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Abstract
Heart failure represents the end result of different pathophysiologic processes, which culminate in functional impairment.
Regardless of its aetiology, the presentation of heart failure usually involves symptoms of pump failure and congestion, which
forms the basis for clinical diagnosis. Pathophysiologic descriptions of heart failure with reduced ejection fraction (HFrEF) are
being established. Most commonly, HFrEF is centred on a reactive model where a significant initial insult leads to reduced
cardiac output, further triggering a cascade of maladaptive processes. Predisposing factors include myocardial injury of any
cause, chronically abnormal loading due to hypertension, valvular disease, or tachyarrhythmias. The pathophysiologic processes
behind remodelling in heart failure are complex and reflect systemic neurohormonal activation, peripheral vascular effects and
localised changes affecting the cardiac substrate. These abnormalities have been the subject of intense research. Much of the
translational successes in HFrEF have come from targeting neurohormonal responses to reduced cardiac output, with blockade of
the renin-angiotensin-aldosterone system (RAAS) and beta-adrenergic blockade being particularly fruitful. However, mortality
and morbidity associated with heart failure remains high. Although systemic neurohormonal blockade slows disease progression,
localised ventricular remodelling still adversely affects contractile function. Novel therapy targeted at improving cardiac con-
tractile mechanics in HFrEF hold the promise of alleviating heart failure at its source, yet so far none has found success.
Nevertheless, there are increasing calls for a proximal, ‘cardiocentric’ approach to therapy. In this review, we examine HFrEF
therapy aimed at improving cardiac function with a focus on recent trials and emerging targets.
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Introduction

Heart failure represents the end result of different pathophys-
iologic processes, which culminate in functional impairment.
Regardless of its aetiology, the presentation of heart failure

usually involves symptoms of pump failure and congestion,
which forms the basis for clinical diagnosis [1]. Contemporary
practice has categorised heart failure into several distinct
groups: acute vs. chronic, left sided vs. right sided and pre-
served vs. reduced ejection fraction. During acute presenta-
tions, the schema of ‘wet-dry’ and ‘warm-cold’ often aids in
appropriate management. However, unlike the dichotomous
nature of classification systems, clinical manifestations of
heart failure can be subtle and lie on a spectrum between
asymptomatic dysfunction to severe end-stage disease.
Nevertheless, the distinction between different classes of heart
failure is important as they represent divergent pathophysiol-
ogy and treatment. Heart failure with preserved ejection frac-
tion (HFpEF) remains a poorly understood entity, with a lack
of effective therapy, reflecting our lack of insight into the
disease process. Increasingly, HFpEF is being viewed not as
a primary cardiac disease but as a disease driven by complex
and heterogeneous comorbidities [2].

On the other hand, pathophysiologic descriptions of heart
failure with reduced ejection fraction (HFrEF) are better
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established [3]. Most commonly, HFrEF is centred on a reac-
tive model where a significant initial insult leads to reduced
cardiac output, further triggering a cascade of maladaptive
processes [4, 5]. Predisposing factors include myocardial in-
jury of any cause, chronically abnormal loading due to hyper-
tension, valvular disease or tachyarrhythmias. The pathophys-
iologic processes behind remodelling in heart failure are com-
plex and reflect systemic neurohormonal activation, peripher-
al vascular effects and localised changes affecting the cardiac
substrate. These abnormalities have been the subject of in-
tense research.

Much of the translational successes in HFrEF have come
from targeting neurohormonal responses to reduced cardiac
output, with blockade of the renin-angiotensin-aldosterone
system (RAAS) and beta-adrenergic blockade being particu-
larly fruitful. However, mortality and morbidity associated
with heart failure remains high [6]. Although systemic neuro-
hormonal blockade slows disease progression, localised ven-
tricular remodelling still adversely affects contractile function.

Historically, a direct approach to stimulating cardiac con-
traction through the use of inotropic agents was employed.
However, an association with poor clinical outcomes lead to
re-evaluation in their routine use. Mechanistically, multiple
aspects of the cardiac contractile apparatus are dysregulated
in HFrEF and subject to adverse re-modelling. Bluntly in-
creasing contractile force via influencing cardiac calcium
levels did not address the underlying derangement in electro-
chemical coupling and energetic inefficiencies that are now
well established. Novel therapy targeted at improving cardiac
contractile mechanics and metabolic efficiency in HFrEF hold
the promise of alleviating heart failure at its source, yet so far
none has found success, i.e. been incorporated into current
heart failure management guidelines [7, 8]. Nevertheless,
there are increasing calls for a proximal, ‘cardiocentric’ ap-
proach to therapy [5, 9, 10]. In this review, we summarise
translational progress aimed at improving cardiac pump func-
tion, focusing particularly on excitation-contraction coupling,
novel inotropes and cardiac energetics.

Excitation contraction coupling

Themechanical action of the heart depends on the coordinated
action of individual cardiomyocytes, which are composed
mainly of contractile proteins and mitochondria. Myofibrils
mainly contain actin and myosin and span the entire length
of the cardiomyocyte. They are subdivided into individual
sarcomeric elements identifiable by electron microscopy.
The actin filaments are anchored at Z-lines found on either
end of each sarcomere, whilst myosin filaments in the A band
are interconnected at the central M line and to the Z-disc by
the titin filaments. Invaginations of sarcolemma in the form a
complex network of transverse tubules (T-tubules) are also

anchored to the Z-discs. The T-tubules are rich in ion channels
and serve to regulate excitation contraction coupling within
the myocyte.

Contraction begins with an action potential that causes
Ca2+ release from voltage gated L type Ca2+ channels
(LTCCs) in the sarcolemma and within the T-tubules. The
resulting increase in Ca2+ concentration triggers Ca2+-induced
Ca2+ release (CICR) from ryanodine receptors (RyR) located
on the closely apposed sarcoplasmic reticulum (SR). The
propagating Ca2+ binds to cardiac troponin C and induces
conformational changes between tropomyosin and actin on
the thin filament. This exposes the myosin-binding sites on
actin, enabling myosin to bind to it, thus activating the cross-
bridge cycle (systole). Cardiac relaxation (diastole) requires
the active uptake of Ca2+ into the SR through sarcoplasmic
reticulum Ca2+ ATPase 2a (SERCA-2a) and also active Ca2+

efflux through the sodium-calcium exchanger (NCX) [Fig. 1].
Significant derangements in excitation-contraction (EC) cou-
pling are found in HFrEF and correspond with abnormalities
in the systems involved in Ca2+ handling. These include re-
modelling of the T-tubules, decoupling of RyRs and reduced
activity of SERCA. The outcomes correspond to reduced am-
plitudes of the Ca2+ transients and reduced SR Ca2+ concen-
tration, which negatively impact on both systolic contractility
and diastolic relaxation [11]. Importantly, elevation of intra-
cellular Ca2+ and Ca2+ leak from the SR predisposes to ma-
lignant arrhythmias and myocyte death [12].

T-tubule and ryanodine receptor dyad

In animal and (some) human studies, T-tubule disruption is a
feature of established heart failure and hampers cardiac con-
tractility and synchrony [13–17]. Impaired intracellular Ca2+

cycling is evident long before the development of clinical
heart failure, coinciding with T-tubule disorganisation [18].
Migration of the T-tubules away from the Z-line alters LTCC
distribution and leaves behind ‘orphaned RyRs’ [19], which
exhibit ‘leaky’ SR Ca2+ release. This leads to asynchronous
and regionally heterogeneous CICR, which correlates strongly
with poor contractility in human HFrEF [20] and is postulated
to be arrhythmogenic [21]. There is probably a linear reduc-
tion in ejection fraction with increasing disorganisation [22].

The underlying cause of T-tubule remodelling has not been
defined, but in small animal studies, it has been linked to
reduced expression and altered distribution of the anchor pro-
tein junctophilin-2 (JPH-2), possibly in response to increased
wall stress [23, 24]. The T-tubule/SR triad is held together by
JPH-2, which is essential for stabilisation of local ion channels
including RyR and LTCC [25]. Cardiac-specific knock-down
of JPH-2 in a mouse model led to the development of acute
heart failure, with loss of the junctional membrane complexes
and reduced CICR [26]. However, contradictory studies exist
which show no correlation of JPH-2 expression with T-tubule
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distribution in both rats and sheep [27]. Whilst JPH-2 muta-
tions has been found in individuals with hypertrophic cardio-
myopathy (HCM), they remain at a case study level without a
definitive link to HFrEF [28].

Recovery of tubule morphology has been reported in ani-
mal models with cardiac resynchronisation [29], sildenafil
[30] and beta-blockade [31]; however, the efficacy of these
treatments is based on unloading of the myocardium. Novel
therapeutic approaches include gene therapy and miRNA in-
hibition. Overexpression of JPH-2 via viral-mediated gene
therapy halted the progression of heart failure in a mouse
model, with preservation of T-tubule structures [32].
Suppression of miRNA-24, which is known to target JPH-2,
rescued LTCC signalling and stabilised JPH-2 expression in a
mouse model of heart failure secondary to aortic constriction.
It has been recently shown that JPH-2 fragments found in
stressed hearts localise to the nucleus and activate
cardioprotective transcriptional programming, attenuating hy-
pertrophic remodelling in mice [33]. However, given the un-
certain role of JPH-2 in human HFrEF, preclinical studies
using human heart failure samples will be necessary prior to
clinical trials.

SERCA

The Ca2+ re-uptake channel SERCA-2a has long been impli-
cated in the pathogenesis of heart failure and has been the
target of several clinical trials in HFrEF [34]. Normally,
SERCA is the principal determinant of the rate of Ca2+ efflux,
determining SR levels. Hence, SERCA activity greatly im-
pacts on both the rate of diastole and the subsequent force of
systolic contraction induced by Ca2+ release from the SR.
SERCA is required for complete diastolic relaxation and min-
imises delayed after-depolarisations. The primary regulator of
SERCA is phospholamban (PLB), which reduces the activity
of SERCA by reducing its affinity for Ca2+. Phosphorylation
of PLB by protein kinase A (PKA) or Ca-dependent protein
kinase II (CaMKII) leads to disinhibition of SERCA resulting
in both increased lusitropy and inotropy.

Animal and human studies in heart failure have variously
confirmed the reduced expression of SERCA-2a at mRNA
and protein levels [34–36]. SERCA activity is reduced by a
relative decrease in SERCA/PLB levels and by reduced phos-
phorylation of PLB [37, 38]. SERCA KO mice exhibit ineffi-
cient Ca2+ handling, reduced contractile efficiency and

Fig. 1 Excitation contraction coupling in the cardiomyocyte. The cardiac
action potential [1] is initiated by influx of Na+ ions via Na+ channels
which brings the net cellular potential from negative to positive. This
triggers Ca2+ release from LTCC [2] found within the invagination of
the T-tubule. The localised elevation of Ca2+ concentration induces
CICR from the closely opposed SR via RyR receptors [3]. Contraction
[4] and relaxation [5] of myofilaments are dependent on binding and
dissociation of Ca2+ from troponin. Diastole is therefore dependent on

efflux of Ca2+ to either the SR via SERCA or extracellularly via NCX.
Return to net negative cellular potential occurs during repolarisation and
involves efflux of K+ ions via K+ channels and NKX. LTCC, L-type Ca2+

channels; CICR, calcium induced calcium release; SR, sarcoplasmic re-
ticulum; RyR, ryanodine receptor; SERCA, sarcoplasmic reticulum Ca2+

ATPase; NCX, sodium-calcium exchanger; NKX, sodium-potassium
exchanger
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eventual heart failure [39]. These and other experiments high-
light the causal relationship between SERCA loss and heart
failure, identifying it as a target for therapy.

PLB ablation improves EC coupling and Ca2+ handling
in small and large animal models of heart failure, a result
which has been replicated in humans [40–42]. A recent
murine model of heart failure demonstrated reduced mor-
tality following PLB ablation [43]. Modulation of PLB
function via increased phosphorylation (inhibition of pro-
tein phosphatase 1 or enhancing PKA activity) has also
been studied with some success in animals [44].
However, there are significant concerns with downstream
effects on other signalling pathways and non-specific in-
duction or inhibition of phosphorylation may have unfore-
seen outcomes. Importantly, mutations in PLB have been
linked to hereditary dilated cardiomyopathy [45] and ar-
rhythmogenic cardiomyopathy [46]. Multiple binding part-
ners underlie the complexity of PLB signalling, and more
preclinical work on human models is needed to translate
these findings [47].

The direct SERCA activator, istaroxime, was investigated
in the HORIZON-HF trial for acute heart failure (AHF).
Istaroxime is a novel non-glycoside inhibitor of Na+/K+

ATPase, which also directly stimulates SERCA-2a activity,
likely by disrupting the SERCA-PLB complex [48]. It exerts
a dual inotropic/lusitropic effect by increasing SR Ca2+ se-
questration in diastole and increasing cytosolic Ca2+ in systo-
le. Increased SERCA activity had been demonstrated in guin-
ea pigs and human cardiomyocyte preparations [49].
Istaroxime improved systolic and diastolic functions in a ca-
nine chronic heart failure model without increased myocardial
oxygen consumption or an increase in heart rate [50]. In the
HORIZON-HF trial randomising 120 AHF patients to
istaroxime infusion or placebo, istaroxime decreased pulmo-
nary capillary wedge pressure and diastolic stiffness whilst
improving contractility without an increase in adverse events.
Compared with other commonly used inotropes, istaroxime
has a better safety profile than digoxin and does not increase
energy consumption as is the case with dobutamine [51].
Further phases I and II trials of istaroxime in AHF are under-
way (ClinicalTrials.gov Identifier NCT02617446 and
NCT02477449).

SERCA gene therapy has garnered much attention in pre-
clinical research with extensive modelling both in vitro and
in vivo. Transgenic murine models overexpressing SERCA
demonstrate improved cardiac function and protection against
developing heart failure [52]. Human cardiomyocytes from
HFrEF patients [53] transfected with SERCA-2a carrying ad-
enovirus have improved contractile characteristics in vitro
[53]. Multiple small animal models provide proof of concept
for gene therapy, with reports of restoration of contractile
function in heart failure [54], reversal of negative remodelling
[55], protection against malignant arrhythmias [56] and

improved survival [57]. Large animal studies of canine, ovine
and porcine models followed suit, with promising outcomes
despite heterogeneity in the choice of the heart failure model
[58]. Proposed mechanisms to explain the beneficial effect of
SERCA gene therapy include improvement in mechano-
energetic efficiency [59], modulation of apoptotic signalling
and more recently altered miRNA expression [60]. Evidence
for SERCA gene therapy has been described as ‘overwhelm-
ing’, years prior to the initiation of its first human trial [61].

The phase 2 CUPID trial enrolled 39 patients with ad-
vanced heart failure and utilised intracoronary delivery of
SERCA-2a via adeno-associated virus (AAV) vector. The au-
thors reported promising results across multiple domains to a
prespecified p value < 0.2, assessing the likelihood of a false-
positive result to be 2.7% [62]. A 3-year follow-up of CUPID
participants reported an 82% reduction in recurrent cardiovas-
cular events and a favourable safety profile [63]. Nevertheless,
as is often the case for promising heart failure therapies, the
phase 2b CUPID II trial in 250 patients failed to meet its
primary endpoint of time to recurrent cardiovascular events,
nor its secondary outcome of time to all-cause of death [64].
Whilst no substantial differences in patient characteristics ex-
ist between the two trials to explain these results, the study
authors point to a possible reduction in viral transduction ef-
ficacy in the CUPID II trial. However, significant weaknesses
exist in the design of the CUPID trial, including less stringent
p values, subdivision of an already small sample size and the
lack of dose response to treatment, all of which bias to a false-
positive result. Following the disappointing result of the
CUPID II trial, enthusiasm for SERCA gene therapy waned,
with withdrawal of the companion phase II AGENT-HF trial
examining its effect on ventricular remodelling [65].
Preliminary data favoured placebo, although the study at ter-
minationwas too underpowered to detect a difference between
the two arms. Despite the generally favourable safety profile
of gene therapy for HFrEF, challenges remain in optimising its
delivery and establishing its efficacy [66].

Post-translational regulation of SERCA2a is now
recognised. Glutathionylation increases SERCA activity,
whereas glycosylation decreases it [67]. Specifically, O-
GlcNAcylation refers to the addition of O-linked N-
acetylglucosamine and has been shown to reduce SERCA
expression [68]. SUMOylation of SERCA2a has gained the
lion’s share of attention in heart failure research and has been
identified as essential for normal cardiac development [69].
SUMOylation refers to attachment of small ubiquitin-like
modifier proteins which modify the function of the targeted
protein [70]. SUMO1 gene transfer rescues decreased levels
of SUMO1, increases SERCA2a expression and potentiates
contractile function in mice with heart failure [71]. This result
was replicated in a swine model of ischaemic heart failure
[72]. A small molecule activator of SUMOylation has been
discovered, which acts as a dose-dependent inotrope and
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improves left ventricular function in vivo [73]. Better elucida-
tion of Ca2+ handling and its effect on cardiac function con-
tinues to supplement an ever-expanding menu of treatment
options. Given its essential role not only in EC coupling but
also its critical function in gene transcription [74], mechano-
energetics, growth and apoptosis [11], it is likely that Ca2+

signalling will remain an active area of translational research.

Inotropes in heart failure

Inotropes were first introduced into clinical practice over
200 years ago with William Withering’s treatise ‘An Account
of the Foxglove’, where digitalis was used to treat the ‘most
hopeless and deplorable’ cases of heart failure [75]. Due to its
significant symptomatic benefit in acute heart failure, digoxin
use gained widespread acceptance but was plagued by signifi-
cant toxicity. The search for a ‘digitalis replacement’ in heart
failure took centre stage in the 1980s, with the development of
adrenergic agonists and phosphodiesterase inhibitors as novel
inotropes [76]. It soon became apparent, however, that their
clinical benefit over digoxin was overstated.

Theoretically, augmenting systolic function should blunt
maladaptive hormonal responses that are associated with re-
modelling. However, inotrope use was soon linked to in-
creased arrhythmias, myocardial ischaemia and mortality.
Current international clinical guidelines do not endorse the
use of inotropes in chronic stable heart failure but advocate
for its limited application to acute decompensated heart failure
or as a bridge to destination therapy [1]. However, novel
inotropes continue to be developed, which may improve our
understanding of the pathophysiology of heart failure.

Calcium mobilisers

Medications that increase inotropy by elevating cytosolic
Ca2+ as ‘calcium mobilisers’ include digoxin, milrinone and
dobutamine [77]. Dobutamine is an adrenergic agonist and
milrinone is a phosphodiesterase inhibitor. Both increase con-
tractility by increasing cAMP whereas digoxin acts by
blocking the Na+/K+ ATPase pump, thereby reducing the
chemical gradient for Ca2+ efflux through NCX.

Neurohormonal hyperactivity in heart failure leads to
desensitisation and down-regulation of adrenoceptors, re-
duction in cAMP levels and ultimately depleted intracel-
lular Ca2+, all proportional to the severity of heart failure
[78]. Medications that enhance cAMP rationally target the
reduced cAMP levels found in heart failure. Whilst calci-
um mobilisers provide modest short-term haemodynamic
benefit [79, 80], chronic administration leads to further
loss of contractile reserve [81]. There was a 28% increase
in all-cause mortality in the PROMISE trial of milrinone
in severe chronic heart failure [82], a result echoed in

studies involving dobutamine [83]. Undesirable patho-
physiologic effects of increased cytosolic Ca2+ include
increased myocardial oxygen demand, ventricular arrhyth-
mias, reduced diastolic relaxation and acceleration of
myocyte death [84]. Methods to circumvent these adverse
effects such as reduced or intermittent dosing and the use
of partial agonists have all failed to demonstrate a clinical
benefit in HFrEF [85]. Digoxin itself did not improve all-
cause mortality in heart failure as reported in the Digitalis
Investigator Group Study [86]. Many began questioning
the wisdom of stimulating rather than resting the failing
heart, and long-term use of inotropes in stable HFrEF was
abandoned soon after.

Intravenous inotropes are still used for acute heart failure
(AHF) refractory to vasodilators and diuretics and/or accom-
panied by hypotension. Calcium mobilisers improve
haemodynamics in the short-term, although evidence suggests
that even brief use may lead to increased mortality. The pro-
spective OPTIME-CHF trial of milrinone failed to show a
clinical benefit in AHF, with higher rates of hypotension and
ventricular arrhythmias [87]. Retrospective analysis of the
FIRST trial identified dobutamine infusions as a strong inde-
pendent risk factor for mortality [88]. Recent systematic re-
views of dobutamine [89] andmilrinone [90] continue to point
to possible harm, although the reported trials tended to be
small and of poor methodological quality, often utilising sur-
rogate outcomes with significant clinical heterogeneity.
Contrary with the mortality neutral results of the DIG trial,
systematic review of nine large trials of digoxin in heart failure
yielded a hazard ratio of 1.14 for all-cause mortality [91]. This
has placed doubt on the role of the most established calcium
mobilising agent. Given that large observational studies such
as the ADHERE registry [92] echo the concern in controlled
trials regarding the use of calcium mobilisers in acute heart
failure, larger, better designed trials are needed to conclusively
settle this question.

Calcium sensitisers

Calcium sensitisers enhance myocyte contractility by increas-
ing myofilament Ca2+ sensitivity. They are thought to be su-
perior to calcium mobilisers as they do not elevate cytosolic
Ca2+ levels, in addition to avoiding down-regulation of the
adrenergic signalling pathway in heart failure. The best stud-
ied calcium sensitisers are pimobendan and levosimendan,
both of which augment troponin C binding to Ca2+.

In vitro animal studies of pimobendan using muscle prep-
arations, demonstrated superior mechano-energetic efficiency
compared with dobutamine [93]. In vivo, pimobendan exerts
positive inotropic, lusitropic and vasodilatory effects [94].
Double-blinded RCTs in canine-dilated cardiomyopathy
models suggested a strong mortality benefit, similar to those
previously been observed with angiotensin converting
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enzyme (ACE) inhibitors [95]. However, this benefit never
translated in the human trials. Like other inotropic agents of
its time, pimobendan improved exercise tolerance at the ex-
pense of increased mortality [96]. Use of pimobendan in
humans was subsequently abandoned, despite subsequent
contradictory studies [97].

Levosimendan is routinely used in clinical practice, dem-
onstrating several pharmacologic effects that act in concert to
improve myocardial function [98]. Inotropy is sustained via
stabilisation of the Ca2+-troponin C complex [99], with pos-
sible contribution from highly selective PDE III inhibition.
Levosimendan has prominent vasodilatory effects brought
about through activation of ATP-dependent potassium chan-
nels (KATP), which leads to relaxation of smooth muscles and
after-load reduction. Cardioprotection is mediated by im-
provement of coronary flow and opening of mitochondrial
KATP, which may reduce ischaemia-related cell damage
[100]. Advantages of levosimendan over other agents include
its potency despite β-blockade, lack of propensity for
tachyphlaxis and sustained duration of action due to active
metabolites [77].

Preclinical and clinical models of levosimendan indicate a
beneficial effect in heart failure. Preservation of myocardial
contractile efficiency despite inotropy has been demonstrated
in guinea pig hearts [101] and human volunteers [102].
In vivo, levosimendan reduces infarct size in rat and pig
models of LAD ligation [103, 104]. Open-label human studies
of levosimendan in acute heart failure secondary to myocar-
dial infarction suggest preservation of contractile function,
improvements in coronary perfusion and mortality [105].
Double-blinded RCTs of levosimendan have been performed
with inconsistent results reflecting heterogeneous study de-
signs. The LIDO study of 203 patients with severe heart fail-
ure found levosimendan to be superior to dobutamine with
haemodynamic improvement and lower 6-month mortality
[106]. The RUSSLAN study randomised 504 patients with
acute heart failure post-myocardial infarction to levosimendan
or placebo, with safety being the primary outcome. Again,
levosimendan correlated with lower mortality without an in-
crease in hypotension or ischaemia [107].

However, larger follow-up trials SURVIVE [108] and
REVIVE-II failed to demonstrate superiority of levosimendan
in terms of safety and mortality. A meta-analysis of 45 trials
involving levosimendan found a significant reduction in mor-
tality despite the negative mortality benefit in the two largest
studies [109]. However, the authors excluded singular studies
at a time in their sensitivity analysis, which is not as rigorous as
the exclusion of all low quality or unblinded studies [110].
Only smaller studies exist for the intermittent use of
levosimendan in the chronic heart failure setting, such as in
the LevoREP study [111]. No difference was found in the
primary outcome of functional capacity or quality of life [112].

The jury is still out on whether calcium sensitisers are ben-
eficial in both acute and chronic heart failure. However, there
seems to be increasing clinical equipoise for larger trials of
levosimendan therapy [113]. It remains controversial whether
the inotropic effects of levosimendan can be partially or fully
explained by phosphodiesterase inhibition [99, 114, 115].
Pleotropic effects of levosimendan extend to multiple organ
systems, improving circulation in pulmonary, hepatic and re-
nal vasculature, whilst protecting against reperfusion injury
[116]. More research is needed to further elucidate the role
of calcium sensitisers at both preclinical and clinical levels
in heart failure.

Direct myosin activators

The actin-myosin cycle is where chemical energy is converted
to mechanical energy in myocytes. Improvements in contrac-
tility can be gained by pharmacologically targeting actin-
myosin kinetics. The steps of the cycle are well described.
Hydrolysis of ATP bound to the myosin head allows weak
interaction between actin and myosin, which is strengthened
by the release of phosphate. Conformational change of the
myosin head follows the release of phosphate and leads to a
power stroke of roughly 10 nm on the actin fibres. The con-
version from a weak to a strong bond between actin and my-
osin, also termed cross-bridge formation, is the rate-limiting
step of this cycle. If the release of ADP and phosphate occurs
before cross-bridge formation, no power stroke occurs. Direct
myosin activators were first discovered via high-throughput
screening of agents catalysing cross-bridge formation without
increasing cytosolic Ca2+ concentrations [117]. Of the many
myosin and actin modulators currently being investigated
[118], the standout agent is omecamtiv mecarbyl (OM), a
selective activator of cardiac myosin [119].

Cardiomyocyte preparations exposed to OM exhibit an in-
creased duration of contraction without an acceleration of con-
traction velocity. This inotropic effect has been confirmed in a
rat model of heart failure and also canine models with both
tachycardia and ischaemia induced heart failure [117]. The
investigators report a 20–30% increase in contractile efficien-
cy. Early human studies were consistent with animal model-
ling, whereby measures of left ventricular function improved
with administration of OM in a dose-dependent manner in
healthy volunteers and patients with chronic heart failure.
[120, 121]. Increases in systolic duration and stroke volume
were noted without an increase in heart rate.

The ATOMIC-HF and COSMIC-HF trials were phase 2b
trials published in 2016 that investigated OM in acute and
chronic heart failure, respectively. The former did not meet
the primary endpoint of relieving dyspnoea nor any of the
secondary endpoints including length of hospitalisation and
short term mortality [122]. Nevertheless, the authors point to
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a possible benefit in a subgroup using the highest OM con-
centration (425 ± 173 ng/mL).

Oral administration of OM over 20 weeks produced the
more encouraging result of increased stroke volume and a re-
duction of NT-proBNP [123]. The main safety concern with
OM is ischaemia due to a reduction in the duration of diastole
in healthy individuals, which emerge at serum concentrations
greater than 1200 ng/mL [120]. However, in patients with isch-
aemic cardiomyopathy, administration ofOMat standard doses
did not result in signs and symptoms of ischaemia with exercise
induced stress [124]. Despite being generally well-tolerated
with no increase in adverse event rates, both phase 2b studies
associated OM administration with a small, concentration in-
dependent increase in troponin levels. It is likely that dosing of
OM will need to be within a narrow therapeutic range.

The underlying mechanisms of action of OM may be more
complex than first thought. The specificity of OM for cardiac
myosin is under question due to a study reporting an increase
in slow twitch skeletal muscle fibre contractility with OM
[125]. More recently, the idea that OM increases contractile
efficiency has been challenged, with reports of impaired con-
tractile efficiency and increased myocardial demand in por-
cine models, attributed to increased resting myosin ATPase
activity [126]. In the same paper, it was suggested that OM
may also have calcium sensitising effects due to improved
interaction between the thick and thin filaments. Regardless
of these lingering questions, enthusiasm for myosin activators
remains high. GALACTIC-HF is a large phase III trial of OM
in chronic HFrEF currently under way, which seeks to answer
the question of whether supporting cardiac contractility with
direct myosin activators will lead to reduced cardiovascular
mortality (ClinicalTrials.gov Identifier: NCT02929329)
(Table 1).

Energetics in heart failure

Consideration of myocardial energetics is essential for any
therapy aimed at improving contractile function. Under nor-
mal circumstances, oxidative metabolism in the mitochondria
supplies 95% of cardiac energy with 5% derived from anaer-
obic glycolysis [133]. In terms of substrate utilisation, fatty
acid oxidation (FAO) accounts for 70% of cardiac metabolic
requirements, with the remainder being derived from oxida-
tion of glucose, ketone bodies, lactate and other amino acids
[134]. Substrate metabolism in the heart responds to the phys-
iologic environment, hence fatty acid oxidation is suppressed
in presence of excess glucose and vice versa [135]. The ma-
jority of energy consumption is for maintenance of EC cou-
pling, including cross-bridge cycling and powering ion fluxes.
The efficient turnover of metabolic substrates is therefore a
prerequisite for normal contractile function and energetic

deficits are strongly linked to both cellular oxidative stress
and contractile failure.

Heart failure represents impairment of energetic reserve
and substrate utilisation. This is corroborated by declining
stores of both ATP and phosphocreatine (PCr) with progres-
sive left ventricular dysfunction in failing human hearts [136,
137]. Even in the absence of lower concentrations of adeno-
sine nucleotides, reduced shuttling of the creatine kinase sys-
tem contributes to failure to meet energy demands [138]. In
particular, a reduction in PCr/ATP ratio is predictive of ad-
verse outcomes in heart failure [139]. Modification of sub-
strate use is seen in both cardiac hypertrophy and heart failure,
with increasing dependence on glucose metabolism and re-
duced FAO. The physiological impetus for this change is not
a reduction in availability of fatty acids but from alterations in
transcription signalling [140]. Peroxisome proliferator-
activated receptor-⍺ (PPAR-⍺) and its co-activator peroxi-
some proliferator-activated receptor gamma .co-activator-1
(PGC-1) induce fatty acid metabolism and mitochondrial bio-
genesis. They are both down-regulated in human heart failure
[141, 142]. Although oxidative metabolism of glucose is more
efficient than FAO, there is uncoupling of glucose oxidation
from glycolysis in heart failure [134, 143]. Products of glycol-
ysis such as pyruvate and lactate can be channelled to the
Krebs cycle via accessory or ‘anaplerotic’ pathways.
However, efflux of substrate and loss to other non-
productive pathways such as protein glycosylation and polyol
formation results in reduced oxidative efficiency, as observed
in animal models of heart failure [143, 144]. Given the para-
digm of energetic exhaustion in the failing heart and the trep-
idation for the current use of inotropes (‘flog a dead horse’), it
is plausible that enhancing cardiac energetics may improve
contractile function.

Metabolic substrate modulation

An approach to improve energetic balance in the failing heart
is to focus on inducing glucose oxidation. Amongst the inves-
tigated agents, anti-anginals target the imbalance in myocar-
dial oxygen supply and demand, with perhexiline and
trimetazidine demonstrating promising results. Trimetazidine
promotes glucose oxidation by competitively inhibiting long
chain 3-ketoacyl-coenzyme A thiolase (3-KAT), the enzyme
responsible for the last step in beta-oxidation of FA.
Administration of trimetazidine to heart failure patients posi-
tively impacted on cardiac PCr/ATP ratio with additional ben-
eficial effects including improved endothelial function, resto-
ration of cytosolic Ca2+ levels and protection against free rad-
ical injury and fibrosis [145]. Recent interest in extending the
use of trimetazidine to heart failure led to a series of small
trials of variable methodological quality, which demonstrated
an improvement in LVEF and NYHA class. A systematic
review and meta-analysis performed by Gao et al. in 2011
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was significant for an improvement in cardiovascular events,
hospitalisation and overall mortality [146]. The results are
echoed by a more recent retrospective cohort study [147].
However, larger double-blinded RCTs are needed to clarify
the benefits of trimetazidine in HFrEF.

Perhexiline is an anti-anginal agent, which inhibits carni-
tine palmitoyl transferase-1 (CPT-1) responsible for the trans-
port of FA into mitochondria. Evidence for use of perhexiline
in heart failure lies mainly in one trial conducted by Lee et al.,
which demonstrated improvements in contractile function and
heart failure symptoms in patients with advanced heart failure
[148]. Amore recent study of perhexiline in patients with non-
ischaemic heart failure demonstrated improvements in PCr/
ATP ratio and patient symptoms, without evidence for change

in LVEF or substrate utilisation [149]. This is in agreement
with an earlier murine study by the same group [150]. At
present, multiple mechanisms have been proposed for
perhexiline without consensus [151]. Concerns with hepato-
toxicity and neurotoxicity places an increased burden of proof
for benefit in heart failure before perhexiline can be used for
this indication [152].

Ranolazine is an inhibitor of the late Na+ channel current
with expanding roles in management of angina, cardiac ar-
rhythmias and diastolic dysfunction [153]. Perhaps reflective
of the complexities in extrapolating animal studies to human
heart failure, earlier suggestions of enhanced glucose oxida-
tion by ranolazine in murine models did not translate to
humans [154]. Agents that directly increase glucose oxidation

Table 1 Selected trials of pharmacologics affecting myocardial contractility in heart failure

Trial name Intervention Result Population

Calcium mobilisers

DICE [127] Intermittent low-dose dobuta-
mine infusion

No improvement in functional status, no increase in
mortality compared with placebo

HFrEF NYHA
III-IV

Vesnarinone
investigators [128]

Oral vesnarinone Increased mortality with vesnarinone compared
with placebo

HFrEF NYHA
III-IV

PROMISE [82] Oral milrinone Improved haemodynamics but increased mortality
compared with placebo

HFrEF NYHA
III-IV

OPTIME-CHF [129] Milrinone infusion No change in length of hospitalisation and increased
hypootension/arrhythmia compared with placebo

AHF

DIG [86] Digoxin Non-significant trend towards decreased mortality with
digoxin use compared with placebo

HFrEF

Calcium sensitiser

PICO [96] Oral pimobendan Improve exercise capacity compared with placebo
however increases mortality

HFrEF

EPOCH [97] Reduced adverse cardiac events compared with
placebo without improvement in mortality

HFrEF NYHA
II-III

LIDO [106] Levosimendan infusion Superior haemodynamic performance and reduced
mortality compared with dobutamine infusion

AHF

CASINO [130] Reduced mortality compared with dobutamine infusion
and placebo

AHF

RUSSLAN [107] Reduced mortality and incidence of worsening heart failure
compared with placebo

AHF in AMI

SURVIVE [108] No difference in mortality compared with dobutamine AHF

REVIVE II [131] Symptomatic improvement but increased adverse
outcomes compared with placebo

AHF

LevoREP [112] Intermittent levosimendan
infusion

No difference in functional capacity or quality of life
compared with placebo

HFrEF NYHA
III-IV

SERCA

HORIZON-HF [132] Istaroxime Decreased PCWP and increased SBP AHF

Cupid [62] SERCA2a gene transfer Improvement in symptoms and function HFrEF NYHA
III-IV

Cupid 2 [64] No improvement in recurrence of HF events or outcomes HFrEF NYHA
II-IV

Myosin activator

Atomic-HF [122] Omecamtiv mecarbil No improvement in dyspnoea compared with placebo AHF

Cosmic-HF [123] Improved cardiac function compared with placebo HFrEF

Galactic-HF
(NCT02929329)

Primary outcome: cardiovascular death/time to HF event HFrEF
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have also been explored. Dichloroacetate (DCA) inactivates
mitochondrial pyruvate dehydrogenase kinase to release inhi-
bition of pyruvate dehydrogenase, the rate-limiting enzyme,
which converts pyruvate into acetylCoA for entry into the
Krebs cycle. Early clinical experience with DCA suggested
an improvement in cardiac function and efficiency [155], but
this was not always replicated [156]. Poor pharmacokinetic
properties of DCA also make it unsuitable for chronic use,
despite benefits found in animal models [157].

The benefit of repressing FAO to induce glucose ox-
idation has been questioned. FA remains the most im-
portant metabolic substrate in heart failure, and acute
depletion of FA levels actually impairs contractile func-
tion [158]. Inhibition of FAO may also lead to accumu-
lation of lipid metabolites, which are a reversible cause
of contractile dysfunction and leads to structural damage
in a process termed cardiac lipotoxicity [159]. A newer
approach to managing heart failure energetics has been
to induce FAO, which in addition to boosting supply of
ATP, may clear FA derivatives that accumulate in heart
failure. Induction of PPAR-⍺, the main regulator of
FAO, can have positive effects on the contractility of
the failing heart. Overexpression of PPAR-⍺ under nor-
mal circumstances can repress glucose utilisation,
resulting in a diabetic cardiomyopathy in murine models
[160]. However, in the context of heart failure, PPAR-⍺
activation preserves the level of high-energy phosphates
and in particular, exerts a cardioprotective effect in vivo
[161, 162]. Subgroup analyses of the VA-HIT trial of
fibrates, which act via PPAR-⍺ agonism, suggest a ben-
efit in heart failure [163]. However, this may reflect
enhanced endothelial function and anti-inflammatory ef-
fects of PPAR-⍺ agonists rather than the promotion of
FA metabolism [164]. In fact, fibrates may reduce car-
diac FAO by inducing FA consumption in the periphery
[165]. It remains to be demonstrated that enhancement
of cardiac FAO occurs with fibrates in humans as no
RCTs have directly proven their benefit in heart failure
[166].

Restoring mitochondrial activity

Defects in multiple domains of mitochondrial function occur
in heart failure and result in abnormal ion handling, oxidative
stress and programmed cell death amongst other pathophysi-
ologic effects [134]. Directly relevant to the issue of energetics
is the disruption of the mitochondria electron transport chain
(ETC), noted in both animal and human studies of heart failure
[167]. The ETC facilitates transformation of free energy re-
leased from oxidative reactions within the mitochondria into
ATP through the action of a series of enzyme complexes.
Decreased expression of mitochondrial complexes has been
described in failing human hearts of multiple aetiologies

[168]. On the other hand, mitochondrial myopathies are also
associated with contractile dysfunction and defective oxida-
tion [169]. Inefficient ETC function additionally increases re-
active oxygen species (ROS), which results in myocyte apo-
ptosis, pathological remodelling and progressive cardiac con-
tractile dysfunction [170].Modulation of ETC function is seen
with proven therapies in HFrEF, including cardiac
resynchronisation and neprilysin inhibition [171]. Direct mod-
ulation of mitochondrial ETC activity may be the target for
future treatments in heart failure.

Coenzyme Q10 (CoQ10) is an over-the-counter supplement
with limited but promising data for HFrEF treatment. CoQ10

primarily participates in the ETC as an electron shuttle, facil-
itating the production of ATP. However, it also has anti-
oxidant and endothelial protective effects [172]. Reduced
levels of CoQ10 are found in HFrEF and correlate with lower
LVEF and increased mortality [173]. In agreement with ani-
mal studies, clinical trials of CoQ10 supplementation have
shown improvements in LVEF and the recent Q-SYMBIO
study found a 50% relative reduction in major cardiovascular
events and all-cause mortality. Nevertheless, significant weak-
nesses exist with the existing trials, including small patient
numbers, heterogeneous study populations and protocols
and large margins of error for outcome measures.

Other agents that target respiratory chain function include
flavonoids and melatonin. Flavonoids refer to naturally occur-
ring pigments found in a variety of plants whose consumption
has been associated with reduced incidence of heart failure.
Members of the flavonoid family have been shown to improve
ETC activity and it has been proposed for long term preven-
tative therapy for heart failure [174]. In animal models, mela-
tonin stabilises the inner mitochondrial membrane leading to
improved ETC function, whilst also exerting anti-oxidant ef-
fects [175]. Both classes of compounds have limited evidence
in human heart failure and require further study.

Although there is consensus that alterations to ETC expres-
sion and function occur in HFrEF, the reported defects are
highly variable between different heart failure models and
human heart failure of differing aetiologies [167]. ETC phos-
phorylation status, respiratory complex assembly and regional
distribution of mitochondrial defects are also increasingly
recognised as important aspects of a complex metabolic net-
work. The fundamental question of whether heart failure pro-
gression is a direct result of metabolic dysfunction or whether
energetic remodelling is a consequence of adapting to a car-
diac insult remains unanswered. A recent study of failing vs.
non-failing human hearts found no difference in oxidative
capacity for fatty acid or glucose [176] compared with con-
trols; whilst a separate study on fresh human heart failure
samples found preserved in vitro oxidative capacity of cardiac
mitochondria [177]. The complex physiology of cardiac me-
tabolism has proven difficult to capture with current experi-
mental models, especially those based on animals.
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Towards human models of heart failure

Cardiac contractility relies on complex and multifaceted phys-
iology, which is modulated at the level of ion fluxes, myofi-
brillar interaction and energetics. As can be seen by our brief
exploration of current therapies (summarised in Fig. 2), many
gaps remain in our understanding of the pathophysiology of
human heart failure. In adopting a cardiocentric approach to
heart failure, we continue to rely on fragmented approaches,
which are often incompletely characterised. Manipulation of
one aspect of the system may simultaneously be counteracted
by another or have unintended consequences, and the in-
creased risk of arrhythmias with calcium mobilising inotropes
is a case in point. Even in the case of OM, which was ratio-
nally screened and designed as a cardiac selective inotrope, it
also has pleotropic effects.

There is a great discrepancy between successful animal
studies and lacklustre performance in larger human trials.
Although this can be partly attributed to small sample sizes
and biases in publication and study design [178], even in
methodologically robust animal trials, results lack external
validity when applied to humans. Preclinical animal studies
often fail to replicate the complex patient phenotype. On a

macroscopic level, animal models generally do not capture
the progressive and degenerative nature of human disease
nor are they able to replicate the multiple comorbidities com-
monly found in the HFrEF population. Significant differences
on a genetic level are further confounded by heterogeneity in
the results of inter- and even intraspecies studies [179].

Research utilising human tissue can help shed light on the
intertwining factors contributing to a poorly contractile heart
without needing to rely on rough disease models. A vogue
area of research that may prove insightful is that of cardiac
recovery, specifically recovery of failing human hearts requir-
ing mechanical unloading via left ventricular assist devices
(LVADs). It is now well established that following a period
of support and pharmacological therapy, significant structural
reverse remodelling occurs which allow successful explant of
the supporting device in a minority (1.3%) of patients [180].
Importantly, success has been reported not just for acute car-
diomyopathy but also for chronic heart failure. Whilst clinical
research has emphasised on establishing robust clinical
criteria to identify those most suitable for device explantation,
availability of human cardiac tissue at inplantation, explanta-
tion and transplantation has proven a boon for understanding
underlying pathophysiology and its reversibility. With LVAD

Fig. 2 Summary diagram of pharmacologic agents modulating
cardiomyocyte function and their molecular targets. Contractile function
can be enhanced via optimisation of excitation contraction coupling
through influencing the activity of SERCA and Junctophilin-2.
Calcium-mobilising inotropes increase contractility by increasing cyto-
solic calcium either via action of mediators such as cAMP or directly

acting on ion channels and exchangers. Calcium-sensitising inotropes
increase sensitivity to the action of calcium whereas myofilament activa-
tors directly increase cross-bridge cycling. Contractile efficiency may be
appropriately targeted via modulating the metabolic substrate as in the
case of the anti-anginal agents or through manipulation of the electron
transport chain within mitochondria
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support, remodelling occurs across multiple domains, with
improvement in Ca2+ homeostasis, T-tubular structure, mito-
chondrial function and sarcomeric contraction [181].
Nevertheless, there remains a tendency for patient phenotype
to relapse, and current mechanical and pharmacologic support
may be better described to provide remission rather than full
recovery [182, 183]. Currently, supportive pharmacotherapy
to enable weaning of mechanical support relies heavily on
systemic neurohormonal approach such as RAAS blockade
and beta-blockers—although some localised beneficial effects
on the myocardium may also exist [184]. To achieve durable
recovery, targeting aetiology specific findings within the car-
diac substrate will likely be necessary.

In an era of increasingly personalised medicine, specific,
human relevant molecular targets are more important than
ever. Although fresh human cardiac tissue samples such as
those utilised in the cardiac recovery studies represent the gold
standard for in vitro research, there is generally very limited
availability. The key to improving access will be the develop-
ment of reliable, collaborative tissue banking [185]. Whether
at the scale of elucidating transcriptional modification in heart
failure or in large clinical trials of therapeutics, ultimately, all
animal studies require validation with human studies.
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