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Abstract Hypertrophic cardiomyopathy is the most common
inherited heart disease. Although it was first described over
50 years ago, there has been little in the way of novel disease-
specific therapeutic development for these patients. Current
treatment practice largely aims at symptomatic control using
old drugs made for other diseases and does little to modify the
disease course. Septal reduction by surgical myectomy or
percutaneous alcohol septal ablation are well-established
treatments for pharmacologic-refractory left ventricular
outflow tract obstruction in hypertrophic cardiomyopathy
patients. In recent years, there has been a relative surge in
the development of innovative therapeutics, which aim to
target the complex molecular pathophysiology and resulting
hemodynamics that underlie hypertrophic cardiomyopathy.
Herein, we review the new and emerging therapeutics for
hypertrophic cardiomyopathy, which include pharmacologic
attenuation of sarcomeric calcium sensitivity, allosteric inhibi-
tion of cardiac myosin, myocardial metabolic modulation, and
renin-angiotensin-aldosterone system inhibition, as well as
structural intervention by percutaneous mitral valve plication
and endocardial radiofrequency ablation of septal hypertro-
phy. In conclusion, while further development of these thera-
peutic strategies is ongoing, they each mark a significant and

promising advancement in treatment for hypertrophic cardio-
myopathy patients.
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Introduction

Hypertrophic cardiomyopathy (HCM) is the most common
genetic heart disease with a prevalence in the general adult
population of approximately 1 in 500 [1]. It is a common
cause of sudden cardiac death in the young and a prevalent
cause of morbidity and mortality in all ages [2, 3]. HCM is
characterized by complex pathophysiology, which manifests
in a heterogeneous clinical presentation. Typical features of
HCM include asymmetric septal hypertrophy, diastolic dys-
function, a left ventricular outflow tract (LVOT) gradient,
microvascular ischemia, altered cardiac myocyte energetics,
and arrhythmogenicity [4, 5].

Since HCMwas first described over 50 years ago, there has
been little in the way of novel therapeutic development and
the disease has largely been treated using old drugs developed
for the treatment of other diseases [6, 7]. Currently used drugs
in HCM are all negative inotropic agents focused on improv-
ing symptoms. In pharmacologic refractory obstructive HCM,
septal reduction by surgical myectomy and percutaneous
transcoronary alcohol septal ablation are well-established
and effective therapies [8–10]. Recently, however, there has
been a surge in the development of novel, disease-specific
treatment in HCM. Here, we review pharmacologic treatment
strategies which include attenuation of sarcomeric calcium
sensitivity, allosteric inhibition of cardiac myosin, myocardial
metabolic modulation, and renin-angiotensin-aldosterone
system inhibition as well as structural interventions including
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percutaneous mitral valve plication and endocardial radiofre-
quency ablation of septal hypertrophy. Targets of each phar-
macologic treatment strategy are summarized in Fig. 1 and
Table 1. Structural interventions are summarized in Table 1.

Pharmacologic therapies

Attenuation of sarcomeric calcium sensitivity

Dysregulation of calcium signaling in the cardiac myocyte
plays a critical role in the HCM disease state. It contributes
to both diastolic dysfunction and arrhythmogenicity, which
oftentimes precede the development of hypertrophy and
symptoms in HCM patients [31–36]. Mutations in sarco-
meric proteins including cardiac myosin binding protein C
(cMyBP-C) and cardiac troponin I and C (cTnI and cTnC)
have been shown to cause enhanced calcium affinity in car-
diac myofilaments in human and animal models of HCM
[37–39]. It is hypothesized that increased myofilament Ca
affinity leads to “calcium trapping” in the mutant sarcomere
causing significant alterations in intracellular calcium han-
dling with activation of the calcium-calmodulin kinase II
(CaMKII) pathway [40, 41].

The delayed sodium channel is a downstream target of
CaMKII, which is oftentimes upregulated in HCM and leads
to further increases in intracellular calcium by the Na-Ca ex-
change protein setting up a vicious cycle as shown in Fig. 1
[13]. These electrophysiologic alterations cause an increased
action potential duration as well as increased incidence of
early and delayed after depolarizations (EADs andDADs) that
underlie enhanced arrhythmogenicity and furthermore result

in higher diastolic calcium concentrations leading to impaired
myocardial relaxation [31–34].

In a mouse model of HCM (Arg403Gln missense mutation
in the α cardiac myosin heavy chain), early administration of
the L-type calcium channel inhibitor, diltiazem resulted in
long-term (39-week) attenuation of hypertrophic pathology
and improved cardiac function in pre-hypertrophic mice
[11]. It is thought that by blocking the L-type calcium channel
before development of the HCM phenotype, diltiazem pre-
vents calcium trapping within the mutant sarcomere, thereby
disrupting progression of pathologic hypertrophy. These find-
ings were applied clinically in a double-blinded pilot study of
diltiazem versus placebo as a disease modifying agent in pre-
hypertrophic sarcomeric HCMmutation carriers over a 3-year
follow-up. Compared to controls, diltiazem-treated MYBPC3
mutation carriers (n = 12) but not MYH7 mutation carriers
(n = 21) exhibited significantly less increase in echocardio-
graphic left ventricular (LV) wall thickness and cardiac mag-
netic resonance (CMR)-measured LV mass index as well as
improved LV filling pressures as represented by a decrease in
E/E′ [12]. By identifying at risk mutation carriers, use of dil-
tiazem as a disease-modifying agent may potentially attenuate
dysregulated calcium cycling and subsequent HCM pheno-
typic expression. Future large-scale trials are required howev-
er to explore this strategy further.

Ranolazine is a late Na channel inhibitor currently used
as an antianginal drug. When administered to cardiac
myocytes isolated from HCM patients in vitro, ranolazine
was shown topartially reverse dysregulated calcium signal-
ing, arrhythmogenicity, and diastolic dysfunction [13].
Furthermore, ranolazine improves markers of diastolic
dysfunction in a hypertensive mouse (deoxycorticosterone
acetate (DOCA)-salt) model [42]. Similar promising

Fig. 1 Targets of pharmacologic
therapies for hypertrophic
cardiomyopathy. Examples
discussed in the text are written
beneath each target. AMPK
adenosine monophosphate-
activated protein kinase, ARB
angiotensin receptor blocker, AT1
angiotensin receptor 1, ATP
adenosine triphosphate, ADP
adenosine diphosphate, CaMKII
calcium/calmodulin-dependent
protein kinase II, ICaL late calcium
channel, INaL late sodium channel,
NAC N-acetyl cysteine, NCX
sodium-calcium exchanger, Pi

inorganic phosphate, ROS
reactive oxygen species
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findings were seen in a transgenic mouse model of HCM
(Mybpc3-targeted knock-in), though some of the beneficial
effects seen in these studies are thought to be due to
ranolazine’s beta blocker properties and to a lesser degree
by blockage of the late sodium current [42, 43]. In a small, a
single-center, open-label pilot study, ranolazine resulted
inimproved symptoms and quality of life at 2-month fol-
low-up in 11 symptomatic patients with HCM despite max-
imum tolerated medical therapy [14]. RESTYLE-HCM, a
multicenter placebo-controlled trial, looks to study the effica-
cy of ranolazine on improving exercise tolerance in symptom-
atic HCM patients by measurement of peak oxygen consump-
tion [15]. Results of this trial are awaited. LIBERTY-HCM, a
multicenter international phase II/III trial, evaluated the effi-
cacy of eleclazine—a more specific and more potent late so-
dium channel inhibitor than ranolazine—to see if compared to
placebo, eleclazine improves exercise capacity as measured
by peak oxygen consumption during cardiopulmonary exercise
testing in patients with symptomatic HCM [16]. Unfortunately,

during the time of this writing, the LIBERTY-HCM study was
terminated by the sponsoring party for unclear reasons [16].
The termination may be related to the failure of eleclazine to
meet its primary endpoint in a concurrent study on its
use in patients with type 3 long QT syndrome although
this is unknown [17].

Allosteric inhibition of cardiac myosin

There are reported to be hundreds of pathogenic mutations
within the seven-component regulated contractile complex
of the cardiac sarcomere, which contribute to HCM patho-
physiology [44]. These are predominantly missense mutations
in the beta myosin heavy chain or the regulatory protein,
cMyBP-C, which attenuate the actin-myosin interaction as
well as cause marked variability in calcium sensitivity be-
tween muscle fibers leading to imbalances in force generation,
contractile dysfunction, and myofibril disarray [31, 45].
Cumulatively, these mutations result in characteristic

Table 1 Emerging therapies currently or recently investigated for hypertrophic cardiomyopathy

Therapy Target Mechanism
of action

Preclinical studies Clinical studies

Pharmacologic therapies

Diltiazem L-type Ca channel Inhibits sarcomeric calcium
influx

Attenuation of CM hypertrophy
in transgenic mice [11]

Prevention of hypertrophy and diastolic
failure inMYBPC3 mutation carriers
[12]

Ranolazine Late Na channel Inhibits sarcomeric Na
influx and increases Ca
efflux via NCX

Decreased CM
arrhythmogenicity and
diastolic failure in septal
isolates from HCM patients
[13]

(1) RHYME pilot study, improved
symptoms [14] and
(2) RESTYLE-HCM RCT pending
[15]

Eleclazine – LIBERTY-HCM RCT terminated[16]

MYK-461 Myosin ATPase Prevents myosin
cross-bridge cycling

Reduced contractility and
prevention of hypertrophy and
fibrosis in transgenic mice [18]

Phase II RCT underway [19]

NAC Glutathionylated
sarcomeric proteins

Antioxidant Reversed Ca sensitivity,
hypertrophy, diastolic failure,
and fibrosis in transgenic
mice/rabbits [20, 21]

Phase I HALT RCT underway [22]

Perhexiline Inhibits mitochondrial
uptake and metabolism
of FFA

Shifts cellular metabolism
to more energy efficient
CHO

– (1) Improved diastolic failure and
symptoms in pilot RCT [23] and (2)
phase III RCT underway [24]

ARB AT-1 receptor Decreases trophic factor
production by RAAS
pathway

Prevented hypertrophy and
fibrosis in transgenic mice [25]

(1) INHERIT RCT no effect [26] and
(2) phase II VANISH RCT underway
[27]

Structural therapies

MitraClip Percutaneous
approximation of
anterior and posterior
mitral leaflets

– Improved symptoms, MR
reduction, SAM elimination,
inconsistent LVOTO reduction
[28]

ERASH Percutaneous reduction of
septal hypertrophy

– LVOTO reduction, symptomatic
improvement [29, 30]

ARB angiotensin II receptor blocker, AT1 angiotensin II receptor, ATPase adenosine triphosphatase,Ca calcium,CHO carbohydrate,ERASH endocardial
radiofrequency ablation of septal hypertrophy, FFA free fatty acid,HCM hypertrophic cardiomyopathy, LVOTO left ventricular outflow tract obstruction,
MR mitral regurgitation, Na sodium, RAAS renin angiotensin aldosterone system, RCT randomized controlled trial, SAM systolic anterior motion
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hypercontractility and diastolic dysfunction of HCM cardiac
myocytes that often precedes hypertrophy [31, 46, 47].
Interestingly, however, a few reported mutations have been
shown to result in myocyte hypocontractility underscoring
that HCM pathophysiology is still not entirely understood
[18]. While the altered components of the hyperdynamic con-
tractile apparatus in HCM are attractive targets for therapeutic
intervention, the varied effects of different mutations compli-
cate pharmacologic development. Inducible pluripotent stem
cell HCMmodels have recently been reported in the literature
to help further our understanding of the complex genetic and
molecular pathophysiology underlying HCM and may set the
stage for future target-based drug development for HCM [19].

The power of sarcomere contraction is determined by the
combined force generated by all myosin heads within the sar-
comere—the ensemble force—as well as their velocity of
movement along actin myofilaments. The ensemble force
(Fe) is determined by the total number of myosin heads over-
lapping with actin filaments (Nt) in the muscle and the duty
ratio (ts/tc), which is the proportion of time spent in the strong-
ly bound actin-myosin interaction—the force-generating
state—out of total cycle time, Fe = f[(ts/tc)xNt] [46].

MYK-461 is a small-molecule inhibitor of myosin ATPase,
which prevents transition into the strongly bound state of the
myosin cross-bridge cycle, thereby decreasing the duty ratio
and thus the ensemble force, power, and contractility of the
sarcomere [48]. In a transgenic mouse model of HCM, intro-
ducing human disease-causing mutations into the murine α-
cardiac myosin heavy chain gene, Green et al. demonstrated
thatMYK-461 caused a dose-dependent reduction in fractional
shortening of cardiac muscle with no measurable effect on
skeletal muscle despite its low affinity demonstrated in rabbit
skeletal myosin. Furthermore, MYK-461 was shown to pre-
vent progression to LV hypertrophy in young pre-hypertrophic
HCMmice and was also able to cause a significant reduction in
LV wall thickness promoting partial regression of hypertrophy
in older HCM mice. Pre-hypertrophic mice administered
MYK-461 also demonstrated a reduction in fibrosis on histol-
ogy as well as normalization of pro-fibrotic gene expression in
cardiomyocytes. However, no change in histology or gene ex-
pression was seen in hypertrophic mice [48]. Although certain
mutations in HCM may result in increased myosin ATPase
activity, it is unclear if this will provide MYK-461 sufficient
selectivity for abnormal cardiacmyocytes over normal to avoid
deleterious effect on an already compromised cardiac function
[47]. MYK-461 is currently undergoing phase II trials.
Preliminary data indicate that the drug is well tolerated with
dose-dependent pharmacokinetics [49].

Considering the multitude of mutations in HCM involving
the contractile apparatus and the sensitivity of these proteins to
allosteric effects, there is significant potential for future
targeted therapeutic development. Future potential targets
involved in the cross-bridging cycle include cMyBP-C to

augment its inhibitory effect on contractility as well as cTnC
inhibition to damper enhanced calcium sensitivity [39].

Metabolic modulation: energy depletion hypothesis

Inefficient ATP utilization by mutant sarcomeric proteins in
HCM, most notably within the gene encoding beta myosin
heavy chain (MYH7 gene), leads to increased energy demand
within the cardiac myocyte (more ATP is required per unit of
force generated) [50, 51]. The increased energetic cost of con-
traction compromises the ability of the cardiac myocyte to
perform other energy-intensive cellular functions, most nota-
bly the maintenance of critical subcellular electrochemical
gradients by the sarcoplasmic reticulum calcium re-uptake
(SERCA2) pump leading to increased cytosolic calcium con-
centrations [52]. Increases in cytosolic calcium recruit down-
stream transcriptional processes, which upregulate signaling
pathways such as the CaMKII pathway and the mitogen-
activated protein kinase (MAPK) pathway whose downstream
targets ultimately result in myocyte hypertrophy [38, 53].

Increased ATP consumption results in a decrease in the
cellular ATP to ADP ratio, upregulating AMP activated pro-
tein kinase (AMPK) signaling whose downstream targets
stimulate both fatty acid and carbohydrate metabolism, both
highly oxygen consumptive processes [54]. The cardiac phos-
phocreatine to ATP ratio (PCr/ATP) is a measurement of the
energy status of cardiac muscle. In HCM patients, PCr/ATP is
reduced by up to 30% irrespective of presence of hypertrophy
providing evidence of an energy deficit [55].

In addition to increased energy demand by the inefficient
HCM contractile apparatus, there is also evidence for compro-
mised energy supply due to mutations causing morphological
and functional alterations in HCM mitochondria [56]. Further
exacerbating the energy deficit, coronary microvascular dys-
function in HCM hearts limits oxygen delivery to the hyper-
metabolic tissues and has been shown to contribute to an
overall poorer disease prognosis [20, 57–59] As such, energy
depletion by both supply and demand is a primary process,
occurring in pre-hypertrophic patients leading to hypertrophy
and not as a result of hypertrophy.

Mismatch between cardiac myocyte energy supply and de-
mand leads to an oxidative cellular state wherein development
of reactive oxygen species (ROS) induces S-glutathionylation
of cMyBP-C. Functionally, this redox modification augments
myofilament calcium sensitivity and depresses cross-bridge
cycling kinetics contributing to diastolic dysfunction, thus ex-
acerbating the HCM phenotype [21, 22]. In transgenic animal
models of HCM (tropomyosin (Tm-E180G) mice) and beta-
myosin heavy-chain (MHCQ403) transgenic rabbits), admin-
istration of the glutathione precursor, N-acetylcysteine
(NAC), has been shown to reduce levels of glutathionylated
myofilaments with reversal of increased myofilament calcium
sensitivity, diastolic dysfunction, myocyte hypertrophy, and
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fibrosis [22, 60]. The phase I HALT trial is currently recruiting
participants to evaluate tolerability of an oral form of NAC as
well as its ability to alter indices of cardiac mass and function
administered over 1 year [61].

Impairment of LV relaxation, a highly energy-consumptive
process leading to diastolic dysfunction in HCM, is consistent
with the energy depletion hypothesis and contributes to dimin-
ished exercise capacity [62, 63]. Perhexiline is a metabolic
modulator of myocardial substrate utilization that shifts cellu-
lar metabolism to favor more efficient carbohydrate metabo-
lism by inhibiting mitochondrial free fatty acid uptake and
utilization, thus improving myocardial energy efficiency [23,
64]. The ability of perhexiline to correct sarcomeric energy
depletion was evaluated in a randomized controlled trial com-
paring perhexiline to placebo in 46 patients with symptomatic
non-obstructive cardiomyopathy despite beta-adrenergic or
calcium channel blockade over a period of 3–6 months.
Those who received perhexiline demonstrated significant im-
provement in the PCr/ATP as measured by P32 magnetic
resonance spectroscopy, reduction in myocardial oxygen
consumption, amelioration of diastolic dysfunction, and
improvement in heart failure symptoms [65]. It should be
noted that there is an association between elevated plasma
levels of perhexiline and development of neurotoxicity
and hepatotoxicity. However, these adverse effects can
be virtually eliminated with routine plasma perhexiline
monitoring [24, 66].

A phase III randomized controlled trial was announced in
April 2015 to test the efficacy, safety, and tolerability of
perhexiline in patients with HCM and moderate to severe
heart failure [67]. Recruitment for this trial is pending.

Renin-angiotensin-aldosterone system inhibition

Pathologic hallmarks of HCM include myocyte hypertrophy
and interstitial fibrosis [68]. These features are thought to be
mediated by elevated cardiac trophic factors including angio-
tensin II and transforming growth factor beta (TGF-ß) [69].
Their progression over the disease course is associated with
worsening diastolic function, increasing LVOT gradient,
higher NYHA class, and higher incidence of sudden cardiac
death [25, 70–72].

In transgenic mouse models of HCM, treatment with
losartan or TGF-ß neutralizing antibodies has been shown to
prevent development of hypertrophy and fibrosis but was un-
able to reverse it [73, 74]. Several recent human pilot studies
have investigated the effect of angiotensin receptor blockers
(ARBs) on progression of hypertrophy, fibrosis, and diastolic
dysfunction with divergent results. In a study by Kawano
et al., administration of valsartan (n = 23) for 12 months re-
sulted in decreased synthesis of pro-collagen I with no change
in LV wall thickness or ejection fraction compared to control
[75]. A non-randomized study by Araujo et al. showed

improvement in Doppler measured diastolic function after
6 months of losartan administration (n = 20) but no change
in wall thickness [76]. Yamazaki et al. (n = 19) and Penicka
et al. (n = 24) demonstrated a significant reduction in LVmass
measured after 1 year of losartan and candesartan, respective-
ly, compared to placebo control [77, 78]. Shimeda et al.
(n = 20) reported a significant increase in late gadolinium
enhancement in controls compared to those receiving losartan
for 1 year as well as a non-significant change in LV mass [26].

In the subsequent randomized, controlled INHERIT trial
(n = 133), investigators found no significant difference in
left ventricular mass, LV wall thickness, Doppler measured
diastolic function, or late gadolinium enhancement be-
tween losartan and placebo groups after 1 year [27]. It is
thought that the lack of benefit observed in the INHERIT
trial was due to selection of a patient population with more
advanced hypertrophy and fibrosis than in previous trials,
which based on prior mouse models was irreversible by
ARB. Currently, recruitment is ongoing for the phase II
VANISH trial, which seeks to determine the efficacy of
valsartan in preventing disease progression among HCM
mutation carriers with overt hypertrophic disease or pre-
clinical non-hypertrophic disease [79].

Structural therapies

Percutaneous mitral valve plication

Approximately 70% of HCM patients develop a resting or
provocable dynamic LVOT gradient (HOCM) [5]. A larger
gradient is a strong predictor of progression to severe heart
failure symptoms or death from heart failure or stroke [80].

Multiple hemodynamic studies utilizing a variety of imag-
ing modalities have demonstrated that in a majority of HOCM
patients, systolic anterior motion (SAM) of an anatomically
altered mitral valve apparatus leads to apposition of the ante-
rior mitral leaflet and an asymmetrically hypertrophied sep-
tum causing an LVOT gradient [81–85]. Mitral regurgitation
(MR) results secondary to SAM with a predominantly poste-
riorly directed jet when the posterior leaflet is not mobile
enough to participate in SAM and anterior leaflet coaptation.
As such, the severity of MR for comparable degrees of SAM
is dependent on the geometry of the posterior leaflet [83,
86–88]. A correlation is also established between the severity
of MR and the magnitude of the LVOT gradient [89].

While surgical septal myectomy is currently the gold stan-
dard for symptomatic patients with HOCM that is refractory to
optimal medical management, there is controversy about
whether mitral valve abnormalities should be corrected at
the time of myectomy as there has never been a randomized
controlled trial comparing the results of isolated myectomy
versus myectomy plus mitral repair [90]. Additionally, as the
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complex anatomy and pathophysiology of the LVOT and ob-
struction are highly diverse, surgical approach must be tai-
lored to individual patients. Pre-operative assessment of septal
thickness, mitral leaflet length, and anterolateral papillary
muscle displacement determine the extent of myectomy, leaf-
let plication, and need for papillary muscle release, respective-
ly [85]. The so called “resect-plicate-release” procedure,
which combines myectomy, mitral repair, and papillary mus-
cle release, has been safe and effective in the treatment of
symptomatic refractory obstructive HCM [91, 92]. Use of an
Alfieri stitch at the time of myectomy has also been used
effectively for reduction of SAM and improvement in MR
[93]. Recently, Ferrazzi et al. demonstrated the favorable re-
sults of transaortic cutting of fibrotic secondary chordae with
associated shallow myectomy in 39 patients with a large
LVOT gradient and mild septal hypertrophy in whom septal
hypertrophy is inadequate for classic extended myectomy
[94]. In these patients, alterations in the mitral valve apparatus
play a central role in LVOT gradient production. By
displacing the mitral valve coaptation point away from the
LVOT to a more posterior normal position within the LV
cavity, secondary chordal cutting resulted in abolished or sub-
stantial reduction in resting LVOT gradient from 82 ± 43 to
9 ± 5 mmHg (p < 0.001) and improvement in NYHA class
from 2.9 ± 0.5 to 1.1 ± 1.1 at median 24-month follow-up.
Regardless of surgical approach, however, there is currently
an inadequate number of surgeons proficient in myectomy,
which unfortunately has become a major barrier to optimal
management of these complex patients [95].

Percutaneous mitral valve plication by MitraClip (Abbot
Vascular) implantation—essentially a percutaneous Alfieri
stitch—is an established treatment for patients with MR and
prohibitive surgical risk [28, 96, 97]. In a recent study by
Soraja et al., five patients with pharmacologic refractory symp-
toms due to HOCM underwent MitraClip implantation [98].
SAM, MR, and LVOT gradients were virtually eliminated im-
mediately post-procedure. At average 15-month follow-up
however, while symptoms remained improved by at least one
NYHA class in all participants, significant LVOT gradients
persisted in three of five participants despite continued abolition
of SAM. This suggests that the symptomatic benefit achieved
may have been due to reduction of MR and not of SAM or the
LVOT gradient. The subset of obstructive HCM patients most
likely to respond favorably to MitraClip implantation are those
with limited septal thickness, where elongation and alteration of
the mitral apparatus are central to gradient production, much
like the patient subset selected by Ferrazzi et al.

Simultaneous echocardiography and invasive hemody-
namics performed on one study participant in the Soraja
study revealed a threefold higher Doppler-derived LVOT ve-
locity (64 mmHg) compared to that measured on cardiac cath-
eterization (22 mmHg). A high-velocity LVOT gradient on
continuous wave Doppler with no true pressure gradient seen

on catheterization has been described previously [99]. These
findings may be explained by the following: (1) cavity oblit-
eration by a hypercontractile HCM left ventricle may generate
high intraventricular velocities without true impedance to flow
[100–102]; (2) a “pressure recovery” phenomenon from a
long tubular narrowing of the midventricular region may lead
to overestimation of pressure gradients measured by Doppler
compared to catheterization [103]; and (3) there is significant
variation in LVOT pressure gradients with different pharma-
cologic and physiologic provocations that alter ventricular
loading and contractility even during a single hemodynamic
assessment, which may result in misclassification of patients
[104–106]. Taken together, the hemodynamic effect of percu-
taneous mitral valve plication in obstructive HCM patients
with severe MR is not entirely understood, although prelimi-
nary findings are intriguing and warrant further study.

Endocardial radiofrequency ablation of septal
hypertrophy

Percutaneous transcoronary alcohol septal ablation (ASA) is
an alternative to surgical myectomy in patients with pharma-
cologic refractory HOCM, which provides comparable im-
provement in functional status and similar long-term mortality
to surgical myectomy when performed at experienced centers
[8]. However, ASA is a very different intervention from
myectomy as it causes a large, oftentimes transmural septal
infarct occupying about 10% of the LV by instilling absolute
alcohol into the first major septal perforator artery. As such,
alcohol ablation has greater than twice the risk of permanent
pacemaker implantation (10 versus 4%) and five times the risk
of need for additional septal reduction therapy compared to
myectomy [9, 10]. Despite this, after refinement of procedural
technique over the last 20 years since its introduction, ASA
has a relatively low post-procedural mortality rate of 1% per
year, making it a valued option in places where a surgeon
proficient in myectomy is not available [107, 108]. A major
limitation of ASA however is its reliance on suitable coronary
anatomy to provide access to target ablation, and as such,
number of patients may be ineligible for ASA based on depth
and distribution of the first septal perforator [29, 72, 109].

Although still in its beginning of its development with a
relative paucity of data, endocardial radiofrequency ablation
of septal hypertrophy (ERASH) is a new and reasonable alter-
native for septal reduction in patients who are not candidates
for myectomy or ASA. The concept of ERASH in HOCM
was first demonstrated by Lawrenz and Kuhn in 2004 on a
45-year-old man [30]. In this case report, ERASH resulted in
sub-aortic septal hypokinesia, enlargement of the LVOT, re-
duction in septal thickness, and improved performance on 6-
min walk testing at 7 days post-procedure. In 2011, the same
group reported the efficacy of ERASH in 19 patients [109].
Septal tissue was targeted with the use of the CARTO
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(Biosense Webster) electroanatomical mapping system and
transesophageal echocardiography. A retrograde left ventricu-
lar approach was taken in 9 patients and a right ventricular
approach in 10 patients with no significant difference in pro-
cedural outcome. Ablation resulted in a significant post-
procedural reduction of resting and provoked LVOT gradients
by 62 and 60%, respectively. At 6-month follow-up, patients
demonstrated improvement in exercise capacity and NYHA
functional class from 3.0 ± 0.0 to 1.6 ± 0.7. Complete AV
block occurred in four patients (21%) necessitating permanent
pacemaker placement and one patient suffered acute cardiac
tamponade from RV perforation requiring surgical repair.

Sreeram et al. demonstrated encouraging results using
ERASH in 32 children with HOCM during a median
follow-up of 48 months showing sustained beneficial effect
[110]. Three subsequent smaller studies in adults with a
composite of 23 patients and follow-up ranging from 6
to 12 months have shown similar favorable outcomes
[111–113]. Use of the CARTOSound System in these more
recent studies, which incorporates intracardiac echocardi-
ography, allows for more accurate definition of the ablation
target minimizing damage to the conduction system such
that only 2 of these 23 patients (8.7%) required permanent
pacemaker placement.

ERASH is a promising therapeutic option for patients
with pharmacologic refractory HOCM in whom
myectomy and ASA are not suitable, providing reduction in
the LVOT gradient and symptomatic benefit. Further large-
scale studies are needed however before any conclusions
may be drawn.

Conclusion

HCM is transitioning into an exciting phase of novel, target-
based pharmacologic discovery and modern minimally inva-
sive structural intervention. While many of these therapies
hold significant promise to better treat HCM patients, it is
unclear how they will ultimately change or fit into clinical
practice. As HCM has heterogeneous molecular pathophysi-
ology and hemodynamics, it is important to recognize the
patient selection criteria for each therapy studied in this
review. Looking toward the future, a more standardized incor-
poration of genetic testing in HCM patients may prove to
enhance the patient selection and drug discovery process.
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