a diverse population of patients with heart failure baseline findings from the heart failure adherence and retention trial (HART). J Cardiopulm Rehabil Prev 29(3):171–178
- 42. De Rivas B, Permanyer-Miralda G, Brotons C, Aznar J, Sobreviela E (2008) Health-related quality of life in unselected outpatients with heart failure across Spain in two different health care levels. Magnitude and determinants of impairment: the INCA study. Qual Life Res 17(10):1229–1238. https://doi.org/10.1007/s11136-008-9397-3
- Demir M, Unsar S (2011) Assessment of quality of life and activities of daily living in Turkish patients with heart failure. Int J Nurs Pract 17(6):607–614. https://doi.org/10.1111/j.1440-172X.2011. 01980.x
- DeWolfe A, Gogichaishvili I, Nozadze N, Tamariz L, Quevedo HC, Julian E, Hebert K (2012) Depression and quality of life among heart failure patients in Georgia, Eastern Europe. Congest Heart Fail (Greenwich, Conn) 18(2):107–111. https://doi.org/10.1111/j. 1751-7133.2011.00226.x
- Edwards MK, Loprinzi PD (2016) Sedentary behavior & healthrelated quality of life among congestive heart failure patients. Int J Cardiol 220:520–523. https://doi.org/10.1016/j.ijcard.2016.06.256
- 46. Ekman I, Fagerberg B, Lundman B (2002) Health-related quality of life and sense of coherence among elderly patients with severe chronic heart failure in comparison with healthy controls. Heart Lung 31(2):94–101
- 47. Enjuanes C, Klip IT, Bruguera J, Cladellas M, Ponikowski P, Banasiak W, van Veldhuisen DJ, van der Meer P, Jankowska EA, Comin-Colet J (2014) Iron deficiency and health-related quality of life in chronic heart failure: results from a multicenter European study. Int J Cardiol 174(2):268–275. https://doi.org/10.1016/j. ijcard.2014.03.169
- Erceg P, Despotovic N, Milosevic DP, Soldatovic I, Zdravkovic S, Tomic S, Markovic I, Mihajlovic G, Brajovic MD, Bojovic O, Potic B, Davidovic M (2013) Health-related quality of life in elderly patients hospitalized with chronic heart failure. Clin Interv Aging 8:1539–1546. https://doi.org/10.2147/cia.s53305
- Fotos NV, Giakoumidakis K, Kollia Z, Galanis P, Copanitsanou P, Pananoudaki E, Brokalaki H (2013) Health-related quality of life of patients with severe heart failure. A cross-sectional multicentre study. Scand J Caring Sci 27(3):686–694. https://doi.org/10.1111/ j.1471-6712.2012.01078.x
- Franzén K, Saveman BI, Blomqvist K (2007) Predictors for health related quality of life in persons 65 years or older with chronic heart failure. Eur J Cardiovasc Nurs 6(2):112–120. https://doi.org/10. 1016/j.ejcnurse.2006.06.001
- Gallagher AM, Lucas R, Cowie MR (2018) Assessing health-related quality of life in heart failure patients attending an outpatient clinic: a pragmatic approach. ESC Heart Fail. https://doi.org/10. 1002/ehf2.12363
- 52. Gott M, Barnes S, Parker C, Payne S, Seamark D, Gariballa S, Small N (2006) Predictors of the quality of life of older people with

heart failure recruited from primary care. Age Ageing 35(2):172-177. https://doi.org/10.1093/ageing/afj040

- Hägglund L, Boman K, Olofsson M, Brulin C (2007) Fatigue and health-related quality of life in elderly patients with and without heart failure in primary healthcare. Eur J Cardiovasc Nurs 6(3): 208–215. https://doi.org/10.1016/j.ejcnurse.2006.09.004
- Hallas CN, Wray J, Andreou P, Banner NR (2011) Depression and perceptions about heart failure predict quality of life in patients with advanced heart failure. Heart Lung 40(2):111–121. https://doi.org/ 10.1016/j.hrtlng.2009.12.008
- Hatmi ZN, Shaterian M, Kazemi MA (2007) Quality of life in patients hospitalized with heart failure: A novel two questionnaire study. Acta Med Iran 45(6):493–500
- Heo S, Moser DK, Lennie TA, Zambroski CH, Chung ML (2007) A comparison of health-related quality of life between older adults with heart failure and healthy older adults. Heart Lung J Acute Crit Care 36(1):16–24. https://doi.org/10.1016/j.hrtlng.2006.06.003
- Heo S, Moser DK, Chung ML, Lennie TA (2012) Social status, health-related quality of life, and event-free survival in patients with heart failure. Eur J Cardiovasc Nurs 11(2):141–149. https://doi.org/ 10.1016/j.ejcnurse.2010.10.003
- Hou N, Chui MA, Eckert GJ, Oldridge NB, Murray MD, Bennett SJ (2004) Relationship of age and sex to health-related quality of life in patients with heart failure. Am J Crit Care 13(2):153–161
- Huang TY, Moser DK, Hwang SL, Lennie TA, Chung M, Heo S (2010) Comparison of health-related quality of life between American and Taiwanese heart failure patients. J Transcult Nurs 21(3):212–219. https://doi.org/10.1177/1043659609358779
- Hwang SL, Liao WC, Huang TY (2014) Predictors of quality of life in patients with heart failure. Jpn J Nurs Sci 11(4):290–298. https:// doi.org/10.1111/jjns.12034
- Iqbal J, Francis L, Reid J, Murray S, Denvir M (2010) Quality of life in patients with chronic heart failure and their carers: a 3-year follow-up study assessing hospitalization and mortality. Eur J Heart Fail 12(9):1002–1008. https://doi.org/10.1093/eurjhf/hfq114
- Jaarsma T, Lesman-Leegte GAT, Cleuren GVJ, Lucas CMHB (2005) Measuring quality of life in heart failure: One versus multiple items. Neth Hear J 13(10):338–342
- Jorge AJL, Rosa MLG, Correia D, Martins WA, Ceron DMM, Coelho LCF, Soussume WSN, Kang HC, Moscavitch SD, Mesquita ET (2017) Evaluation of quality of life in patients with and without heart failure in primary care. Arq Bras Cardiol 109(3): 248–252. https://doi.org/10.5935/abc.20170123
- 64. Kato N, Kinugawa K, Seki S, Shiga T, Hatano M, Yao A, Hirata Y, Kazuma K, Nagai R (2011) Quality of life as an independent predictor for cardiac events and death in patients with heart failure. Circulation 75(7):1661–1669
- 65. Kaul P, Reed SD, Hernandez AF, Howlett JG, Ezekowitz JA, Li Y, Zheng Y, Rouleau JL, Starling RC, O'Connor CM, Califf RM, Armstrong PW (2013) Differences in treatment, outcomes, and quality of life among patients with heart failure in Canada and the United States. JACC Heart Fail 1(6):523–530. https://doi.org/10. 1016/j.jchf.2013.07.004
- 66. Lee KS, Lennie TA, Wu JR, Biddle MJ, Moser DK (2014) Depressive symptoms, health-related quality of life, and cardiac event-free survival in patients with heart failure: a mediation analysis. Qual Life Res Int J Qual Life Asp Treat Care Rehab 23(6): 1869–1876. https://doi.org/10.1007/s11136-014-0636-5
- 67. Lesman-Leegte I, Jaarsma T, Coyne JC, Hillege HL, Van Veldhuisen DJ, Sanderman R (2009) Quality of life and depressive symptoms in the elderly: a comparison between patients with heart failure and age- and gender-matched community controls. J Card Fail 15(1):17–23. https://doi.org/10.1016/j.cardfail.2008.09.006
- Liu MH, Wang CH, Lee CM, Huang YY, Cherng WJ (2011) Disease knowledge, self-care behaviours and life quality in heart

failure: experience of the Taiwan national health care. Brunei Int Med J $7(5){:}269{-}279$

- Loo DW, Jiang Y, Koh KW, Lim FP, Wang W (2016) Self-efficacy and depression predicting the health-related quality of life of outpatients with chronic heart failure in Singapore. Appl Nurs Res 32: 148–155. https://doi.org/10.1016/j.apnr.2016.07.007
- Luo N, O'Connor CM, Cooper LB, Sun JL, Coles A, Reed SD, Whellan DJ, Piña IL, Kraus WE, Mentz RJ (2018) Relationship between changing patient-reported outcomes and subsequent clinical events in patients with chronic heart failure: insights from HF-ACTION. Eur J Heart Fail. https://doi.org/10.1002/ejhf.1299
- Lupon J, Gastelurrutia P, de Antonio M, Gonzalez B, Cano L, Cabanes R, Urrutia A, Diez C, Coll R, Altimir S, Bayes-Genis A (2013) Quality of life monitoring in ambulatory heart failure patients: temporal changes and prognostic value. Eur J Heart Fail 15(1):103–109. https://doi.org/10.1093/eurjhf/hfs133
- 72. Macabasco-O'Connell A, DeWalt DA, Broucksou KA, Hawk V, Baker DW, Schillinger D, Ruo B, Bibbins-Domingo K, Holmes GM, Erman B, Weinberger M, Pignone M (2011) Relationship between literacy, knowledge, self-care behaviors, and heart failure-related quality of life among patients with heart failure. J Gen Intern Med 26(9):979–986. https://doi.org/10.1007/s11606-011-1668-y
- Masoudi FA, Rumsfeld JS, Havranek EP, House JA, Peterson ED, Krumholz HM, Spertus JA (2004) Age, functional capacity, and health-related quality of life in patients with heart failure. J Card Fail 10(5):368–373
- Pantilat SZ, O'Riordan DL, Rathfon MA, Dracup KA, De Marco T (2016) Etiology of pain and its association with quality of life among patients with heart failure. J Palliat Med 19(12):1254– 1259. https://doi.org/10.1089/jpm.2016.0095
- 75. Patidar AB, Andrews GR, Seth S (2011) Prevalence of obstructive sleep apnea, associated risk factors, and quality of life among Indian congestive heart failure patients: a cross-sectional survey. J Cardiovasc Nurs 26(6):452–459. https://doi.org/10.1097/JCN. 0b013e31820a048e
- Pelegrino VM, Dantas RAS, Clark AM (2011) Health-related quality of life determinants in outpatients with heart failure. Rev Lat Am Enferm 19(3):451–457. https://doi.org/10.1590/S0104-11692011000300002
- 77. Pressler SJ, Subramanian U, Kareken D, Perkins SM, Gradus-Pizlo I, Sauve MJ, Ding Y, Kim J, Sloan R, Jaynes H, Shaw RM (2010) Cognitive deficits and health-related quality of life in chronic heart failure. J Cardiovasc Nurs 25(3):189–198. https://doi.org/10.1097/ JCN.0b013e3181ca36fe
- Ramos S, Prata J, Rocha-Goncalves F, Bettencourt P, Coelho R (2017) Quality of life predicts survival and hospitalisation in a heart failure Portuguese population. Appl Res Qual Life 12(1):35–48. https://doi.org/10.1007/s11482-016-9449-8
- Riegel B, Moser DK, Carlson B, Deaton C, Armola R, Sethares K, Shively M, Evangelista L, Albert N (2003) Gender differences in quality of life are minimal in patients with heart failure. J Card Fail 9(1):42–48. https://doi.org/10.1054/jcaf.2003.1
- Saccomann I, Cintra FA, Gallani M (2010) Health-related quality of life among the elderly with heart failure: a generic measurement. Sao Paulo Med J 128(4):192–196
- Silavanich V, Nathisuwan S, Phrommintikul A, Permsuwan U (2018) Relationship of medication adherence and quality of life among heart failure patients. Heart Lung. https://doi.org/10.1016/ j.hrtlng.2018.09.009
- Son YJ, Song Y, Nam S, Shin WY, Lee SJ, Jin DK (2012) Factors associated with health-related quality of life in elderly Korean patients with heart failure. J Cardiovasc Nurs 27(6):528–538. https:// doi.org/10.1097/JCN.0b013e31823fa38a

- Sousa MM, Oliveira JDS, Soares M, Bezerra S, Araujo AA, Oliveira S (2017) Association of social and clinical conditions to the quality of life of patients with heart failure. Rev Gaucha Enferm 38(2):e65885. https://doi.org/10.1590/1983-1447.2017.02.65885
- Yu DS, Lee DT, Woo J (2004) Health-related quality of life in elderly Chinese patients with heart failure. Res Nurs Health 27(5): 332–344. https://doi.org/10.1002/nur.20030
- Yu DS, Chan HY, Leung DY, Hui E, Sit JW (2016) Symptom clusters and quality of life among patients with advanced heart failure. Journal of geriatric cardiology 13(5):408–414. https://doi. org/10.11909/j.issn.1671-5411.2016.05.014
- Zachariah D, Stevens D, Sidorowicz G, Spooner C, Rowell N, Taylor J, Kay R, Salek MS, Kalra PR (2017, 249) Quality of life improvement in older patients with heart failure initiated on ivabradine: Results from the UK multi-centre LIVE:LIFE prospective cohort study. Int J Cardiol:313–318. https://doi.org/10.1016/j. ijcard.2017.08.001
- 87. Behlouli H, Feldman DE, Ducharme A, Frenette M, Giannetti N, Grondin F, Michel C, Sheppard R, Pilote L (2009) Identifying relative cut-off scores with neural networks for interpretation of the Minnesota Living with Heart Failure questionnaire. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp 6242-6246
- Blair JE, Huffman M, Shah SJ (2013) Heart failure in north america. Curr Cardiol Rev 9(2):128–146
- Jenkinson C, Jenkinson D, Shepperd S, Richard L, Petersen S (1997) Evaluation of treatment for congestive heart failure in patients aged 60 years and older using generic measures of health status (SF-36 and COOP charts). Age Ageing 26(1):7–13
- Johansson P, Dahlström U, Broström A (2006) Factors and interventions influencing health-related quality of life in patients with heart failure: a review of the literature. Eur J Cardiovasc Nurs 5(1): 5–15. https://doi.org/10.1016/j.ejcnurse.2005.04.011
- Varvaro F, Olds N, Zullo T, Murali S (1999) Determining quality of life in older and younger women with congestive heart failure and myocardial infarction. Am J Geriatr Cardiol 8(1):15–20
- Strömberg A, Mårtensson J (2003) Gender differences in patients with heart failure. Eur J Cardiovasc Nurs 2(1):7–18
- Karakurt P, Aşılar RH, Yildirim A, Memiş Ş (2018) Determination of hopelessness and quality of life in patients with heart disease: an example from Eastern Turkey. J Relig Health 57(6):2092–2107
- Silva SAD, Passos SRL, Carballo MT, Figueiró M (2011) Quality of life assessment after acute coronary syndrome: systematic review. Arq Bras Cardiol 97(6):526–540
- 95. Arian M, Mirmohammadkhani M, Ghorbani R, Soleimani M (2019) Health-related quality of life (HRQoL) in beta-thalassemia major (β-TM) patients assessed by 36-item short form health survey (SF-36): a meta-analysis. Qual Life Res 28(2):321–334
- Sears SF, Woodrow L, Cutitta K, Ford J, Shea JB, Cahill J (2013) A patient's guide to living confidently with chronic heart failure. Circulation 127(13):e525–e528
- Heo S, Lennie TA, Okoli C, Moser DK (2009) Quality of life in patients with heart failure: ask the patients. Heart Lung 38(2):100– 108
- 98. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62(16):e147–e239

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.