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Abstract
The human heart has a markedly low regenerative capacity, leaving patients who suffered from cardiac insults vulnerable to heart
failure. The inability to regenerate lost myocardium is accompanied by extensive remodeling that leads to further deterioration in
cardiac functions and structure. Although adult mammals seem to lack the ability to regenerate, some lower vertebrates have a
cardio-regenerative potential. Emerging studies revealed that mammals do have the ability to undergo endogenous cardiac
regeneration during development and shortly after birth. Later, it was proven that the source of the new cardiomyocytes is the
proliferation of the pre-existing cardiomyocyte pool. Research is currently focused on finding suitable methods to restore this lost
potential in adulthood and enhancing the proliferative capacity of cardiomyocytes. Long non-coding RNAs (lncRNAs) are
critical functionally diverse epigenetic regulators capable of either activating or repressing gene expression. LncRNAs have
been previously implicated in cardiac development, lineage commitment, and aging. Recent reports suggest that lncRNAs are
capable of inducing endogenous cardiac regeneration through manipulating gene expression in cardiomyocytes. This review
gives a concise overview of endogenous cardiac regeneration. It further summarizes and critically appraises the current literature
on the roles of lncRNAs in endogenous cardiac regeneration and the challenges that face the field.
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Introduction

Coronary artery disease is the most common cardiovascular
condition which often leads to myocardial infarction (MI), an
ischemic shock that hits cardiomyocytes because of low blood
supply, leaving nothing but necrosis and a poorly functioning
myocardium [1]. Despite the extensive effort to fight acute
MI, WHO estimates that its incidence will double by 2050
because of the increased cardiovascular risk factors including
obesity and diabetes. MI causes significant disadvantageous
remodeling of cardiac tissue and progresses later to heart fail-
ure (HF), which affects the lives of millions of people around
the world and is a major cause of morbidity and mortality
(WHO, June 2016). The current treatment regimens available
for HF revolve around palliative therapy and heart transplants
for end-stage HF [2]. Therefore, finding new treatments for
HF is an urgent necessity. Recently, heart regeneration became
an attractive therapeutic option for HF. Regenerating lost
cardiomyocytes is expected to improve cardiac function and

the quality of life of HF patients; however, extensive knowl-
edge of the mechanisms and cellular pathways of
cardiomyocytes is needed in order to pursue this hope. There
are two possible ways of achieving cardiac regeneration, the
first being supplying the myocardium exogenously with stem
cells or cardiomyocytes originally reprogrammed from non-
myocytes (cell therapy) and the second being the induction of
endogenous regeneration from the proliferation of the pre-
existing cardiomyocyte pool. However, the discouraging results
of human cell therapy trials, the increasing evidence of the
inability of stem cells to trans-differentiate into cardiomyocytes,
and the concerns regarding the integrity of the data in the car-
diac progenitor cells reports has made studying endogenous
cardiac regeneration a priority in the field [3–7]. Several mech-
anisms regulating endogenous regeneration have been outlined;
however, their therapeutic utilization is still a work in progress.
Recently, long non-coding RNAs (lncRNAs), a class of RNA
molecules that lack the ability to be translated into protein, have
been shown to play an immense role in cardiac regeneration
through their ability to push cardiomyocytes back into the cell
cycle and enabling them to proliferate and divide. This review
aims to discuss briefly the history of endogenous cardiac regen-
eration. It further discusses the roles of lncRNAs in promoting
endogenous cardiac regeneration, their therapeutic implication,
and the challenges facing the field.

* Abdel Rahman Yousry Afify
aafify@ngu.edu.eg

1 School of Medicine, New Giza University (NGU), Giza, Egypt

Heart Failure Reviews (2019) 24:587–600
https://doi.org/10.1007/s10741-019-09782-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s10741-019-09782-5&domain=pdf
http://orcid.org/0000-0001-5007-5738
mailto:aafify@ngu.edu.eg


Endogenous cardiac regeneration

It was previously assumed that cardiac regeneration is restrict-
ed to lower vertebrates and that the adult mammalian heart
possesses no regenerative capacity. Recent studies harnessed
data obtained from Carbon-14 dating generated by the nuclear
bomb testing during the Cold War to identify the rate of turn-
over of human cardiomyocytes [8]. This study demonstrated
that the turnover rate of cardiomyocytes is approximately 1%
per year; however, this rate drops to 0.45% around the age of
75 [8]. Further studies indicated that the newly formed
cardiomyocytes develop from the pre-existing pool of
cardiomyocytes; however, this rate of regeneration is not suf-
ficient to repair the myocardium after ischemic insults.
Previous studies showed that the rate of DNA synthesis de-
creases and the cell cycle of cardiomyocyte arrests 5 to 7 days
after birth [9, 10]. These findings suggested that
cardiomyocytes might be able to proliferate in this narrow
window of time. In 2011, Porrello et al. demonstrated that
the hearts of neonatal mice were able to completely regenerate
within 3 weeks after resecting 15% of the left ventricular apex
at postnatal day 1 (P1); however, regeneration did not occur
when the resection was done at postnatal day 7 (P7), suggest-
ing that this window of regeneration is limited [11]. Further
Fate mapping experiments using Cre recombinase technology
confirmed that the newly formedmyocardium originated from
pre-existing cardiomyocytes. Although initially, one research
group was not capable of reproducing the same results per-
haps because of protocol and technique differences, further
studies conducted by several other groups confirmed the au-
thenticity of Porrello et al.’s findings [12]. Similar regenera-
tive potential was also found after ligating the left anterior
descending artery (LAD) in a neonatal mouse model of myo-
cardial infarction.

These findings started a race between multiple research
groups to identify the possible molecular mechanisms behind
cardiac regeneration and to find methods that can restore this
ability in adulthood. Interestingly, studies demonstrated that
there is a marked increase in reactive oxygen species (ROS) in
cardiomyocytes after birth. This increase in mitochondrial
ROS promotes damage to various cell molecules including
DNA which further results in cell-cycle arrest and cellular
senescence. Furthermore, Puente et al. showed that 8-oxo-
7,8-dihydroguanine (8-oxoG), an oxidized base, was present
at P7 and not P1. This was also accompanied by an increase in
the DNA damage response pathway as indicated by the in-
crease of Ser1981 phosphorylated-Ataxia Telangiectasia
Mutated (p-ATM) kinase, confirming that oxidative stress
and DNA damage play a significant role in the loss of the
regenerative capacity of mice hearts post-birth [13].
Additionally, Nakada et al. showed that adult mice are capable
of regenerating injured myocardium when they were kept in a
hypoxic environment (7% oxygen), suggesting that hypoxic

cardiomyocytes are capable of cell-cycle re-entry [14]. These
results raised questions regarding the existence of a rare hyp-
oxic cardiomyocyte population that is responsible for the con-
sistent turnover rate in the adult heart. Through pulse-chase
experiments, studies identified the epicardium and
subepicardium as a hypoxic niche (because of the low capil-
lary and blood content) in which hypoxic cardiac progenitor
cells/cardiomyocytes, expressing HIF-alpha (hypoxia-induc-
ible factor), reside [15].

Signaling pathways such as the Hippo cascade have also
been linked to cardiac regeneration. The pathway is character-
ized by a series of transductions that start by MST1/2 directly
phosphorylating SALVand MOB1 and end up by the preven-
tion of YAP and TAZ translocation into the nucleus and inter-
act with several transcription factors. Studies have shown that
mice cardiomyocytes lacking components of the Hippo path-
way are capable of regenerating after insult, suggesting that
this pathway reduces the regenerative ability of the heart [16].
Additionally, the enhancement of cardiac regenerative abili-
ties upon Hippo inhibition can be heavily attributed to the
upregulation of cell-cycle genes by YAP [17].

Recently, the role of the Neuregulin 1 (NRG1) pathway
was examined and linked to neonatal mouse heart regener-
ation as well [18, 19]. The authors found that NRG1, as
well as the expression of ERBB2, an NRG1 coreceptor,
was significantly reduced at P7. Interestingly, upon the
activation of ERBB2 signaling in mice hearts at different
age stages, an increase in the number of cardiomyocytes
undergoing mitosis and proliferation was found [19]. Other
inflammatory pathways, as well as transcript ion
factors such as Meis1, have been implicated in the cardiac
regeneration process. Detailed information about the
mechanisms behind cardiac regeneration is extensively
reviewed in the following articles [20, 21].

Are we chasing a mirage?

There is no doubt that animal studies have confirmed the
neonatal myocardium’s ability to regenerate. But the question
remains: does this apply to humans as well? It is hard to detect
the human neonate’s heart ability to regenerate because of
ethical considerations. Although direct experimental evidence
is challenging to acquire from human infants, indirect obser-
vations from naturally occurring pathological conditions can
be made. Anomalous left coronary artery from the pulmonary
artery is a rare condition that affects infants resulting in de-
creased left ventricular function and myocardial scarring. The
management of this condition is corrective surgery early in
life. Fratz et al. reported long-term outcomes of several pa-
tients; four patients did not have any evidence of myocardial
scarring during follow-up while the rest showedminimal scar-
ring and normal LV function [22]. Functional recovery was
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also reported in other cardiovascular conditions. Neonatal
myocardial infarction present at birth is a rare pathology
caused by coronary artery occlusion. Haubner et al. reported
a case of a newborn who suffered severe cardiac damage con-
firmed by serum markers for cardiomyocyte cell death, elec-
trocardiograms, and echocardiography. After adequate thera-
peutic management, follow-up showed that the newborn’s
heart restored normal functionality without any structural ab-
normalities; however, the authors could not exclude the pos-
sibility that hibernation of myocardium might have played a
partial role in the heart’s functional recovery [23]. Several
other similar studies reported neither structural nor severe
functional abnormalities after incidents of neonatal myocardi-
al infarction [24–28]. These reports support the notion of in-
fantile cardiac plasticity and robust repair abilities that might
be an indicator of the heart’s ability to regenerate. To further
assess this ability, Mollova et al. directly examined postmor-
tem human heart tissues obtained from donors of different
ages. Strikingly, their study revealed the existence of
cardiomyocytes positive for proliferation markers that persist
long after birth. Positive cytokinesis markers were also pres-
ent; however, these markers were not found after the age of 20
[29]. These interesting findings are suggestive of the presence
of a regenerative window in humans but leave an important
question unanswered. How can this regenerative potential be
provoked and enhanced later in life?

An overview of the Bjunk^

Years ago, the concept of genes coding for mRNAs that are
later translated into functional proteins was well established;
however, the role of the rest of the non-coding DNA was
unknown. It was thought that these non-coding pieces were
more or less some evolutionary Bjunk^without an actual func-
tion [30]. The development of high-throughput sequencing
and the completion of genome projects such as the
ENCODE initiative have given us valuable insight into the
human genome. They revealed that only 2% of the genome
codes for proteins and that the non-coding parts of the genome
are in fact transcribed into non-coding RNAs (ncRNAs) [31].
These RNA molecules were proven later to be major regula-
tors of the protein-coding genes. ncRNAs are generally clas-
sified based on their length into short ncRNAs (less than 200
nucleotides) such as microRNAs (miRNAs) and long non-
coding RNAs (lncRNAs) (more than 200 nucleotides).
miRNAs are the most studied well-characterized class of
ncRNAs. They are capable of regulating genes through bind-
ing to their mRNAs and hindering their translation or
degrading them [32]. miRNAs play important roles in cardiac
development, differentiation, and diseases. Moreover, studies
have shown that miRNAs can induce direct endogenous

regeneration through manipulating cell-cycle genes and other
signaling pathways [33].

On the other hand, only a small portion of lncRNAs are
well characterized such as the X inactivation-transcript (Xist)
[34]; the functions of the rest are yet to be identified. LncRNAs
are typically classified according to their genomic location into
intergenic, intronic, bidirectional, enhancer, sense, and anti-
sense lncRNAs (the biogenesis, regulation, and further char-
acteristics of lncRNAs are thoroughly discussed in the follow-
ing reviews [35, 36]). Unlike coding genes and miRNAs,
lncRNAs are less conserved among species; however, this lack
of conservation does not imply a lack of function but rather an
evolutionary role associated with the complexity of the species
[37]. In contrast to miRNAs who exert their function mainly
through degrading or blocking the translation of mRNAs, the
mechanisms of lncRNAs are much more diverse enabling
them to both activate and repress genes (Fig. 1). Only a mi-
nority of lncRNAs are found in the cytoplasm while the rest
are mainly localized in the nucleus [38], implying their ability
to interact with DNA and directly regulate gene transcription.
LncRNAs are capable of manipulating gene splicing, chroma-
tin remodeling, and DNA methylation. They can also act as
transcriptional signals, decoys, guides, and protein scaffolds.
The fact that many lncRNAs appear to be cardiac specific or in
some cases cardiac enriched makes studying their implication
in heart disease and regeneration very tempting [39–41].
Recently, genome-wide association studies revealed an asso-
ciation between the loci of lncRNAs and the risk of cardiac
conditions, confirming the biological relevance of these di-
verse RNA molecules in the human heart [42–44].

LncRNAs in endogenous cardiac regeneration
(an overview)

Although the function of the majority of lncRNAs remains
uncharacterized, several transcripts have been shown to play
critical roles in the heart. LncRNAs are linked to cardiac de-
velopment, differentiation, and lineage commitment, propos-
ing their use in reprogramming stem cells and mature differ-
entiated cells (e.g., fibroblasts) into cardiomyocytes and intro-
ducing a new research avenue in cell therapy. Several other
lncRNAs are also implicated in cardiovascular diseases in-
cluding arrhythmias, myocardial infarction, and ventricular
hypertrophy. The roles of lncRNAs in cardiovascular aging
and disease have been extensively reviewed elsewhere [35,
45–47]. Instead, here, the focus is aimed towards a subset of
the lncRNA studies that, to my knowledge, have only
emerged recently and directly highlights the role of lncRNA-
mediated regulation in endogenous cardiac regeneration de-
fined by the ability of the pre-existing cardiomyocytes in the
myocardium to undergo cell division and proliferation, restor-
ing normal cardiac performance.
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Although studies have profiled lncRNA expression at
times of distress and managed to identify novel cardiac-
specific lncRNAs and explore possible regenerative path-
ways, they do not provide concrete evidence of the exact role
of lncRNAs in cardiac regeneration and need further confir-
matory investigations. Better conclusions can be drawn from
assessing lncRNA transcripts at times when cardiac regener-
ation is known to occur. An elegant example of this is the
recent report by Chen et al. [48]. Using next-generation se-
quencing, they analyzed the expression of lncRNAs in the
cardiac tissue of C57BL/6J mouse at P1 and P7, managing
to identify 685 differentially expressed lncRNAs. Further,
they constructed a CNC network between coding and non-
coding genes which shed light on some highly correlated tar-
gets between dysregulated lncRNAs such as Igfbp3, Trnp1
Itgb6, and Pim3. Interestingly, KEGG pathway enrichment
analysis revealed an association between differentially
expressed lncRNAs and several signaling and metabolic path-
ways that have been linked to cardiac regeneration such as the
Hippo pathway and Wnt signaling [48]. These findings not
only reveal a strong association between lncRNAs and the
ability of the heart to regenerate but also suggest a lncRNA-
mediated regulation of several mechanisms that have been
previously implicated in cardiac regeneration. As indicated
earlier, conducting experiments on human hearts is ethically
challenging; however, Wang et al. managed to conduct a
microarray-based screening to identify differentially
expressed lncRNAs between human fetal hearts obtained

from unwanted terminated pregnancies and adult hearts [49].
As expected, unlike adult hearts, fetal myocardium exhibited a
significant number of Ki-67-positive cells. Additionally, the
authors identified 638 differentially expressed lncRNAs, indi-
cating that lncRNAs might have a role in the proliferation and
possibly regeneration of human cardiomyocytes. Strikingly,
their enrichment analysis revealed that the Hippo pathway
was among enriched down-regulated genes in the adult hearts,
which contradicted the findings discovered in mice
and indicated that Hippo inhibition induces regeneration.
YAP1was also found to be downregulated in adult hearts [49].

Distinct lncRNA functions in endogenous
cardiac regeneration

The screening for differentially expressed lncRNAs in
regenerating tissues has hinted towards a putative role of
lncRNAs in promoting cardiomyocyte proliferation and divi-
sion; however, the Bgold standard^ evidence for lncRNA
functional characterization, however, is the specific in vivo
experimental studies that offer insight into the cells’ machin-
ery and identify reliable therapeutic targets (Fig. 2). With this
in mind, Li et al. aimed to identify a lncRNA that may con-
tribute to cardiomyocyte proliferation [50]. Previously, they
have demonstrated that Silent information regulator factor 2
related enzyme 1 (Sirt1) plays a role in cardiac regeneration
and MI; hence, they suspected that its antisense lncRNA may

Transcriptional regulation
-Recruiting and guiding transcription factors
-Acting as a transcriptional activator or repressor
-Forming RNA-DNA hybrids
-Acting as protein scaffolds
-RNA PII binding 

Post-transcriptional regulation
-

-
-

-

-

- Chromatin remodeling and 
looping 

- DNA methylation
- Histone modification

Direct epigenetic regulation
mRNA stability, splicing 
and degradation
pre-mRNA splicing

mediating protein activity 
and localization
precursors for miRNAS 

acting as ceRNA for 
miRNAs

Fig. 1 Mechanisms of action of long non-coding RNAs. LncRNAs are
diverse molecules that are capable of manipulating gene expression
through their cytoplasmic and/or nuclear action. Their actions can be

classified into three main categories based on their level of regulation.
They can regulate genes post-transcriptionally, epigenetically, or regulate
factors responsible for gene transcription
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be involved in the process as well. Analysis of Sirt1 antisense
lncRNA in mice revealed high expression in embryonic 16.5
hearts, a downregulation at P1, and further reduction at P28,
an expression profile that follows closely the time frame of the
loss of cardiac regenerative ability in mice. To further assess
its role in neonatal hearts, the authors knocked down the ex-
pression Sirt1 lncRNA using LNAs. Upon knockdown, a
marked decrease in Ki-67-positive cells was observed, sug-
gesting the lncRNA is necessary for cardiomyocyte prolifera-
tion and cell cycle. Overexpressing Sirt1 lncRNA through
AAV9 vector injection in adult mice increased Ki-67 fluores-
cence and pH3, a mitosis marker [50]. To further assess the
therapeutic potential of Sirt1 lncRNA, the authors induced its
expression in an MI model and found reduced fibrotic area,
improved left ventricular function, and decreased mortality
rate in transfected mice. Mechanistically, Sirt1 lncRNA forms
a lncRNA/mRNA complex with Sirt1 mRNA through
interacting with its 3′UTR region, promoting the stabilization
of the mRNA and increasing the levels of Sirt1 protein to a
level that promotes regeneration [50]. Of note, excessive over-
expression of Sirt1 is associated with cellular apoptosis and
decreased cardiac function, raising questions about the other
factors that regulate the functional shift of the Sirt1 axis from a
possible regenerative state to a non-proliferative one [50].

Similarly, Li et al. characterized another lncRNA that is
implicated in cardiac regeneration. Through comparing se-
quencing data from adult and fetal human hearts, they

identified an AZIN2 splice variant (AZIN2-sv) that was dif-
ferentially expressed between both tissues [51]. Analysis of
the lncRNA revealed that it is conserved in rodents. AZIN2-sv
expression was increased in mice at P7 and reduced at P1.
Forced expression of AZIN2-SV at P1 reduced the number
of proliferating cardiomyocytes while silencing its expression
at P7 enhanced the proliferative and regenerative capacity of
cardiomyocytes. Furthermore, loss of AZIN2-sv preserves
cardiac performance and promotes angiogenesis post-MI.
Functional analysis revealed that AZIN2-sv exhibits its func-
tion through manipulating the PTEN/PI3K/Akt pathway via
two distinct mechanisms. First, it acts as a molecular sponge
for miR-214, preventing its inhibitory action on PTEN.
Second, it directly binds to PTEN protein and stabilizes its
level. Therefore, loss of AZIN2-sv plays an important role in
Akt pathway activation and promoting regeneration [51].

In another study, Chen et al. identified yet another differen-
tially expressed lncRNA through analyzing human RNA-
sequencing data. Cardiomyocyte regeneration-related lncRNA
(CRRL) was found to be conserved among different mammals
including humans, chimps, gorillas, mice, and rats [52].
Knocking down CRRL attenuates post-MI remodeling and im-
proves cardiac function compared to controls. Silencing CRRL
also increases the number of pH3, EdU, and Ki-67-positive
cardiomyocytes at P1. Similar effects were observed upon
CRRL knockdown at P7, suggesting that CRRL plays a role
in cardiomyocyte proliferation and regeneration. Moreover,

Regeneration

PTEN

Akt

Itm2aTrp53inp1
Sirt1

miR-214

AZIN2-sv

miR-296

CAREL
Sirt1 lncRNA

miR-199a

CRRL

ECRAR

NR_045363

JAK2/STAT3

miR-216a

Fig. 2 Roles of various long non-coding RNAs in promoting cardiac
regeneration. LncRNAs are capable of regulating the subcellular environ-
ment of cardiomyocytes, enhancing their proliferative capacity and pro-
moting regeneration. LncRNAs spongemiRNAs, releasing mRNAs from
the inhibitory threshold of miRNAs (e.g., AZIN2-sv, CAREL, and

CRRL). Of note, all three lncRNAs negatively affect regeneration and
their loss is what promotes cardiomyocyte proliferation. They may also
interact with proteins and mRNAs directly and enhance their expression
and stability (e.g., Sirt1 lncRNA and ECRAR)
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loss of CRRL did not increase the percentage of ANP-positive
cardiomyocytes, indicating that the proliferation observed in
CRRL-deficient cardiomyocytes is not accompanied by hyper-
trophy. Further analysis showed that CRRL harbors putative
miR-199a-3p and miR-214 binding sites within its sequence;
however, only the binding between miR-199a-3p and CRRL
was confirmed by luciferase reporter assays. This binding
relieves Hopx from the inhibitory action of miR-199a [52].
Interestingly, downregulation of Hopx does not entirely
reproduce the efficacy of miR-199a in inducing cardio-
myocyte proliferation which can be explained by the effect
of miR-199a on various other targets [52].

Similar to the previously mentioned studies, Chen et al. iden-
tified a lncRNA that could be a viable therapeutic target for
inducing cardiac regeneration. Endogenous cardiac
regeneration-associated regulator (ECRAR) is a conserved fetal
lncRNA that regulates postnatal cardiomyocyte proliferation and
post-MI recovery without inducing hypertrophy [53]. The au-
thors demonstrated that E2F1 regulates the expression of
ECRAR through binding to its promoter. On the other hand,
ECRAR directly interacts with ERK1/2, a crucial cell-cycle
gene, increasing its phosphorylation and facilitating its translo-
cation into the nucleus. This was accompanied by an increase in
the expression of cyclin D1, cyclin E1, and E2F1 proteins. More
importantly, this study is the first to directly visualize the effect of
lncRNA therapy in the context of cardiac regeneration through
time-lapse imaging. Cell division was observed in
cardiomyocytes transfected with ECRAR at P7 [53]. Although
this evidence is valuable and highlights the potential of lncRNAs
in cardiac regeneration, it would be interesting to examine the
effect of lncRNA transfection with time-lapse imaging on more
senescent cardiomyocytes (e.g., P16 cardiomyocytes).

Another lncRNA, NR_045363, a human ortholog of
LOC101927497, was identified in several microarray-based
analyses; however, its function has not been explored.
Recently, Wang et al. explored experimentally the role of
NR_045363 in cardiac regeneration [54]. NR_045363 was
found to be overexpressed in embryonic mice and human tis-
sues. Interestingly, the expression of NR_045363 is threefold
higher in cardiomyocytes than non-cardiomyocytes, suggesting
that NR_045363 can act as a reliable therapeutic target without
much off-target effect. Overexpression of NR_045363 in
cardiomyocytes enhances cardiac proliferation and performance
after MI. Mechanistically, NR_045363 acts as a decoy for miR-
216a, elevating the activity of the JAK2–STAT3 pathway [54].

Cai et al. also discovered cardiac regeneration-related
lncRNA (CAREL), another lncRNA implicated in cardiac
generation. CAREL acts as a decoy for miR-296, relieving
the expression of Trp53inp1 and Itm2a from miR-296 inhib-
itory action; however, the low number of miR-296 binding
sites in the sequence CAREL makes the efficiency of the
mechanism questionable [55]. Additionally, unlike the other
studies, the authors did not identify it from analyzing human

sequencing data. Instead, CAREL was recognized through its
differential expression between P1 and P7 in mice, which
made conservation analysis a necessity for translational pur-
poses. Only a short sequence was found to be conserved in
humans. Although this sequence contains the miR-296 bind-
ing site, it is only a small part of the long functional fragment
of CAREL and is present in multiple parts of the human ge-
nome; thus, it cannot indicate a specific non-coding RNA
[56]. Further, although an increase in cardiomyocyte size
was observed in CAREL transgenic mice, the authors did
not assess the possible effects of CAREL on hypertrophy.

Other lncRNAs in cardiac development, cell
fate, and regeneration

Although activating an endogenous cardiac regenerative re-
sponse might be of clinical benefit to patients with HF, other
curative strategies are also being explored. For example,
reprogramming stem cells into a cardiomyocyte fate and
injecting these cells into the failing myocardium or direct
in vivo injection of reprogramming factors into the heart to
mediate differentiation of non-myocytes into functional
cardiomyocytes represent other viable approaches for
regenerating the heart. However, these approaches require ex-
tensive knowledge of cardiac developmental programs and
the factors that regulate the life cycle stages of cardiomyocytes
in order to improve the effectiveness and efficiency of these
strategies. For example, it has been shown that genomic en-
hancers play crucial roles in controlling spatial and temporal
gene expression during development and embryogenesis.
Long non-coding RNAs transcribed from enhancer regions
termed Benhancer-associated lncRNA^ (elncRNAs) aid in
regulating the enhancer’s activity and the expression of their
neighboring genes during development and differentiation in-
cluding cardiac fate determination. In a recent study, Ounzain
et al. managed to identify hundreds of elncRNAs expressed
during embryonic stem cell transitioning into cardiomyocytes
using deep RNA sequencing and ab initio reconstruction [57].
These cardiac-specific transcripts undergo chromatin state
transitions throughout cardiac differentiation. The study also
revealed an increase in fetal enhancer transcripts during the
reactivation of fetal gene program, a distinct event that accom-
panies stress response in adult hearts [57].

Using loss-of-function strategies, the function of distinct
lncRNAs in cardiac commitment and development has also been
studied. For example, Braveheart (BVHT), a lncRNA expressed
in cardiacmesoderm, is essential for cardiac lineage commitment
in mice and embryonic stem cell differentiation. BVHT func-
tions upstream ofmesoderm posterior 1 (MesP1) and portrays its
role through interactingwith SUZ12, a component of polycomb-
repressive complex 2 (PRC2), during cardiac differentiation
[40]. CARMEN, an enhancer lncRNA, is found upstream of
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cardiac mesoderm-specifying genes. Like BVHT, CARMEN
exerts its function through interacting with components of
PRC2, SUZ12, and EZH2 in cis. Although CARMEN is closely
related to miR-143 and -145, the authors demonstrated that
CARMEN functions independently of these miRNAs. Owing
to its regulatory action, CARMEN is crucial for cardiac differ-
entiation and maintaining cardiac identity [58]. Fetal-lethal non-
coding developmental regulatory RNA (Fendrr) is another ex-
ample of lncRNAs controlling cardiac fate [59]. Loss of Fendrr
during embryonic life leads to major cardiac wall defects due to
decreased cardiomyocyte proliferation. Fendrr interacts with
PRC2 and TrxG/MLL complexes, controlling the methylation
status of the promoter of lateral plate mesoderm genes either
through increasing or decreasing their expression during cardiac
development. Additionally, increased expression of two cardiac
commitment regulators, Nkx-2.5 and GATA-6, can be noted in
Fendrr-mutated mice [59]. These results initiated a parade of
experimental studies examining the roles of lncRNAs in cardiac
development, differentiation, and commitment leading to the
identification of several lncRNAs implicated in these mecha-
nisms as well as the exploration of possible regenerative path-
ways regulated by lncRNAs (Table 1).

Challenges and concerns

In cancer, lncRNAs are mostly studied in human tissues and
cell lines; hence, each identified lncRNA directly represents a
therapeutic target and is biologically relevant. Conversely, in
cardiovascular research, animal models are necessary to study
the role of lncRNAs in cardiac regeneration and other mech-
anisms; however, their poor conservation affects the transla-
tion and interpretation of any findings discovered in animals if
a human ortholog cannot be found. The lack of conservation
of Braveheart (Bvht) is an example of this [40]. This issue can
be bypassed through analyzing human RNA-sequencing data
then studying the identified RNAs in animals, making use of
the fact that human lncRNAs are more conserved. Although
this method was proven successful (from the studies
reviewed), it cannot completely replace the need for animal-
based lncRNA characterization. Hence, finding new ways to
identify human orthologs is due. Instead of completely relying
on detecting primary linear sequence conservation, other
methods have been proposed based on several observations.
First, Ulitsky et al. demonstrated that conserved short se-
quences within the lncRNA transcripts, and not the entire
Transcript sequence, are sufficient for their function to be
conserved [72]. Second, it has been proposed that functional
conservation can be detected through examining lncRNAs’
secondary and tertiary structures, rather than the primary se-
quence. However, this approach is harder to apply when ana-
lyzing excessively long transcripts [73]. Third, functional
orthologs may be found through analyzing persevered

genomic localization relative to conserved coding genes (of-
ten related to development) as well as the conservation of
lncRNA promoter [74]. Lastly, Kirk et al. proposed a func-
tional classification of lncRNAs based on their K-mers con-
tent. They managed to identify marked similarity between
specific mouse and human lncRNA communities through
their analysis [75]. In the future, these discoveries may help
the field blast through the translational obstacles of lncRNAs.

It has become evident that the binding of lncRNAs to
miRNAs is a mechanism that constitutes a major portion of
lncRNAs’ regulatory action in cardiomyocytes. The mechanism
commonly referred to as the competing endogenous RNA
(ceRNA) effect relies on the existence of short sequences in the
lncRNA transcript complementary to miRNAs through which
lncRNAs are capable of titrating the expression of miRNAs
and relieving mRNAs from the inhibitory threshold of
miRNAs [76]. The biological relevance of this mechanism has
been previously questioned with some studies nullifying its ef-
fectiveness to induce observable regulatory effect under normal
physiological conditions [77]. Nevertheless, experimental
lncRNA studies, in the context of cancer particularly, continue
to emerge and confirm the relevance of the mechanism in con-
tributing to disease progression. However, several factors such as
the abundance of miRNAs and lncRNAs, number of binding
sites on the lncRNA, the spacing between these binding sites,
and the target abundance control the efficacy of the mechanism
[78]; thus, all these factors need to be characterized before relying
on this mechanism solely to explain the action of a lncRNA. This
concern can be noted in the cases of CAREL and CRRL as they
both have a low number of miRNA binding sites, which makes
the efficacy of the mechanism questionable and begs for a stoi-
chiometric analysis to be conducted. And although identifying a
miRNA interaction is a straightforwardway to explain a lncRNA
function, the other potential mechanisms should not be left unat-
tended. AZIN2-sv’s ability to interact directly with PTEN protein
on top of binding to miR-214 is an elegant example of this.
Conversely, other lncRNA–miRNA interactions should not be
ignored. To further elaborate, cytoplasmic localization of
lncRNA hints toward a lncRNA-sponging action; however, re-
cent studies showed that both cytoplasmic and nuclear lncRNAs
are capable of manipulating miRNAs through regulating their
promoters, maturation and miRNA precursor production [79,
80]. Additionally, none of the reports I reviewed examined the
effect of miRNA binding on the expression of the lncRNA itself
as it has been reported that miRNAsmay degrade lncRNAs in an
AGO2-dependent manner.

There is no doubt that single-cell RNA-seq provides a new
paradigm for studying organ development and cell character-
istics. Delaughter el al. used spatial–temporal cardiac
transcriptomic analysis to provide insight into cardiac devel-
opment from E9.5 to P21 [81]. They managed to identify a
sub-population of cardiomyocytes with proliferative capacity,
which expressed cell cycle and division-associated genes.
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Interestingly, this sub-population represented 60% of
cardiomyocytes at E9.5 and E14.5 and only 20% at P0 and
P7. At P21, this sub-population vanished [81]. In another
study, See et al. analyzed single nuclear transcriptomes of
failing and healthy cardiomyocytes [82]. They found marked
transcriptomic heterogeneity between different cardiomyocyte
sub-populations. Moreover, they identified a group of novel
lnRNAs that were not detected in bulk tissue, highlighting the
importance of individual cell analysis. The authors attributed
the inability to detect the lncRNAs to the large number of
cytoplasmic mRNA that might have diluted their expression.
Additionally, they demonstrated that lncRNAs regulate dedif-
ferentiation, cell-cycle genes, and cardiomyocytes’ regenera-
tive potential [82]. Furthermore, it has been noted that func-
tional analysis of lncRNAs in single cell setting produces
more accurate results and may prevent the imprecise findings
of bulk tissue analysis. Together, these findings suggest that
relying on single cell analysis in different developmental
stages and after various stimuli may help us discover previ-
ously unannotated lncRNAs as well as enhance our under-
standing of the association between distinct lncRNAs and car-
diac regeneration.

Overall, better experimental methodology is still needed
(Fig. 3). After birth, cardiomyocytes shift from proliferative
phase into a hypertrophic phase where they lose the ability to
undergo cytokinesis and become binucleated [83]. A hallmark
of a successful stimulation of cardiac regeneration is the detec-
tion of cell division and successful cytokines. Most studies rely

on Aurora B as a marker of cytokinesis. Recently, Hesse et al.
demonstrated that Aurora B stains both binucleated and dividing
cells, confirming that Aurora B lacks sufficient specificity to
distinguish between binucleating and proliferating
cardiomyocytes [84]. Instead, they proposed the use of midbody
positioning and the distance between the two daughter nuclei as
predictors of successful cell division [84]. Careful interpretation
of Ki-67, PCNA (proliferating cell nuclear antigen), and pH3
markers in the context of cardiomyocyte division and prolifera-
tion is warranted as well [84]. Direct visualization of cell divi-
sion by time-lapse imaging can also be conducted to confirm the
robustness of experimental conclusions. Additionally, cells
should be closely monitored even after the occurrence of cell
division. In their experiment, Mohamed et al. noticed that al-
though cardiomyocytes divided upon overexpressing CDK1,
CCNB, and AURKB within 48–72 h, this division was shortly
followed by cell death because of marked DNA damage [85].
Without full characterization of lncRNAs’ mechanistic path-
ways, it is possible that the promising results of lncRNA trans-
fection might be accompanied by other catastrophic unknown
confounders. Furthermore, although costly, lncRNA experi-
ments and other cardiac regeneration-related studies, in general,
should be upsized to larger mammals and tissues that closely
resemble humans and not just mice. Recently, two independent
research groups demonstrated that porcine hearts are capable of
initiating a regenerative response after cardiac insult shortly after
birth; however, this regenerative window seems to be relatively
shorter than that observed in mice [86, 87]. On the other hand,
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Fig. 3 Workflow of long non-coding RNA discovery in cardiac regeneration experiments
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another group managed to develop a human fetal cardiac
organoid model through harnessing the advancements in the
fields of tissue engineering and stem cell differentiation,
providing a new research tool for studying cardiac re-
generation [88].

Although cardiac regeneration is a relatively unexplored
field with lots of knowledge to unravel, one must think
about its future therapeutic potential. LncRNAs are diverse
molecules capable of inducing cardiac regeneration; how-
ever, targeting them remains a hurdle. Several methods
have been proposed to knock down their expression in
the preclinical reports such as shRNAs, gapmeRs, and
siRNAs. Of them, gapmeRs seem to be most suitable for
therapeutic utilization due to their ability to target
lncRNAs in the nucleus [89]. Additionally, ASOs have
been shown to be clinically feasible as several ASO-
based drugs have been recently approved [90]. However,
several factors should be taken into consideration when
considering such drugs such as tissue specificity of the
drug, pharmacological profile, their stability, and off-tar-
gets. When considering overexpressing lncRNAs, the ther-
apeutic options are even more limited to viruses and viral-
associated vectors. Despite the current effort to improve
these methods of delivery, their immunogenicity and spec-
ificity remain a major concern. With that being said, sev-
eral clinical trials have used viral-based delivery methods
without reporting significant side effects [91–93]. Crispr/
cas9 system may also be used to activate the expression of
lncRNAs through regulating their promoter or knock their
expression out through targeting their genomic locus [94].
Delivery of non-coding RNAs through exosomes seems
promising as well [95]. However, the most appropriate
therapeutic vehicle for targeting lncRNAs is yet to be iden-
tified and further research is required.

Conclusion and future directions

Cardiac regeneration is a new exciting field that holds the
promise for healing failing hearts. Until this date, several mo-
lecular mechanisms and pathways implicated in cardiac re-
generation have been identified. LncRNAs have the ability
to induce a regenerative response in cardiomyocytes; howev-
er, several aspects of the field remain uncharted. Although
cardiac regeneration originates mainly from cardiomyocytes,
it is not a one-man show. Several other mechanisms play cru-
cial roles in determining cardiomyocytes’ proliferative re-
sponse and promoting regeneration. For example, neovascu-
larization has been shown to improve the regenerative capac-
ity after injury [96]. Additionally, Mahmoud et al. observed
impaired regeneration in neonatal mice upon interrupting the
left vagus nerve mechanically, suggesting a role for nerves in
promoting cardiac regeneration [97]. The immune systemwas

also proposed as an important regulator of the process. For
example, Aurora et al. found differences between immune
responses in 1-day-old mice and 14-day-old mice. Further,
they demonstrated that macrophages are key players in the
regeneration process of neonatal mice; however, they con-
cluded that macrophages associated with regeneration are
transcriptionally and functionally different from adult macro-
phages [98]. Recently, Boeckel et al. found that lncRNA
Heat2 is upregulated in patients with heart failure and heavily
regulates immune cells responses [99]. Other studies have
shown that lncRNAs regulate angiogenesis and endothelial
cell functions [100, 101]. Therefore, exploring the interplay
between lncRNA-mediated regulation and these mechanisms
may improve our understanding of cardiac regeneration.

ElncRNAs transcribed from genomic enhancer regions
have been implicated in cardiac development; however, their
role in cardiovascular medicine is yet to be fully understood.
Because of their cis and trans regulatory actions, elncRNAs
may have a role in regulating endogenous cardiac regenera-
tion gene networks [102]. Other non-coding RNAs such as
circular RNAs have been implicated in cardiovascular dis-
eases; however, their possible functions have not been studied
in the context of heart regeneration [103]. Finally, the evolving
genome editing tools such as Crisp/cas9 system can be
harnessed to manipulate lncRNA expression and screen for
regeneration-relevant lncRNAs, providing a new paradigm
for lncRNA research.

Although at the moment several obstacles may interfere
with the translational potential of lncRNAs such as their poor
conservation and the lack of appropriate therapeutic tools,
investigating their functions and roles in cardiomyocytes
should be pursued to further enhance our understanding of
the epigenetic control laid upon the genome. Characterizing
their functions may also act as a gate for revealing other tar-
getable mechanisms. For example, a lncRNA that acts mainly
through sponging a certain miRNA provides insight into the
relevance and function of that particular miRNA, which will
most probably be conserved and targetable. The same applies
to genes and signaling cascades regulated by lncRNAs.

In conclusion, several challenges face lncRNA research in
endogenous cardiac regeneration; however, overcoming these
challenges seems to be an attainable goal. Further, lots of
lncRNAs and their associated mechanisms are yet to be iden-
tified; however, studying this Bdark matter^ of the genome is
definitely worthy as the loss- and gain-of-function studies
have clearly demonstrated their potential in inducing cardio-
myocyte regeneration, declaring lncRNAs a new hope for
healing failing hearts.
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