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Abstract
Diabetes is a global epidemic and a leading cause of death with more than 422 million patients worldwide out of whom around
392 million alone suffer from type 2 diabetes (T2D). Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are novel and effective
drugs in managing glycemia of T2D patients. These inhibitors gained recent clinical and basic research attention due to their
clinically observed cardiovascular protective effects. Although interest in the study of various SGLT isoforms and the effect of
their inhibition on cardiovascular function extends over the past 20 years, an explanation of the effects observed clinically based
on available experimental data is not forthcoming. The remarkable reduction in cardiovascular (CV) mortality (38%), major CV
events (14%), hospitalization for heart failure (35%), and death from any cause (32%) observed over a period of 2.6 years in
patients with T2D and high CV risk in the EMPA-REG OUTCOME trial involving the SGLT2 inhibitor empagliflozin (Empa)
have raised the possibility that potential novel, more specific mechanisms of SGLT2 inhibition synergize with the known modest
systemic improvements, such as glycemic, body weight, diuresis, and blood pressure control. Multiple studies investigated the
direct impact of SGLT2i on the cardiovascular system with limited findings and the pathophysiological role of SGLTs in the
heart. The direct impact of SGLT2i on cardiac homeostasis remains controversial, especially that SGLT1 isoform is the only form
expressed in the capillaries and myocardium of human and rodent hearts. The direct impact of SGLT2i on the cardiovascular
system along with potential lines of future research is summarized in this review.
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Introduction

Diabetes is a chronic disease characterized by the inability of
the body to either produce enough insulin or effectively em-
ploy the insulin it produces to control blood glucose levels [1].
Uncontrollable and sustained increase in blood glucose levels

could seriously damage vital organs and systems such as the
heart, kidneys, blood vessels, eyes, and nerves. Multiple com-
plications such as coronary artery disease, stroke, nephropa-
thy, neuropathy, and retinopathy are directly linked to long-
term diabetes and negatively impact the lifespan of the diabet-
ic population [2]. In 2012, diabetes was the 8th cause of death
worldwide for both sexes with a total estimate of 3.7 million
deaths, out of which 1.5 million were directly related to dia-
betes while the other 2.2 million deaths were linked to high
blood glucose levels. According to the world health organiza-
tion (WHO), the number of worldwide patients with diabetes
increased between 1980 and 2014 from 108 million to 422
million with a prevalence of 8.5% among the adult population
(WHO, Global report on diabetes, 2016). Diabetes is projected
to become the 7th leading cause of death by 2030 [3].
Although long-known anti-diabetic drugs such as metformin,
sulfonylureas, meglitinides, thiazolidinediones, and
dipeptidyl-peptidase-4 inhibitors have been effective in low-
ering glucose levels independently or in combination therapy,
they show no reduction in adverse cardiovascular outcomes
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and are associated with multiple side effects including hypogly-
cemia, weight gain, fluid retention, and increased risk of conges-
tive heart failure [4–7]. SGLT2 inhibitors (SGLT2i) recently
emerged as promising antidiabetic drugs with high therapeutic
index and effectively lower blood glucose levels in type II dia-
betes (T2D) populations [8]. SGLT is a sodium-glucose
cotransporter detected in two major isoforms, SGLT1 and
SGLT2. The latter is mainly expressed in the lumen of the small
intestine and kidneys and is involved in the absorption/
reabsorption of glucose driven by the sodium gradient across
the cell membrane [8, 9]. SGLT1 expression on the other hand
was mainly detected in other tissues of the cardiovascular system
(CV) including cardiac capillaries and cardiomyocytes of human
and rodent heart, playing an important role in glucose uptake into
the myocardium [9–12]. Emerging clinical evidence reports re-
duced negative CVoutcomes with SGLT2 inhibitor therapy [13].
Yet, an equally interesting observation is the positive effect on
BP reduction, arterial stiffness, vascular resistance, andmicrovas-
cular remodeling [14–17]. Whether SGLT2 inhibition in T2D
patients exerts any short- or long-term CV complications remain
controversial. The clinical utility and the long-term CVoutcomes
of SGLT2i use in diabetic patients are subject to extensive re-
search. Although experimental studies did not document SGLT2
expression in the heart, the positive impacts of SGLT2i on the
heart are intriguing. The present review aims at exploring the
potential mechanisms through which these drugs directly affect
the CV system independently of their well-known systemic
effects.

Diabetes and the emergence of SGLT2
inhibitors cardiovascular protection

Type 1 and type 2 diabetes are the most common types of dia-
betes. Type 1 diabetes (T1D), previously known as juvenile dia-
betes, accounts for 5 to 10%of diabetic cases and is characterized
by abnormalities in sufficient insulin production with undefined
mechanisms, mostly linked to both genetic and environmental
factors [18]. In order to survive, T1D patients require a daily
administration of insulin. T2D on the other hand is the most
prevalent form of diabetes and constitutes 85 to 90% of all dia-
betic cases and results from the inability of the body to effectively
use insulin [1, 19]. Unlike T1D, symptoms arising with T2D are
less marked and mostly latent making diagnosis difficult and at
later stages of the disease when serious complications emerge,
unless high risk factors such as obesity are present [1].

Management of blood glucose levels in T2D patients pre-
sents a frequent and progressive challenge. As the most recent
class of oral anti-hyperglycemicmedications, SGLT2i provide
a solution for a number of unmet clinical needs. Body weight,
blood pressure (BP), and lipid reduction in addition to durable
glycemic control were all much welcomed effects of the drug
class in this patient cohort [20, 21]. Affecting metabolism

independently of insulin without increasing hypoglycemic
risk encouraged the use of SGLT2i in double or triple combi-
nation therapy with standard agents such as metformin and
dipeptidyl peptidase-4 inhibitor, throughout the development
of T2D [22].

Typically, the detrimental vascular phenotype with
T2D was thought to be a consequence of hyperglycemia
through multiple and complex pathways [23]. Thus, cur-
rent practice for management of patients with T2D focus-
es on maintaining good control of blood glucose level
with a glycosylated hemoglobin target (HbA1c) < 7%
[24]. This recommendation stems from robust clinical ev-
idence documenting a reduced rate of development of
micro-vascular complications (i.e., diabetic neuropathy,
retinopathy, nephropathy) with good glycemic control in
T2D patients, which initiated during the interventional
trial and was sustained for years throughout the post-
trial period [25, 26]. Follow-up clinical studies showed
that intensive glucose control at the time of T2D diagno-
sis not only protects against microvascular complications
in early and post-trial stages, but also extends to protec-
tion from macrovascular complications (i.e., CAD, PAD),
which emerge overtime and in the post-trial follow-up
phase only [26]. This led to the emergence of the
BLegacy Effect^ or BCardiovascular Metabolic Memory^
concept whereby the extent of vascular damage is deter-
mined, not only by current glycemic control, but also by
the history of blood glucose level management [27]. To
date, no promising drug that target diabetes has proven
effective in preventing adverse cardiac remodeling follow-
ing cardiac injury such as myocardial infarction (MI), in-
dependently of glycemic control [28, 29]. However,
emerging evidence supports a protective effect for certain
anti-hyperglycemic drugs against CV complications in di-
abetic patients already receiving standard of care for gly-
cemic control and cardiovascular disease (CVD) [30, 31].
An exciting aspect of SGLT2i therapeutic effect in T2D
patients is potential direct cardioprotection independently
of glycemic control. SGLT2i, empagliflozin (Empa), is the
first drug to display significant cardioprotection in clinical
trials with a clear reduction in CV mortality and hospital-
ization due to heart failure within the first 3 months of
initiating the treatment [31]. Speculations on the basis of
such effects included a role for the observed reduction of
BP, body weight, and increased diuretic effects (see box
for EMPA-REG Outcome Tria l Summary) [32] .
Canaglifolzin, another promising SGLT2i, was assessed
for its cardiovascular safety and efficacy in patients with
T2D and high CV risks in the CANVAS program which
integrates both CANVAS and CANVAS-Renal trials.
Observed effects on both CV and renal outcomes were
comparable to EMPA-REG trial outcomes, yet with a dif-
ference in the degree of influence. Of note, heart failure
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patients treated with canagliflozin showed a lower risk of
hospitalization with no statistical significance [33].
Subgroup analysis of EMPA-REG Outcome trial re-
vealed similar but significant findings by showing that
Empa addition to standard care in T2D patients and
high CVD risks reduced heart failure hospitalization
and cardiovascular death to the same extent in the presence
or absence of heart failure at baseline when compared to their

relative placebo group. However, rate of hospitalization
per 1000 patients per years was lower in patients with-
out heart failure at baseline when compared to patients
with heart failure at baseline [34]. Whether SGLT2i CV
benefits is a class effect remains to be determined by
the outcome of ongoing trials examining the effects of
other SGLT2 inhibitor molecules and expected to report
in 2019 [25].

Nevertheless, considering that a significant proportion
of T2D patients already show evidence of microvascular
complications at the time of initial diagnosis of diabetes
[35], a thorough examination of the underlying mechanism

of SGLT2 inhibition-mediated cardioprotective effect is
warranted. Identification of the target(s) for this Bpleiotropic
effect^ is required to develop an understanding of their
potential benefit and guide further research on rational and

EMPA-REG Outcome Trial Summary

Description and general outcomes
Amulticenter, randomized, double-blind, placebo-controlled trial that aims to assess the CV protective effect of Empa in patients with T2D associated to

a high risk for CVevents.
➢ Compared to placebo, Empa showed better glycemic control and advanced management of T2D’s deleterious effects on CVevents (mortality among

T2D patients with CVD).
Study characteristics
• 63.1 years old mean aged, 7028 patients;
• Empa 10 mg (n = 2345), 25 mg (n = 2342) per day
• Matching placebo (n = 2333)
• Enrollees characteristics: White 72%, Asian 22%, other 6%
• 57 % diagnosed with T2D > 10 years:
• History of MI: 47% multivessel disease and 47% CAD
• Antidiabetic therapy unchanged for 12 weeks prior to randomization
Inclusion criteria
• T2D with established CVD
• Age ≥ 18 years old
• HbA1c of ≥ 7.0% and ≤ 10% for patients on background therapy or HbA1c ≥ 7.0% and ≤ 9.0% for drug-naive patients
• BMI ≤ 45 kg/m2

• GFR > 30 ml/min/1.73 m2

General endpoints outcome¥

➢ 14% reduction in major CVevents , 38% reductions in CV mortality, 35% reduction in heart failure hospitalization, 32% reduction of death from any
cause.

Primary outcomes
↓ CV death (3.7 vs. 5.9%, p < 0.001)
↓ All MI (4.8 vs. 5.4%, p = 0.23)
↓ All stroke ( 3.5 vs. 3.0%, p = 0.26)
Secondary outcomes:
↓ Preload, afterload burden to heart, SBP, DBP
↓ Arterial stiffness
↓ CHF hospitalization or CV death( 5.7 vs. 8.5%, p < 0.001)
↓ Coronary revascularization(7 vs. 8%, p = 0.11)
↓ BW, BV
↓ Oxidative stress
↓ Visceral adiposity
↓ Hyperinsulinemia
↓ HbA1c, albuminuria
↓ Uric acid level
↑ Glycosuria, fasting, and postmeal glucagon concentration
↑ Hematocrit (5% in absolute values, and 11% in percentage points)
↑ Ketonemia, natriuresis and osmotic diuresis

Results were similar for the two doses of empagliflozin vs. placebo; CV, cardiovascular; T2D, type 2 diabetes; CVD, cardiovascular disease; Empa,
empagliglozin; MI, myocardial infarction; HbA1c, glycosylated hemoglobin; BMI, body mass index; GFR, glomerular filtration rate; SBP, systolic
blood pressure; DBP, diastolic blood pressure; CHF, congestive heart failure; BW, body weight; BV, blood volume;
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justified use in patients. Herein, we will review some potential
molecular mechanisms through which SGLT2i can facilitate
this cardioprotective effect (Fig. 1).

The diabetic myocardium

Diabetes is associated with 2- to 4-fold increase in the risk
for cardiovascular disease [36–38]. Seventy five to 80% of
the deaths in patients with T2D are associated with a
thrombotic event and ~ 70% of diabetic people > 65 years
of age will die of some form of heart disease [37].
Prevalence of T2D or impaired glucose tolerance may be
as high as 65% in MI patients, increasing the risk of mor-
tality and congestive heart failure development [39, 40].
Heart failure is preceded by metabolic and mitochondrial
dysfunction, oxidative stress, and cardiac myocytes death
that are exacerbated in T2D patients with no defined mech-
anisms [36, 38]. To date, multiple studies emphasize the
positive correlation between acute hyperglycemia and det-
rimental cardiac remodeling and prognosis post-MI
[41–46]. Elevated plasma glucose on admission post-MI
is a powerful prognostic tool for both in-hospital and

long-term outcome in both diabetic and non-diabetic pa-
tients. In fact, there is positive correlation between plasma
glucose level and mortality level post-MI, although the
basis for the harmful effect of hyperglycemia is not under-
stood [43, 44, 47]. A 4% increase in mortality is encoun-
tered for every 18 mg/dL increase in plasma glucose level
[46]. Patients with and without established diabetes have
comparable mortality rate when post-MI admission glu-
cose levels are more than 200 mg/dL suggesting an acute
glucose-mediated toxicity on the myocardium [46].

Mechanisms behind worsened cardiac remodeling post-
injury in diabetic hearts remain unclear [48]. Hearts of
diabetic patients are associated with contractile and relax-
ation dysfunction as well as an increased arrhythmia risk
that are linked to autonomic neuropathy and sympatho-
parasympathetic imbalance caused by parasympathetic de-
nervation and sympathetic hyperinnervation [49–51]. In
addition to the autonomic dysfunction, ion homeostasis
and electrophysiological properties of the diabetic myocar-
dium at the tissue level are also altered [52–55]. Metabolic
aberrations, oxidative damage, and inflammation are also
attributed to cardiac dysfunction in diabetic patients and
further discussed in this review.
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SGLT2 inhibitors and ion homeostasis of the diabetic
myocardium

Myocardial Ca2+ and Na+ homeostasis is critical for proper
cardiac signal transduction, heart rhythm regulation, and car-
diomyocyte energy production and respiration [56, 57]. Rapid
and proper change of intracellular Ca2+ concentration is essen-
tial for cardiac myocytes contraction and relaxation and is
normally regulated by ion exchangers and channels including
L-type Ca2+ channels, ryanodine receptor, Na+/Ca2+ exchang-
er (NCX), and sarcoplasmic-reticulum calcium ATPase 2a
(SERCA2a) [56–58]. Na+ homeostasis on the other hand is
regulated mainly by NCX, Na+/H+ exchanger (NHE), and the
Na+/K+ pump and directly affects myocardial Ca2+ dynamics
[52, 59]. Both Ca2+ and Na+ transport, handling and regula-
tion are altered in the diabetic myocardium [52–55]. Altered
Na+ transport in diabetic heart is attributed to decreased Na+/
K+ pump and NCX activities but enhanced NHE activity
overloading the cytosol with Na+ [55, 60–64]. Recent findings
suggest an important role of SGLTi on ion homeostasis in
T2D heart and a potential protective impact on T2D cardiac
remodeling (Table 1). In a recent study, Lambert et al. found
increased SGLT1 expression in failing hearts of T2D patients
compared to controls, and linked Na+ overload in T2D rat
myocytes to increased SGLT1-mediated Na+/glucose uptake
[53]. Using dapagliflozin (Dapa), a selective SGLT2i,
Hamouda et al. tested the electromechanical function of iso-
lated ventricular myocytes of streptozotocin (STZ)-induced
diabetic rats [73]. Their findings revealed a reduction in ven-
tricular myocyte shortening and the amplitude of the intracel-
lular Ca2+ transients in both STZ and control myocytes with
greater effect in STZ myocytes, 5 min after Dapa exposure.
The exact mechanism behind the negative inotropic effects is
unclear but most probably is linked to alteration in the mech-
anisms of Ca2+ transport since together the myofilament sen-
sitivity to Ca2+ and sarcoplasmic reticulum Ca2+ release were
not altered by Dapa in both groups [73]. Indeed, in a very
recent study, Baartscheer and colleagues confirmed the ion
concentration alteration hypothesis [72]. Using Empa, another
selective SGLT2i, ion homeostasis was tested on isolated ven-
tricular myocytes from rabbits and rats in the presence of
increased levels of extracellular glucose. Findings revealed
that Empa decreased cardiac myocytes cytosolic Na+ [Na+]c
and cytosolic Ca2+ [Ca2+]c levels and increased myocytes’
mitochondrial Ca2+ concentration by modulating NHE activ-
ity [72]. Although SGLT2 expression is not found in neither
healthy nor pathological heart tissue [9, 75], Empa impact on
ion homeostasis in cardiomyocytes has been linked to its po-
tential direct interaction with NHE [72]. Data supporting this
notion have been generated by using Cariporide, a well-
known specific NHE inhibitor. Of note Cariporide attenuates
intracellular Na+ accumulation during ischemia and Ca2+ ac-
cumulation during both ischemia and reperfusion,

mechanisms that are proven to be cardioprotective by limiting
infarct expansion and border-zone extension [76–78].
Cardioprotective impact of Cariporide was confirmed clinical-
ly in patients with acute ischemic coronary event undergoing
PTCA or CABG procedures attenuating adverse remodeling
within both the infarcted and non-infarcted areas of the heart
[76, 79–82]. Application of Cariporide in the presence of
Empa had minimal effect on Empa-induced cytosolic Na+

reduction and vice versa. Additionally, recovery of pH follow-
ing acute acidic load was inhibited in the presence of
Cariporide but strongly reduced with Empa [72]. These find-
ings reinforce the potential direct NHE inhibition of Empa
which is yet to be fully elucidated. In summary, decreasing
intracellular Na+ levels by inhibiting SGLT2 and attenuating
NHE activity results in increased Ca2+ uptake into the mito-
chondria and efflux into the extracellular space probably
through NCX activity, decreasing intracellular Ca2+ levels
and subsequently, improving calcium handling between car-
diac cycles. These direct effects on the myocardium correlate
well with the reduction in sympathetic activity observed in
SGLT2i-treated T2D patients and support the cardioprotective
effects of SGLT2i in T2D-heart failure patients [83–85]. On a
functional level, two studies recently emerged supporting di-
astolic function improvement in T2D mouse model following
SGLT2 inhibition [70, 71]. In the first study, Empa treatment
in T2D ob/ob mouse model showed an increase in the myo-
cardium contractile reserve following dobutamine stress chal-
lenge along with an increase in calcium handling through
enhancing SERCA2a activity and improving left ventricular
(LV) maximum pressure and diastolic function parameters
[70]. In T2D female db/db mouse model exposed to Empa
treatment, diastolic function significantly improved as evi-
denced by decreased LV filling pressure and enhanced septal
wall motion, all in absence of any changes in BP [71]. In
addition to Ca2+ handling improvement, diastolic function en-
hancement was linked to the antifibrotic aspect of Empa treat-
ment. Serum and glucocorticoid-regulated kinase 1 (SGK1)/
Enac profibrotic signaling pathway and the associated myo-
cardial interstitial fibrosis decreased in the presence of Empa
[71]. Notably, SGK1 is highly expressed and activated in the
diabetic heart in the presence of an excess of circulating glu-
cose and is directly linked to cardiac pro-fibrotic/hypertrophic
effects [86–88]

SGLT2 inhibitors and metabolic alteration
of the diabetic myocardium

Under physiologic conditions, 95% of myocardial energy is
supplied via mitochondrial oxidative metabolism. Free fatty
acids (FFAs), glucose, lactate, ketone bodies, and amino acids
are all involved in oxidative metabolism. However, most of
the energy production is obtained from FFAs and glucose
metabolism with a negligible contribution of other substrates
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[89]. Myocardial metabolism can change depending on cardi-
ac stress, substrate availability, and hormonal situation.
Lipotoxicity, glucotoxicity, ketone bodies oxidation, and mi-
tochondrial dysfunction are all associated with metabolic ab-
normalities of the diabetic myocardium. With T2D, insulin
resistance increases lipolysis and subsequent fatty acid (FA)
uptake and triglyceride (TG) storage into the myocardium
[90]. Consequently, myocardial FA abundance amplifies the
reliance on β-oxidation and FA storage while inhibiting pyru-
vate dehydrogenase (PDH) through PPARα-mediated PDK4
activation and subsequently inhibiting glucose oxidation, in-
creasing the risk of myocardial steatosis and cytotoxicity
[91–95]. Cardiac steatosis is considered a powerful predictor
of cardiac dysfunction and cardiac remodeling and highly cor-
relates with obese and T2D patients [96–101]. Inhibiting car-
diac glucose oxidation raises cardiomyocytes glucose levels
along with the risk of protein glycation and the formation of
advanced glycation end-products (AGEs). Multiple metabolic
pathways including pentose phosphate pathway (PPP),
hexosamine biosynthesis pathway (HBP), and glycogeneic
pathways are altered in this process, affecting the myocardium
negatively [102–105]. AGEs formation is associated with cel-
lular dysfunction via reactive oxygen species (ROS) produc-
tion, and cross-linking with multiple macromolecules includ-
ing SERCA, collagen, and ryanodine receptor leading to ven-
tricular stiffness and dysfunction [106, 107]. LV dysfunction
in T2D patients and rodents has also been linked to mitochon-
drial dysfunction [108–111]. Reduction in oxidative phos-
phorylation (OxPhos) limits ATP supply to the myocardium
leading to systolic and diastolic impairment [110, 112–115].
Decreased OxPhos rate and increased FA oxidation will also
increase ROS production due to high electron leakage in the
mitochondrial respiratory chain. As expected, excessive ROS
production amplifies T2D-mediated cardiac remodeling by
inducing acute cellular damage and inflammatory responses
[116, 117]. To date, the impact of SGLT2 inhibition on cardiac
metabolic impairment has not been thoroughly investigated
nor deciphered (Table 1). In their study, Joubert at al. used a
unique non-obese mouse model of T2D known as the
lipodystrophic Bscl2−/− (seipin knockout [SKO]) mouse to
investigate the impact of SGLT2i on glucotoxicity in the ab-
sence of lipotoxicity [69]. SKO mice are characterized by an
excessive increase in myocardial glucose uptake without lipid
accumulation or lipotoxic features. Using Dapa as SGLT2
inhibitor and pioglitazone as insulin sensitizer, data revealed
a more pronounced cardioprotective effect of Dapa-treated
group compared to pioglitazone-treated group despite similar
glucose lowering effects of both drugs [69]. This study sup-
ports direct cardioprotective effects of SGLT2i independently
of glycemic control. In another study, the impact of SGLT2i
on lipotoxicity was tested in a high-fat-high-sugar (HFHS)
mouse model [68]. HFHS animals displayed T2D character-
istics including high lipid deposition in both heart and liver

along with hyperglycemia and insulin resistance. In addition
to glycemic control, Empa treatment in HFHS group signifi-
cantly mitigated myocardial and liver steatosis by reducing
TG accumulation. Although Empa treatment significantly de-
creased TG plasma level with no effect on diet-induced in-
crease of plasma total cholesterol and HDL-cholesterol levels,
it is not clear whether the observed Empa effect on cardiac TG
accumulation is also tissue-specific and requires further inves-
tigation [68, 118]. Metabolically, one possible explanation for
SGLT2 inhibition-mediated cardioprotective effects is ketone
bodies formation [13]. Ketone bodies are generated through
FA metabolism in the liver with low plasma concentration
under physiologic conditions [119]. With diabetes however,
low plasma insulin, insulin resistance, lipolysis, and subse-
quent high FA levels accelerate ketone bodies formation and
their importance as energy source for myocardium increases
[120]. Multiple experimental studies showed that β-
hydroxybutyrate, a ketone body, competes with FFA and glu-
cose entry into cardiac mitochondrial metabolic oxidation
with higher energy efficiency and lower myocardial oxygen
consumption [121–123]. Unlike FFA oxidation, β-
hydroxybutyrate generates less ROS and possesses antioxi-
dants capacities which maintain mitochondrial integrity
[124]. Additionally, ketone bodies increase mitochondrial bio-
genesis and exert anti-arrhythmic effects by stabilizing cell
membrane potential [125]. In diet-induced obese diabetic rats,
treatment with SGTL2i promotes lipolysis instead of glucose
oxidation as a source of energy [126, 127]. SGLT2 inhibition
also increased plasma ketone bodies levels in both experimen-
tal and clinical T2D along with shifting substrate usage from
carbohydrates to lipids [126–131]. In summary, there is no
clear unders tanding of how SGLT2i exer t the i r
cardioprotective effects through myocardial metabolism mod-
ulation. Evidence supports a direct effect of SGLT2i on reduc-
ing plasma glucose levels and shifting myocardial metabolism
to FA and ketone bodies oxidation along with appropriate
non-accumulative myocardial FA storage. Glucose lowering
effects of antidiabetic drugs by itself induces lipolysis and
ketone body formation as a compensatory mechanism [132].
SGLT2 inhibition however, improves lipolysis and limits TG
accumulation in the liver and the myocardium [68].
Additionally, recent evidence has emerged showing an im-
provement in myocardial insulin sensitivity and glucose utili-
zation following Empa treatment in a T2D ob/ob mouse mod-
el [70]. Improvement of myocardial insulin sensitivity could
be linked to the significant decrease in epicardial fat volume
(EFV) that was observed in T2D patients treated with SGLT2i
[133, 134]. Of note, EFVaccumulation highly correlates with
cardio-metabolic risks including insulin resistance and inflam-
mation [135, 136]. All the above findings suggest that reduc-
ing plasma glucose levels, improving myocardial insulin sen-
sitivity and glucose utilization, along with directly lowering
TG accumulation in the myocardium could allow ketone
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bodies cardioprotective metabolism to dominate while limit-
ing myocardial glucotoxic and lipotoxic effects. Investigating
this concept with stronger evidence such as direct SGLT2
inhibiting effect on improving myocardial ketone bodies up-
take and oxidation, increasing myocardial FA oxidation and
subsequently lowering myocardial TG accumulation, and ul-
timately restoring pre-diabetic glucose-FA metabolic balance
is warranted. However, a critical clinical complication known
as euglycemic diabetic ketoacidosis (DKA) has emerged, not
so infrequently, in individuals treated with SGLT2i. DKA has
the potential of becoming a life-threatening condition due to
systemic ketone bodies accumulation consequent to SGLT2
inhibition-dependent decrease in insulin secretion and subse-
quent increase in glucagon secretion and activation of lipoly-
sis [137–139].

SGLT2 inhibition and oxidative inflammatory
response with the diabetic cardiovascular system

Oxidative stress and chronic systemic inflammation are close-
ly associated and long-known to play a key role in the patho-
genesis of diabetes-induced CVD. They are crucial members
of the vicious cycle of diabetes, which also includes hypergly-
cemia, insulin resistance, and dyslipidemia [140–144]. When
it comes to oxidative stress and inflammation in the diabetic
myocardium, investigations take into consideration the micro
and macrovascular complications of diabetes and the direct
impact on end-organ damage. Endothelial function by itself
is vital for proper homeostasis of the body and its dysfunction
is directly associated with multiple pathophysiological abnor-
malities including acute coronary syndrome and cardiomyop-
athy [145]. In the diabetic myocardium, oxidative stress plays
a major role in promoting cardiac inflammation and fibrosis
[146–148]. In fact, several studies have documented a signif-
icant reduction in cardiac pro-inflammatory and fibrotic
markers upon treatment with antioxidants [143, 147, 149].
Conclusively, microvascular, macrovascular, and cardiac dys-
function with diabetes could not be evaluated as independent
entities since they are functionally interconnected and directly
affected by systemic oxidative stress and inflammation.

Effects on the myocardium

The impact of SGLT2 inhibition on the myocardial oxidative
and inflammatory response has been investigated in multiple
studies (Table 1). In a prediabetic rat model of metabolic syn-
drome, 10 weeks of treatment with Empa significantly re-
duced cardiomyocytes hypertrophy, interstitial fibrosis, and
subcutaneous fat tissue despite no significant change in BP
and autonomic function [67]. Reduction of cardiac oxidative
stress and inflammation following Empa accounted for the
observed direct cardioprotective effects [67]. In a T2D mouse
model, administration of Empa to db/db mice for a 10-week

period significantly improved cardiac and pericoronary arteri-
al fibrosis, and myocardial macrophage infiltration with no
impact on BP [66]. Findings were directly linked to significant
reduction in cardiac superoxide production supporting the an-
tioxidant capacities of SGLT2is [66]. In an attempt to better
understand the impact of SGLT2 inhibition on cardiac inflam-
matory modulation, Dapa was tested on a MI rat model. Dapa
administration over a period of 4 weeks post-MI resulted in
significant decrease in reactive oxygen and nitrogen species
(RONS) as early as 3 days post-MI followed by a significant
decrease in myofibroblast infiltration and cardiac fibrosis,
28 days post-MI [65]. Those results were attributed to an
enhancedM2macrophage polarization and IL-10 anti-inflam-
matory cytokine upregulation through a RONS-attenuation-
mediated STAT3 activation signaling pathway [65]. Of note,
antioxidants are known to increase STAT3 activity during MI
and to polarize, along with STAT3 activation, macrophages
towards an M2 anti-inflammatory phenotype [150–153],
supporting the role of SGLT2i as antioxidant and inflamma-
tory modulators in the heart. Modulation of cardiac inflamma-
tion by SGLT2i was directly tested on nucleotide-binding do-
main leucine-rich repeat containing protein (NLRP)-3
inflammasome activation [154]. NLRP-3 inflammasome is
an intracellular oligomer, which promotes the activation of
the pro-inflammatory cytokines IL-1β and IL-18 and is direct-
ly involved in the pathogenesis of some metabolic disorders
including obesity induced insulin resistance, diabetes mellitus,
and atherosclerosis [154–157]. In T2D models, NLRP-3
inflammasome is upregulated in the myocardium and contrib-
ute to cardiac inflammation, fibrosis, and subsequent cardiac
dysfunction and cardiomyopathy [158–162]. Dapa treatment
in T2D ob/ob mice significantly reduced cardiac NLRP-3
inflammasome activation along with antifibrotic effects and
overall improvement in LVejection fraction and systolic func-
tion when compared to controls [163]. Observed non-
functional effects were replicated in vitro, ruling out any glu-
cose or hemodynamic-lowering dependent effects [163].

Effects on the vasculature

Early experiments with phlorizin, a natural product with non-
selective SGLT inhibitory properties, revealed that inhibition
of glucose entry into vascular smooth muscle cells via this
transporter modulated both intracellular calcium levels and
serotonin-mediated contractions [164]. Using phlorizin,
SGLT was postulated to act as a glucose sensor in retinal
pericytes whereby capillary tone and microvascular blood
flow would be regulated based on extracellular glucose levels
[165]. Attenuation of smooth muscle contraction by SGLT
blockade was reported in lymphatic preparations as well and
was linked to smooth muscle ion homeostasis [166].
Increasing vascular tone was attributed to the sodium compo-
nent of the SGLT transport process driven by glucose,
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whereby sodium entering the cell would later be exchanged
for extracellular calcium via NCX activity and hence, the in-
creased vascular tone [166]. A better-studied aspect of the
effect of SGLT function on vascular tone is through its action
on endothelial cells. Several lines of evidence implicated an
enhanced SGLT activity in vascular endothelial cells under
stress conditions [167]. SGLT inhibition by phlorizin amelio-
rated hypoxia-induced endothelial cell activation and produc-
tion of vasoactive prostaglandins and platelet-activating fac-
tors [168]. Indeed, simulation of stroke conditions in vitro led
to an increase in SGLT-mediated glucose transport, which
upon inhibition in in vivo models of stroke was associated
with a reduced brain infarct size and edema [169].With regard
to endothelium-dependent relaxation, acute exposure to glu-
cose and insulin was associated with endothelial NO produc-
tion attributed to sodium entry via SGLT and later exchange
with extracellular calcium [170]. It followed that SGLT inhi-
bition with phlorizin strongly attenuated endothelium-
dependent NO-dependent vasodilation ex vivo [170]. Such
an obse rva t ion i s con t r ad i c to ry to a p roposed
vasculoprotective effect for SGLT inhibitors in diabetic vas-
cular disorders of which endothelium dysfunction is consid-
ered a hallmark. However, observed in vitro results with
phlorizin are questionable for three major reasons: (1)
phlorizin is not specific to SGLT and has broad off-target
effects; (2) phlorizin could be hydrolyzed either chemically
(as may occur in aqueous solutions) or enzymatically to
phloretin, which inhibits most passive glucose transporters
(GLUTs) and not just the SGLTs [171]; and (3) in vitro studies
focus on acute and limited rather than chronic and systemic
effects of the drugs. Chronic and systemic effects are essential
in multifactorial diseases such as diabetes. A newer study
examined the effect of chronic in vivo phlorizin treatment
(10 weeks) on a diabetic mouse model [172]. Isolated aortas
from the treated mice showed an improved endothelium-
dependent relaxation compared to the untreated diabetic ani-
mals. This was attributed to an apparent reduction in oxidative
stress and AGEs rather than direct vasoactive effects as hy-
pothesized in acute in vitro studies. In an attempt to confirm
these findings with more selective SGLT inhibitor drugs, a
study compared ex vivo and in vivo treatment effects using
chronic phlorizin and canagliflozin, a highly specific SGLT2
inhibitor, on mouse coronary arteries [74]. The authors found
that, despite the observation that both SGLT inhibitors did not
affect NO-dependent coronary relaxation ex vivo, arteries iso-
lated from diabetic animals receiving 4-week canagliflozin
treatment had improved relaxation compared to untreated di-
abetic cohorts. Of note though, in the latter study, the authors
were not able to detect SGLT2 expression in mouse or human
coronary vascular smooth muscle and endothelia to justify
canagliflozin vasoactive action, which question the direct
mechanisms behind SGLT2 inhibition on the vasculature.
Recent studies with Empa and ipragliflozin, both novel

selective and highly specific SGLT2i, fortified these findings
[66, 173]. Empa significantly improved pericoronary arterial
fibrosis, coronary arterial thickening, and vasodilation impair-
ment following a 10-week treatment in T2D db/db mice. In
this model, Empa protective effects were attributed to signif-
icant attenuation of oxidative stress in cardiovascular tissue
[66]. Ipragliflozin was tested in STZ-induced diabetic mouse
model on a 3-week administration timeframe. Findings of the
ipragliflozin study revealed a protection against endothelial
dysfunction via modulation of inflammation and attenuation
of oxidative stress [173]. Taken together, the previous results
indicate that the potential vasculoprotection associated with
SGLT2i therapy is mediated by an indirect modulatory effect,
and most probably through attenuating oxidative stress and
inflammation, thus supporting their capacity in reversing the
perivascular adipose inflammation associated with insulin re-
sistance and diabetes [174, 175].

A significant body of literature underscores the role of in-
flammation in the vasculature and perivascular adipose tissue
in diabetic vasculopathy [174]. A vascular anti-inflammatory
role for SGLT2i is supported by recent evidence whereby the
beneficial vascular effect of chronic oral SGLT2 inhibitor
treatment was accompanied by a reduced vascular expression
of inflammatory molecules, e.g., monocyte chemoattractant
protein-1, vascular cell adhesion molecule-1, and intercellular
adhesion molecule [173]. Dapa treatment was shown to de-
crease both visceral and sub-cutaneous adipose tissue mass in
diabetic patients along with the decrease in high sensitivity C-
reactive protein (hsCRP) serum levels, a well-known marker
of inflammation in CVD [176, 177]. Nevertheless, SGLT2
inhibitor-mediated vasculoprotective effect through suppres-
sion of perivascular adipose inflammation remains to be ex-
amined systematically.

Protective mechanisms of SGLT2 inhibition in heart
failure

Both, heart failure with preserved and reduced ejection frac-
tion are debilitating complexed clinical syndromes that are
often accompanied with comorbidities that directly affect pa-
tient’s prognosis and clinical intervention [178, 179]. The al-
teration of cardiac stroke volume in heart failure could be
related to three major affectedmechanisms: preload, afterload,
and myocardial contractility. Clinically heart failure patients
treated with SGLT2i exhibited a lower risk of hospitalization
when compared to placebo [33, 34]. SGLT2 inhibition may
decrease preload through promoting osmotic diuresis which
reduces volume overload in heart failure patients improving
myocardial stretching mechanisms and contractility [180].
Recent studies revealed a reduction in blood pressure, arterial
stiffness, and vascular resistance in T2D patients treated with
Empa, effects that could decrease afterload and subsequently
improve cardiac output in heart failure patients [16]. In
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addition to the protective SGLT2 inhibition impact on multi-
ple mechanisms preceding heart failure and diabetic cardio-
myopathy development including metabolic impairment, mi-
tochondrial dysfunction, calcium handling, inflammation, and
oxidative stress, SGLT2i impact on BMI, a well-known heart
failure risk factor, is also promising [13, 181, 182]. In fact,
treatment with SGLT2 inhibitor results in approximately 2–
3 kg reduction body weight over 24–52 weeks in diabetic
patients most probably due to osmotic diuresis and caloric loss
as well as other undefined mechanisms [13, 182, 183].
Although SGLT2i-mediated weight reduction is small, its
combination with modest reduction in preload and afterload
could synergistically improve cardiac workload and contrac-
tility [184].

Conclusions and future perspectives

To date, no antidiabetic drug showed the same CV benefit as
SGLT2is did with diabetic patients. Although other anti-
diabetic drugs appeared to produce CV benefit when given
to pre-diabetic patients, e.g., metformin [185] and pioglita-
zone [186], neither drug showed the same benefit in diabetic
patients. Clinical data describing the cardiovascular benefits
of SGLT2is in diabetic patients highlight the potential these
drugs offer as future therapeutic tools to address cardiovascu-
lar deterioration in an impaired metabolic milieu. Recent stud-
ies showed that SGLT1, but not SGLT2, is found in the cap-
illaries and myocytes of human and rodent hearts and upreg-
ulated in the myocardium of multiple pathological conditions
including T2D, hypertrophy, heart failure, and infarcted hearts
[9–12, 75]. SGLT1 effect in heart remains controversial as it
has been directly linked to NOX2-mediated ROS production
in cardiomyocytes but also shown to play a critical role in
cardiac cell protection during the acute phase of ischemia-
reperfusion injury by regulating cardiac energy metabolism
[187–189]. These findings question whether the direct ob-
served SGLT2 inhibition effects on the CV system are medi-
ated through off-target effects such as SGLT1 upregulation or
inhibition. To date, no data support the upregulation of SGLT1
in the heart following SGLT2 inhibition as a compensatory
mechanism similarly to what is found in the kidneys and GI
tract [190]. Although canagliflozin expressed a modest SGLT-
1 inhibitory effect in the small intestine from the luminal side
at clinical dosage, it did not affect SGLT-1 in the heart or the
skeletal muscle [191]. Nonetheless, there is a consensus that
SGLT2i direct effects on the myocardium (Table 1) are inde-
pendent of SGLT2i-mediated systemic effects (Table 2), and
together direct and systemic effects potentiate SGLT2 inhibi-
tion cardioprotective outcomes (Fig. 1). Several questions re-
main to be answered in terms of the exact mechanism of action
upon chronic use, optimal timing of intervention, and whether
structural and functional modifications of these molecules

could serve to enhance the CV protective effect and thus,
maximizing their therapeutic benefit. Finally, exploring the
effects of these drugs in pre-diabetic or non-diabetic individ-
uals with other forms of metabolic impairment and at high risk
of CVD is also warranted.
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