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Abstract
Acute heart failure hospitalizations complicated by diuretic resistance are associated with worse outcomes. Yet, quantification of
the frequency and accompanying risk from loop diuretic resistance is limited by the absence of a comprehensive definition with
universal clinical application. Herein, we outline limitations of the current metrics used to identify and define diuretic resistance.
We discuss the best available methods to identify and prognosticate outcomes in diuretic resistance. We propose a mechanism-
based classification system of diuretic resistance by anatomical location as follows: pre-nephron resistance, pre-loop of Henle
resistance, loop of Henle resistance, and post-loop of Henle resistance. Within this paradigm, we compare and contrast historical
beliefs of resistancemechanismswith current literature specific to patients with heart failure.We recommend a treatment pathway
to restore diuretic efficacy with a literature review of the various combination diuretic strategies and ongoing clinical trials that
may impact current best practices.
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Combination diuretic therapy

Defining loop diuretic resistance in acute
heart failure

Intravenous (IV) loop diuretic therapy is required in 80–90%
of acute heart failure (AHF) hospitalizations to treat symptoms
of hypervolemia[1, 2]. Quantifying the incidence of loop di-
uretic resistance is limited by the absence of a universal defi-
nition for this complication. Qualitatively, diuretic resistance
is an unsatisfactory rate of diuresis/natriuresis despite an ade-
quate diuretic regimen. This qualitative description consists of
three subjective evaluations: (1) presence and magnitude of
hypervolemia; (2) adequacy of the diuretic regimen; and (3)
rate of net negative urine and sodium balance. Each compo-
nent is interdependent, subjective to the evaluator, and prob-
lematic to measure (Table 1).

Diuretic response will decrease as euvolemia is
approached, even if all other parameters remain constant.
Ensuring the patient remains hypervolemic by the best
available methods is the first step in defining diuretic
resistance. Second, the adequacy of the diuretic dose and
frequency must be addressed. Diuretic resistance is only
considered when the loop diuretic regimen should yield
diuresis, yet the rate of decongestion is inadequate. The
determination of a diuretic regimen’s adequacy is subjec-
tive and may be evaluated relative to the oral outpatient
dose, historical response, frequency, utilization of other
concomitant diuretics, and kidney function. Although
lacking a defined value for diuretic resistance, diuretic
efficiency has significant prognostic implications [24].
Finally, the rate of decongestion must be assessed.
Commonly used metrics such as weight changes and net
input-output measurements are imprecise in clinical prac-
tice due to inaccurate measurements and other influential
factors. Agreement between these two metrics is poor
even in the setting of rigorous clinical trials (r = − 0.381
in the ASCEND-HF and r = 0.55 in DOSE-AHF clinical
trials) [29, 30]. Furthermore, many AHF hospital admis-
sions are not associated with weight gain, limiting the
application of weight changes [31, 32].

Given these ambiguities, a quantitative definition of diuret-
ic resistance with universal application remains elusive. Spot
urinary sodium measurements are an emerging method to
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measure diuretic resistance. The spot urine sodium from a
urine sample collected 1–2 h (h) after the administration of
an IV loop diuretic dose can predict the total sodium excretion
over the 6-h natriuretic duration of the loop diuretic with
strong correlation with the measured 6-h sodium output (r =
0.91, p < 0.0001) by the following equation [25]:

Na output mmolð Þ ¼ eGFR� BSA=1:73ð Þ
� Crserum=Crurineð Þ � 60 min� 2:5 h

� Naurine=1000 mLð Þ

Na = sodium; eGFR = estimated glomerular filtration rate,
BSA = body surface area, CrSerum = serum creatinine;
CrUrine = urine creatinine; NaUrine = urinary sodium
concentration

Patients with a calculated cumulative sodium output <
100 mmol will not achieve a significantly negative sodium
balance with twice daily diuretic dosing assuming a normal
sodium restricted diet [25]. By identifying patients with natri-
uretic resistance within 1–2 h, clinicians can make rapid di-
uretic titrations to overcome diuretic resistance compared to
traditional monitoring practices (Fig. 1). During consecutive
days of diuresis, urinary sodium concentrations undergo

Table 1 Fallacies of metrics required to define diuretic resistance

Metric Fallacy

Presence and magnitude of hypervolemia

Physical exam ○ Learned skill with inter-rater variability
○ Requires synthesis of multiple exam findings with low sensitivity and specificity for volume assessment [3–5]
○ Sensitivity of 58% for hypervolemia when compared to a hemodynamically measured standard [6, 7]

Serum creatinine and
BUN

○ Increases can be secondary to multiple etiologies and are unreliable marker of volume status [8–13]

Natriuretic peptides ○ Obesity, age, kidney function, severity of disease, comorbidities, and medications can alter concentrations despite
hypervolemia [14]

○ No absolute value or percentage decrease indicates euvolemia [15–17]

Serum bicarbonate ○ Increases are result of diuretic action and do no correlate with euvolemia or decongestion in DOSE-AHF, ROSE-AHF, or the
CARRESS-HF populations [18]

Patient-reported
dyspnea

○ Poor correlation with decongestion or euvolemia DOSE-AHF and CARRESS-HF populations [17, 19]

Hemodynamics ○ Gold-standard but invasive nature limits widespread utility
○ Assumes elevated pressure indicates elevated volume [20]

Adequate diuretic regimen

Loop diuretic dose ○ Absolute and weight-based dose thresholds [21–23] alone ignore the urine volume and sodium output, which may be
adequate

Diuretic efficiency ○ Expresses the diuretic response relative to the loop diuretic dose, as urine output, weight change, or sodium output per
milligram of furosemide equivalents [24]

○ Primary limitation is the absence of a threshold to define resistance with differing median values between populations [24]

Urine sodium output ○Urinary sodium output < 50–100 mmol in 6-h natriuretic period predicts a positive sodium balance with twice daily IV loop
diuretic and is associated with worse heart failure outcomes [25–27]

○ Fluctuates significantly during consecutive days of diuresis despite consistent urine output, requiring serial measurements
[28]

○ Primary limitation is lack of evidence including diuretic dose during interpretation

Adequate rate of net negative urine and sodium balance

Weight loss ○ Influenced by non-diuretic factors such as measurement methods and bowel movements
○ Poor predictor of euvolemia and decongestive rate in AHF clinical trials [17, 29]
○ Weak correlation with net urine output in AHF clinical trials, highlighting the inaccurate measurement even in the best of

circumstances [17, 29, 30]

Urine output ○Quantification of urine volume alone neglects the urinary sodium concentration, which has wide interpatient variability [28]
○ 40% of patients excrete < 50 mmol sodium within 6 h after an IV loop diuretic dose [25]

Net input and output ○ Osmoregulation is preserved in the majority of HF patients with fluid intake strongly impacting urine output
○ Fluid intake is poorly regulated and recorded, falsely inflating net input and output
○ Weak correlation with weight loss in AHF clinical trials, highlighting the inaccurate measurement even in the best of

circumstances [17, 29, 30]
○ Needs interpretation in context diuretic dose and frequency to define diuretic resistance

DOSE-AHF Diuretic Optimization Strategies Evaluation trial in Acute Heart Failure, ROSE-AHF Renal Optimization Strategies Evaluation in Acute
Heart Failure, CARRESS-HF Cardiorenal Rescue Study in Acute Decompensated Heart Failure, IV intravenous, AHF acute heart failure
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significant fluctuation, can diminish despite preserved vol-
umes of urine output, and may require serial measurement
[3, 28].

Prognostic impact of diuretic resistance
in acute heart failure

Diuretic resistance confers a worse prognosis, with the prog-
nostic impact depending on the definition employed [33–35].
In the absence of randomized trials comparing therapies for
diuretic resistance, it is difficult to discern the relative potential
harm between the intertwined elements: diuretic resistance
itself, the resultant increased loop diuretic doses, and the in-
creased risk of not achieving decongestion. While the contri-
bution of diuretic resistance is unknown, AHF hospitaliza-
tions ending without adequate decongestion are associated
with worse outcomes and higher readmissions [36].

Loop diuretics increase neurohumoral activation regardless
of the dose, diuretic response, or volume state [37, 38].
DOSE-AHF provides insight into the net balance between
the decongestive benefits from higher diuretic doses and the
potentially harmful neurohumoral activation, as it randomized
patients to a high- or low-dose loop diuretic strategy [39]. The
DOSE-AHF trial found no effect on 60-day death or rehospi-
talization between the high- or low-dose strategy, although the
prevalence of diuretic resistance was unknown [40]. Patients
randomized to a high-dose strategy had better 60-day out-
comes, after adjusting for cumulative dose. However, the ben-
efit was eliminated after adjusting for the resulting net urine
output [39]. Changes in neurohormonal biomarkers during
diuresis did not differ between the high- and low-dose groups
and were not associated with 60-day outcomes in the DOSE-
AHF trial [38]. While the potential for dose-related harm from
loop diuretics cannot be excluded, the decongestive benefits
of high-dose loop diuretics appear to offset potential harm.

Fig. 1 Comparison of potential diuretic adjustment strategies.
*Calculated 6-h total sodium output can be done using the equation in
the text above, which is available as a free, online calculator at www.

cardiorenalresearch.net. UOP, urine output; IV, intravenous; [UNa], spot
urinary sodium concentration in millimole/liter; Total UNa, 6-h cumula-
tive sodium output in millimole
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Regarding the prognostic implications of diuretic resis-
tance itself, a spot urine sodium less than 50–70 mmol/L after
the first dose of IV loop diuretic is associated with higher risk
of worsening kidney function, worsening heart failure (HF),
and long-term adverse events [26, 41–43]. Yet, this metric
does not consider the diuretic dose. Change in serial measures
of spot urine sodium after diuretic adjustment may provide
further prognostic value toward decongestive and long-term
outcomes [44]. Diuretic efficiency is the best available metric
to separate the prognostic effect of decongestive therapy in-
tensity from resistance itself. Patients with diuretic efficiency
below a population median had increased mortality (HR 3.57;
95% CI 1.46–8.73; p = 0.005), with those exhibiting low di-
uretic efficiency on high loop diuretic doses having the worst
prognosis [24]. Consequently, diuretic resistance is known to
confer a worse prognosis when high-dose loop diuretics are
required with sustained low diuretic efficiency or resistance
prohibits achievement of euvolemia with medical therapy.

Lastly, one must acknowledge that a mild resistance to
diuretics can be beneficial. The term diuretic braking illus-
trates a beneficial adaptation to diuretics. Diuretic braking
describes a diminished response to the same diuretic regimen
[45]. If the initial diuretic response of excreting 20% of filtered
sodium persisted, a continuous loop diuretic infusion would
excrete 280 g of salt and 50 L of urine daily in a patient with an
glomerular filtration rate (GFR) of 120 mL/min filtering
1400 g of sodium/day. In response to the immediate natriure-
sis, renal autoregulation and diuretic braking preserve the
GFR.Diuretic braking is beneficial by ensuring loop diuretics
do not have an unacceptably small therapeutic window. The
term diuretic braking in clinical practice fails to characterize a
specific mechanism of resistance or distinguish between ben-
eficial renal adaptation and maladaptive diuretic resistance.

Thus, a clinically actionable classification system should be
employed instead.

Classification of loop diuretic resistance
mechanisms

Diuretic resistance limiting decongestive goals, which may be
similar or different mechanistically as beneficial diuretic
braking, can be broadly categorized as pre-nephron diuretic
resistance and intra-nephron diuretic resistance (Fig. 2). Intra-
nephron diuretic resistance can further be divided into pre-
loop of Henle diuretic resistance, loop of Henle diuretic resis-
tance, and post-loop of Henle diuretic resistance. When eval-
uating diuretic resistance mechanism literature, one must con-
sider the population studied. Many of the historical studies of
diuretic resistance were performed in healthy controls or pa-
tients with hypertension or chronic kidney disease. The pre-
sumption that these findings can be intuitively applied to the
AHF patient on modern medical therapies is flawed and has
been challenged by recent literature specific to patients with
HF.

Pre-nephron diuretic resistance

Historical diuretic studies focused on pre-nephron and pre-
loop of Henle resistance mechanisms in healthy subjects and
patients with hypertension or chronic kidney disease [47–53].
Low cardiac output to the kidney, once thought to be a pre-
dominant driver of cardiorenal syndrome and diuretic resis-
tance, has been proven by multiple recent analyses to be of
minimal importance at the AHF population level [8, 9, 54].

Diuretic Resistance

Pre-Nephron DR
Intra-Nephron DR

Proximal tubule sodium 
reabsorption

Reduction in number of 
nephrons

Reduced GFR

Competition for diuretic 
entry into nephron by 

increased organic 
anions

Albuminuria

Loop diuretic dose

Loop diuretic 
frequency

Loop of Henle 
natriuretic 
response

Distal tubule hypertrophy

Distal tubule hyperfunction

Pre-Loop of Henle 
DR Loop of Henle DR Post-Loop of Henle DR

Cardio-renal 
hemodynamic 
interactions

Renal blood flow

Hypoalbuminemia

Sodium/fluid intake

Fig. 2 Classification of potential
IV loop diuretic resistance
mechanisms. *Adapted with
permission from Cardiorenal
Syndrome in Heart Failure [46]
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Venous congestion, hypothesized to initiate diuretic resistance
through a reduction in the arterial to venous pressure gradient
at the glomerulus, was also unrelated to diuretic efficiency
[24]. Vasodilators, dopamine, and milrinone failed to augment
diuresis or weight loss in patients with AHF [55–60]. While
dopamine trended toward increasing urine volume in those
with a baseline systolic blood pressure (BP) less than
114 mmHg [57], antagonism of the renin-angiotensin-
aldosterone system (RAAS) may improve natriuresis even in
the setting of BP reduction [61, 62]. Activation of the RAAS
varies significantly during decongestion and lacks association
with diuretic dose or diuretic response, although the timing of
RAAS biomarkers during decongestive therapy limits defini-
tive conclusions [38, 63]. It remains unclear which patients
with lower BP and diuretic resistance should have a temporary
cessation in medications that lower BP versus those in whom
RAAS antagonists should be continued or increased. Lastly,
non-steroidal anti- inflammatory drugs should be
discontinued, as they impair renal blood flow and natriuresis
by inhibiting prostaglandin synthesis [64, 65].

Hypoalbuminemia has been investigated as a pre-nephron
diuretic resistance mechanism because all loop diuretics are >
90% bound to albumin [66–68]. Hypothesized mechanisms
include a reduced intravascular volume available for diuresis
and decreased delivery of loop diuretics to the nephron [69].
The majority of literature evaluating the benefit of IValbumin
replacement with IV furosemide was performed in nephrotic
syndrome or cirrhosis utilizing IV furosemide doses of only
40 mg [50, 70, 71]. In a cohort of patients with HF and a
medium serum albumin of 3.70 g/dL (IQR 3.50 to 4.10), se-
rum albumin had no correlation with urinary diuretic delivery
nor diuretic resistance measured as diuretic efficiency after
adjustment for inflammatory markers [72]. Recent AHF trials
have validated these results, finding no association between
baseline serum albumin concentrations and weight loss (p =
0.43), diuretic efficiency (p = 0.53), or freedom from conges-
tion (p = 0.30) [73].

The relationship between sodium and heart failure out-
comes is complex, with insufficient evidence to recom-
mend any specific dietary sodium intake for patients with
AHF undergoing diuresis [74, 75]. Traditional paradigms
consider high sodium intake to be a cause of pre-nephron
diuretic resistance [47, 76]. In contrast, higher sodium in-
take might be beneficial in AHF populations if a greater net
sodium removal is achieved [74]. Co-therapy with hyper-
tonic saline and high-dose loop diuretics produced greater
natriuresis and urine volume than high-dose loop diuretics
alone among AHF patients with diuretic resistance
[77–79]. However, the quality of data supporting this ap-
proach is limited. Hypertonic saline therapy cannot be rec-
ommended presently until the safety and efficacy is dem-
onstrated in a larger, diverse population achieving a net
negative sodium balance [80].

Pre-loop of Henle diuretic resistance

Kidney function and albuminuria, which are hypothesized
to impair diuretic delivery to the site of action, are less
influential mechanisms of diuretic resistance compared to
tubular handling of sodium in HF. Animal models of ne-
phrotic syndrome [81–83] indicated albuminuria caused
diuretic resistance by binding loop diuretics in the urine
as in the serum [84]. A recent study in humans with ne-
phrotic syndrome has disproven albuminuria as a primary
mechanism of diuretic resistance [85]. Patients with AHF
and normal albuminuria (43%), microalbuminura (39%),
or macroalbuminuria (18%) exhibited no correlation be-
tween diuretic efficiency and urinary albumin concentra-
tions (r = − 0.145, p = 0.08) [72].

In the novel “The House of God,” we see renally
based diuretic adjustments taught as “age + BUN =
Lasix dose” [86], which contemporary medical pocket
resources continue [84]. Unlike chronic kidney disease
populations, renal dysfunction is less relevant in HF as
a cause of diuretic resistance and is responsive to in-
creased diuretic dose. Estimated glomerular filtration rate
(eGFR) poorly correlates with net fluid output (r2 = 0.0;
p = 0.35) and diuretic efficiency (r2 = 0.02; p < 0.001) in
patients with AHF [24]. Elevated BUN but not reduced
eGFR predicted urine output in the ASCEND-HF trial,
which could reflect neurohumoral activation and/or re-
duced diuretic delivery to the site of action [55]. A co-
hort of patients with HF were studied to evaluate the
relative importance of diuretic delivery and renal tubular
response in diuretic resistance [87]. Urea clearance (r =
0.75; p = 0.001) and low eGFR (r = 0.58; p = 0.001)
strongly correlated with decreased diuretic delivery to
the kidney, but interestingly, patients with lower eGFR
compensated for decreased diuretic concentrations by
producing approximately 2-fold greater fractional excre-
tion of sodium at 6 h. Kidney function in HF has no
impact on the individual nephron’s net filtrate, but does
influence total natriuresis through a reduction in the total
number of nephrons. In summary, kidney dysfunction is
much less of an important mediator of diuretic resistance
in AHF than loop of Henle and post-loop of Henle di-
uretic resistance.

The proximal tubule is responsible for reabsorbing ap-
proximately 60% of filtered sodium [3]. Decreases in
renal blood flow and increases in renal lymphatic flow
secondary to HF may increase the percentage of filtered
sodium reabsorbed up to 75% [88]. Further research is
needed to quantify the contribution of the proximal con-
voluted tubule to diuretic resistance relative to resistance
in the loop of Henle and distal tubules, although current
literature indicates post-loop of Henle resistance is of
greater significance.
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Loop of Henle diuretic resistance

Loop diuretic’s dose-response curve exhibits a sigmoidal pat-
tern along a logarithmic scale, with both a threshold and ceil-
ing effect. The diuretic concentration in the lumen of the loop
of Henle relative to the diuretic threshold determines the peak
rate and duration of diuresis (Fig. 3). A dose exceeding the
ceiling can still cause a greater diuretic response by maintain-
ing a concentration above the threshold for a longer time. An
IV loop diuretic dose that fails to cross the diuretic threshold
will result in diuretic resistance. Likewise, a diuretic dose that
elicits an adequate response can fail to meet the decongestive
goals for the day if it is given with an inadequate frequency.
Following a dose, urinary concentrations of loop diuretics fall
below the diuretic threshold quickly (half-life 1–2 h) with a
duration of action that rarely exceeds 6 h [67, 68]. Typical
twice daily dosing may provide diuretic concentration below
the diuretic threshold for the majority of the day, allowing
compensatory sodium reabsorption [45, 89].

Post-loop of Henle diuretic resistance

Continuous loop diuretic exposure in animals has shown rapid
distal tubular hypertrophy and hyperfunction [90–92]. The
few contemporary studies in AHF patients indicate that the
majority of diuretic resistance is primarily mediated by post-
loop of Henle diuretic resistance. In patients with AHF, a
median dose of IV furosemide 160 mg (40–270 mg) increased

the amount of sodium estimated to exit the loop of Henle by
12.6 ± 10.8% (p < 0.001) compared to a pre-diuretic baseline
[93]. The net fractional excretion of sodium only increased
4.8 ± 3.3%, indicating 66% (25–85%) of the sodium leaving
the loop of Henle underwent distal tubular reabsorption. The
authors controlled for loop of Henle diuretic resistance by
using urine diuretic concentration and reported the increase
in sodium leaving the loop of Henle only accounted for
6.4% of the increase in net fractional excretion of sodium. A
separate study of AHF patients receiving IV loop diuretic
corroborated these findings, quantifying the majority (71%)
of diuretic response was related to intra-renal diuretic resis-
tance via renal tubular changes [87].

Diuretic strategies to overcome diuretic
resistance

The following discussion assumes the patient exhibiting di-
uret ic resis tance is hemodynamical ly stable and
hypervolemic. Additionally, it assumes the clinician has ex-
cluded causes of pseudo-resistance, such as drug interactions
(NSAIDs, probenecid), urinary tract obstruction, or total body
euvolemia with edema secondary to lymphedema or hypoal-
buminemia. Medical therapy should always be individualized
to the diuretic resistance mechanism when known to restore
diuretic efficacy and achieve clinical euvolemia. A stepwise
approach to diuretic titration based upon diuretic response
with prioritization of loop diuretic optimization was employed

Fig. 3 Loop diuretic pharmacokinetics and dose-response curve. The
loop diuretic plasma concentration (y-axis) is plotted over time (x-axis)
when given as an intravenous bolus. The Diuretic Threshold (red dotted
line) is the diuretic concentration that must be exceeded to cause diuresis.
The Diuretic Ceiling (blue dotted line) is the diuretic concentration above
which no further increases in diuretic response are gained. The shaded
area illustrates the area of the curve between the Diuretic Threshold and

Ceiling. The boxed graph within the graph on the right shows the simul-
taneous sigmoidal dose-response relationship between the diuretic con-
centration (x-axis) and the natriuretic response (y-axis). The orange circle
represents the moment the diuretic concentration crosses the Diuretic
Threshold simultaneously in both graphs. The green circle represents
the when the diuretic concentration reaches the Diuretic Ceiling simulta-
neously in both graphs
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in CARRESS-HF and represents the current best practice of
overcoming diuretic resistance [3, 94].We propose the follow-
ing approach to the patient with AHF and diuretic resistance
based upon the relative incidence of diuretic resistance mech-
anisms and the current literature supporting efficacy and safe-
ty of the diuretic therapies.

1. Address loop of Henle resistance mechanisms

Diuretic dose and frequency are interdependent in loop of
Henle diuretic resistance and both must be considered. When
evaluating for loop of Henle diuretic resistance, the natriuretic
response to the dose should first be considered. A spot urine
sodium less than 50 to 70 mmol/L or a urine output rate less
than 600 mL over 6 h necessitates an increase in the loop
diuretic dose [3] (Fig. 1). If the spot urine sodium is >
70 mmol/L, calculation of the 6-h cumulative urine sodium
output provides additional guidance. Using the 6-h cumulative
sodium output, clinicians can modify the loop diuretic

regimen’s dose and/or frequency to produce a net negative
sodium balance relative to the daily dietary sodium intake
(2 g sodium diet = 87 mmol). If an adequate natriuretic re-
sponse is achieved, the frequency should be addressed next
(Fig. 4). Continuous infusions of loop diuretics should be
advantageous by consistently exceeding the diuretic threshold
[95]. Yet, the DOSE-AHF trial found no difference in symp-
tom improvement, urine output, or weight loss when admin-
istering the same total loop diuretic daily dose divided twice
daily versus a continuous infusion in patients with an un-
known prevalence of diuretic resistance [40]. In patients
exhibiting diuretic resistance but with adequate natriuretic re-
sponse to an IV bolus dose, consideration can be given to the
use of IV loop diuretics at greater frequencies to overcome
frequency-mediated diuretic resistance, although data proving
this theoretical approach is lacking. This strategy differs from
the DOSE-AHF trials’ null findings in that more frequent
dosing also represents an increase of the total daily diuretic
dose in addition to increased frequency.

Fig. 4 Diuretic strategies to
overcome diuretic resistance
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2. Address post-loop of Henle diuretic resistance

Although post-loop of Henle is the resistance mechanism in
the majority of patients AHF, clinicians should first ensure an
adequate loop diuretic dose and frequency are prescribed be-
fore employing combination nephron blockade targeting post-
loop of Henle diuretic resistance (Fig. 4). Combination nephron
blockade with metolazone was investigated in an observational
cohort of 13,898 AHF hospital admissions, of which 1048
utilized adjuvant metolazone [96]. After propensity and covar-
iate adjusted analyses, adding metolazone was associated with
increased risk of hypokalemia (OR 2.80; 95% CI 2.25–3.50),
hyponatremia (OR 2.13; 95% CI 1.73–2.62), worsening renal
function (OR 3.02; 95% CI 2.55–3.58), and mortality (OR
1.20; 95% CI 1.04–1.39) [96]. In contrast, the use of high-
dose loop diuretics did not have any association with harm.
Interestingly, the harm associated with metolazone was only
in patients who did not have metolazone added to high-dose
loop diuretics. Together with the DOSE-AHF trial’s absence of
harm between high and low dose diuretics, the limited current
literature indicates escalation of loop diuretic doses may be the
preferred method until randomized, comparative trials
(NCT01647932) can better inform practice [3, 40, 97].

Thiazide (and thiazide-like) medications are the most com-
monly utilized medications to overcome post-loop of Henle
diuretic resistance [98–100]. Since thiazides inhibit sodium re-
absorption in the distal convoluted tubules where the majority
of remaining sodium reabsorption occurs after the loop of
Henle, these agents should be the initial agent chosen for com-
bination nephron blockade. Despite experience spanning
50 years, common misconceptions regarding thiazides in com-
bination nephron blockade persist [99]. Thiazides appear to
have equal efficacy at equipotent doses [101]; therefore, deci-
sions between agents should be based upon pharmacokinetic
differences, particularly among agents with additional carbonic
anhydrase antagonistic ability. Although metolazone is often
considered superior to other thiazides, no solid evidence sup-
ports this perception, even in patients with low eGFR [99,
102–104]. Administration of thiazides 30 min prior to loop
diuretics is not based upon evidence, as most studies adminis-
tered both agents simultaneously [99]. The erratic and delayed
absorption of metolazone makes this practice clinically irrele-
vant and unnecessarily increases complexity [105, 106].

While oral chlorothiazide is not utilized secondary to poor
absorption, IV chlorothiazide offers the pharmacokinetic ad-
vantages of a quicker onset of action compared to
metolazone’s slow absorption and has a shorter duration of
action that may better facilitate titration to diuretic response
[101]. To date, no randomized trials have compared IV chlo-
rothiazide to oral thiazides, limiting definitive conclusions on
efficacy differences [107]. Two ongoing randomized clinical
trials (NCT02606253 and NCT03574857) comparing

metolazone and IV chlorothiazide will provide further insight
into this issue.

Careful monitoring for electrolyte abnormalities, kidney
function, and volume status is warranted with all thiazides to
avoid adverse events [99]. The risk of hypochloremia in-
creases in combination nephron blockade and is emerging as
a research target [96, 108]. Hypochloremia has been associat-
ed with increased mortality risk and diuretic resistance
[109–112]. No data currently exists to guide chloride supple-
mentation or modification of combination diuretic therapy on
the basis of serum chloride.

Mineralocorticoid receptor antagonists and epithelial sodium
channel inhibitors impact the late distal tubule and collecting
duct. Given the reduced capacity for sodium reabsorption in this
anatomical area compared to the site of action of thiazides, these
agents are thought unlikely to provide superior diuretic effects in
combination with loop diuretics [3, 113]. Diuretic doses of min-
eralocorticoid receptor antagonists are combined with loop di-
uretics in cirrhotic ascites as the primary combination nephron
blockade strategy [114, 115]. In chronic HF, non-diuretic doses
(< 50 mg/day) of mineralocorticoid receptor antagonists reduce
morbidity and mortality [116]. Literature examining higher
doses of mineralocorticoid receptor antagonists with the intent
of augmenting diuresis is scarce [117, 118]. The ATHENA-HF
trial compared spironolactone 100 mg/day to placebo or contin-
ued non-diuretic dose spironolactone (25 mg) in patients with
hypervolemic AHF treated with IV loop diuretics [119]. No
difference in the primary endpoint of natriuretic peptide change
or secondary diuretic outcomes such as net urine output, weight
change, or IV loop diuretic doses required were found [119].
Several factors should be considered when interpreting these
results. The population studied did not exhibit diuretic resis-
tance, receiving a median IV furosemide daily dose of 160 mg
(IQR 100, 320). Spironolactone has a short half-life (1.5 h), and
the active metabolite canrenone (half-life ~ 17 h) is responsible
for themajority of themedication’s effects [120]. As steady-state
canrenone concentrations are not achieved until day 3 of thera-
py, the 96-h time period might be insufficient to measure the
effects [119]. Serum potassium levels were no different between
spironolactone and placebo, supporting this possibility [119].
Future studies should investigate higher doses of spironolactone
(200–400 mg/day) or other mineralocorticoid receptor antago-
nists in a diuretic resistance population. Currently in AHF with
diuretic resistance, this class can be utilized for hypokalemia
management and continued as a part of chronic neurohormonal
therapies, but diuretic doses should be reserved until failure of
combination nephron blockade with loops and thiazides.

Vasopressin-2 receptor antagonists have been extensively
investigated in AHF. Earlier trials evaluated the impact on
mortality and hyponatremia [121, 122]. Recent investigations
have re-focused the primary efficacy endpoints to study their
decongestive effects. Vasopressin-2 receptor antagonists exert
diuretic effects by blocking vasopressin-mediated aquaporin
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channels in the collecting duct, causing an increase in urinary
water (aquaresis) when used alone [123]. The natriuretic po-
tential when combined with high-dose loop diuretics in pa-
tients with diuretic resistance is not described to date. Ongoing
clinical trials are investigating the natriuretic effects with this
application (NCT02606253), which will be critical if a urine
sodium-based diuretic strategy is employed (Fig. 4). Three
trials comparing tolvaptan to placebo in patients with
hypervolemic AHF without diuretic resistance treated with
only modest IV loop diuretics (mean daily IV furosemide
equivalent 80–160 mg) found increases in weight loss and
urine output [124–126]. Tolvaptan cannot be recommended
over thiazides in combination nephron blockage at this time
given the limited study in loop diuretic resistance.

The proximal convoluted tubule reabsorbs the largest per-
centage of filtered sodium, making it an attractive target for
diuretic therapies [113]. Medications acting in the proximal
convoluted tubules with potential for combination nephron
blockade include acetazolamide and sodium-glucose co-trans-
porter 2 (SGLT2) inhibitors. Acetazolamide has a number of
potentially positive extra-diuretic effects, including increased
salt delivery to the macula densa reducing neurohormonal
activation [127]. When combined with low doses of oral and
IV furosemide in small cohorts of patients with HF but with-
out diuretic resistance, acetazolamide increased the natriuretic
response [128, 129]. Acetazolamide is currently being inves-
tigated in combination with IV loop diuretics in the ADVOR
trial (NCT03505788) [127]. SGLT2 inhibitors have several
ongoing clinical trials to establish the acute natriuretic effects
in patients with HF, but their use as adjunctive diuretic agents
cannot be recommended currently. Acetazolamide may be a
promising diuretic to add when diuretic resistance persists
despite combination nephron blockade with loop diuretics
and thiazides, but there is no conclusive evidence to recom-
mend its use over thiazides currently.

In conclusion, a universally applicable, quantitative defini-
tion of diuretic resistance in AHF remains elusive. The mech-
anisms behind diuretic resistance are diverse. A mechanism-
based classification can guide medical strategies to restore
diuretic efficacy. Optimization of loop diuretic regimens based
upon diuretic response should be the primary strategy follow-
ed by combination nephron blockage with thiazides. Novel
diuretic combination strategies are emerging but require fur-
ther research before they can be recommended.
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