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Abstract In the recent past, substantial advances have
been made in the treatment of myocardial infarction
(MI). Despite the impact of these positive developments,
MI remains to be a leading cause of morbidity as well
as mortality. An interesting hypothesis is that the devel-
opment of new blood vessels (angiogenesis) or the re-
modeling of preexisting collaterals may form natural
bypasses that could compensate for the occlusion of an
epicardial coronary artery. A number of angiogenic fac-
tors are proven to be elicited during MI. Exogenous
supplementation of these growth factors either in the
form of recombinant protein or gene would enhance
the collateral vessel formation and thereby improve the
outcome after MI. The aim of this review is to describe
the nature and potentials of different angiogenic factors,
their expression, their efficacy in animal studies, and
clinical trials pertaining to MI.
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Introduction

Extensive research during the last three to four decades has
made considerable advances in the diagnosis andmanagement
of cardiovascular diseases. Yet, it remains as the most com-
mon cause of morbidity and mortality in both the developed
and developing nations. American Heart Association [1] re-
ported that >2200 Americans die due to cardiovascular disor-
ders each day, among which a major proportion was <65 years
of age. Since three fourths of global deaths occur in low and
middle income countries due to coronary heart disease, it
poses to be a big disease as well as economic burden in the
developing countries [2]. Hence, in light of the above-
alarming statistics, research on producing potent therapeutics
for use in cardiovascular diseases is getting more focused.

Myocardial infarction (MI) occurs when a coronary artery
becomes occluded, resulting in insufficient oxygen supply to
the downstream myocardium, thus providing a serious threat
to tissue viability. Ischemia is responsible for cardiac muscle
damage, including loss of cardiomyocytes [3]. Nature’s re-
sponse to the development of profound tissue ischemia in-
cludes the upregulation of angiogenic growth factors and mo-
bilization of circulating cellular elements that together enable
development of an accessory vasculature [4]. Angiogenesis
refers to the process of formation of new blood vessels from
preexisting vascular bed, and it is a tightly regulated process
requiring the homeostatic balance of inducers and inhibitors.
Angiogenic growth factors exert a fundamental role in blood
vessel formation by aiding in various steps, viz., cell prolifer-
ation, migration, adhesion, etc. [5]. These growth factors are
produced by various cell types and include a diverse range of
proteins, viz., vascular endothelial growth factor (VEGF), fi-
broblast growth factor (FGF), hepatocyte growth factor
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(HGF), platelet derived growth factor (PDGF), platelet de-
rived endothelial cell growth factor (PDECGF), insulin like
growth factor-1 (IGF-1), transforming growth factor (TGF),
angiopoietins (Ang), placental growth factor (PlGF), and sev-
eral others [4]. A number of angiogenic growth factors are
known to be expressed during MI. Angiogenesis induced by
these growth factors would increase perfusion in the ischemic
area and help to salvage the hibernating myocardium [6].
During recent years, a number of experimental studies have
suggested that treatment with angiogenic growth factors can
stimulate angiogenesis in the infarct myocardium [7–9].
Angiogenic growth factors have been shown to reduce infarct
size in animal models of acute MI. This reduction in infarct
size is associated with increased vascularity, suggesting that
an angiogenic mechanism is operative in the reduction of in-
farct size [10].

Angiogenesis proves to be a promising strategy for increas-
ing blood flow in patients with ischemic heart disease, espe-
cially for individuals who are not candidates for standard re-
vascularization techniques [11]. Therapeutic angiogenesis in
MI is an exciting new concept with significant clinical poten-
tial. This includes the direct delivery of growth factors into the
ischemic target tissues or of genes that encode for synthesis of
growth factors by target tissues [10, 11]. Both cell therapy and
gene therapy have proved to be effective to promote neovas-
cularization in animal models [12].

Though a vast repertoire of literature is available re-
garding the therapeutic potentials of various angiogenic
growth factors, a comprehensive review on their expres-
sion in MI and results on the experimental as well as
clinical studies are lacking, which forms the rationale of
this review.

The need for exogenous angiogenic growth factors

Angiogenesis and vasculogenesis both develop in response to
coronary obstructions and chronic myocardial ischemia in
humans. But, this natural compensatory process is often inad-
equate or the time course is too slow when compared to the
development of occlusion [13]. The production of angiogenic
cytokine is inadequate or the response to them is attenuated
[14]. Angiogenesis is impaired in older when compared to
younger animals [15]. Patients with advanced coronary artery
disease are often old and they have diabetes, hypercholester-
olemia, or other undetermined characteristics that limit upreg-
ulation of angiogenic cytokines by ischemia but may never-
theless respond to administration of exogenous angiogenic
cytokines. Also, individual differences in cytokine expression
may constitute another basis for variations in collateral devel-
opment [16]. In addition, endothelial dysfunction may reduce
endothelial responsiveness to hypoxic stimuli or angiogenic
growth factors [17] (Fig. 1).

Routes of administration

Angiogenic cytokines and genes have been administered by
diverse routes (Fig. 2). Injection sites include intravenous,
selective pulmonary artery, left atrium, intracoronary, selec-
tive intracoronary, transepicardial intramyocardial or periad-
ventitial during bypass surgery or via thoracotomy,
transendocardial intramyocardial by electromechanical cathe-
ter, and intrapericardial. Because local delivery of recombi-
nant protein or gene is probably ideal, clinical trials have fa-
vored the intracoronary (protein or adenovirus) or
intramyocardial (naked DNA or adenovirus) route. The
transepicardial route carries the attendant risks of surgery;
however, these risks are not an issue if transepicardial admin-
istration is performed as part of a coronary bypass procedure
and they may be averted in the future by a catheter-based
transendocardial approach [14]. Fujii et al. [18] have reported
the successful delivery of VEGF and stem cell factor (SCF)
genes into the infarct mice heart by a noninvasive ultrasound-
targeted microbubble destruction method.

Vascular endothelial growth factor

VEGF, also known as vascular permeability factor, is a basic
45-kDa heparin-binding glycoprotein. It has been first de-
scribed as a secreted mitogenic factor specific for endothelial
cells in vitro and a proangiogenic molecule in vivo [19]. It is a
central regulator of angiogenesis and vasculogenesis. VEGF
induces endothelial cell proliferation, promotes cell migration,
and inhibits apoptosis [20]. VEGF is secreted by intact cells,
since the NH2 terminus is preceded by a signal sequence [21].
Its high affinity binding sites are present on endothelial cells,
and VEGF has no mitogenic effect on smooth muscle cells
and fibroblasts [22]. This makes VEGF an excellent candidate
for studies on endothelial disruption or myocardial ischemia,
where rapid endothelialization and/or angiogenesis are desir-
able, while substances promoting smooth muscle or fibroblast
growth may be counterproductive (Fig. 3).

Hypoxia is an important regulator of VEGF expression.
Hypoxic regulation of VEGF gene expression is mediated
by a family of hypoxia-inducible transcription factors (HIF),
including hypoxia-inducible factor-1 (HIF-1)β, HIF-1α, and
HIF-2α [23]. Five human VEGF mRNA species encoding
VEGF isoforms of 121, 145, 165, 189, and 206 amino
acids (VEGF121–206) are produced by alternative splic-
ing of the VEGF mRNA [24]. The VEGF isoforms bind
to two tyrosine-kinase receptors, VEGFR-1 (flt-1) and
VEGFR-2 (KDR/flk-1), which are expressed almost exclu-
sively in endothelial cells. Endothelial cells express, in
addition, the neuropilin-1 and neuropilin-2 coreceptors,
which bind selectively to the 165 amino acid form of
VEGF (VEGF165) [20].
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VEGF is upregulated in the myocardium remote to a myo-
cardial infarct and is known to play a role in collateral growth.
VEGF may also assist maturation of newly formed vessels by

recruiting smooth muscle cells. In ischemic myocardium,
VEGF increases the number of muscular collateral vessels,
presumably via stimulation of endothelial release of platelet

Fig. 1 The need for exogenous
supplementation of angiogenic
growth factors in MI

Fig. 2 Routes of administration
of angiogenic growth factors in
MI
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derived endothelial growth factor B (PDGF-B), although a
direct effect on mural cells is also possible. VEGF gene trans-
fer or administration of recombinant VEGF to the heart results
in improved filling of preformed collaterals as well as in the
formation of new capillaries and collaterals [25].

Low doses of recombinant human VEGF, when admin-
istered intramyocardially, stimulate angiogenesis in the in-
farct myocardium [7]. Clinical trials demonstrate the en-
hancement of myocardial perfusion by VEGF gene transfer
[26]. An important additional role of VEGF is the augmen-
tation of circulating endothelial progenitor cells, which has
been documented in mice and humans following VEGF
gene transfer [27]. Korpisalo et al. [28] report the strategy
of combining gene transfer of adenoviral (Ad) VEGF-A
and PDGF-B into rabbit hind limb skeletal muscle,
r e su l t i ng in a pro longed ang iogen ic re sponse .
Intramyocardial injection of plasmid VEGF165 in canine
model of chronic MI has resulted in preservation of left
ventricular ejection fraction [29]. Fujii et al. [18] have re-
ported that a noninvasive method (ultrasound-targeted
microbubble destruction) of delivery of VEGF and SCF
genes to infarct mice myocardium increases vascular den-
sity and improves myocardial perfusion and ventricular
function. Though VEGF is promising, the results have
failed to translate into successful clinical trials in part due
to the short half-life of VEGF in circulation. Increasing the
dose of VEGF may increase its availability to the target
tissue, but harmful side effects remain a concern [30].
Hence, Wang et al. [31] reported that encapsulating and
selectively targeting VEGF to the MI border zone signifi-
cantly improves vascularization and cardiac function after
MI. Awada et al. [32] proposed that spatiotemporal

delivery of multiple growth factors involved in angiogen-
esis, closely mimicking the physiology, would prove to be
a better treatment strategy for MI. Accordingly,
intramyocardial delivery of VEGF and PDGF-BB im-
proved angiogenesis, cardiac function, and ventricular wall
thickness in rat model of MI. Target specificity is yet an-
other limitation associated with VEGF delivery [33]. Yang
et al. [34] have overcome this by modifying VEGF which
gets localized to the ischemic myocardium by interacting
with cardiac troponin I when administered intravenously.
Alternatively, repeated low-dose administration of this
modified VEGF also had profound benefits on the ische-
mic myocardium.

Three uncontrolled phase I studies on intravenous VEGF
recombinant protein report a mild angina and improved exer-
cise time and improvements in either nuclear or MRI perfu-
sion or LV function [35]. Several phase I and phase II clinical
trials have been carried out using VEGF recombinant protein
or gene transfer in patients with coronary artery disease for
therapeutic myocardial angiogenesis which show some evi-
dence of improvement compared to baseline values or placebo
(Tables 1 and 2).

Gao et al. [47] observe that the combined strategy of mes-
enchymal stem cell transplantation and VEGF gene therapy
produce effective myogenesis and host-derived angiogenesis,
resulting in the prevention of progressive heart dysfunction
after MI. Hagikura et al. [48] have reported that the retrograde
transplantation of peripheral blood mononuclear cells express-
ing VEGF gene efficiently induces angiogenesis and im-
proves left ventricular function in infarct pig hearts.
Mesenchymal stem cell-based repair strategies for acute MI
are more effective in the presence of HGF or VEGF [49].

Fig. 3 VEGF in MI
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Fibroblast growth factor

Acidic FGF (FGF-1)

FGF-1, also called acidic FGF, is a 140-amino acid peptide
[50]. In its mature form, it is a 16-kDa polypeptide, and like
other members of the fibroblast growth factor family, it has a
wide spectrum of activity. It has potent mitogenic and chemo-
tactic effects on a variety of cell types, including fibroblasts,
endothelial cells, and smooth muscle cells [51]. Hypoxia has
been shown to induce release of FGF-1 by macrophages [52].

Despite the apparent therapeutic potential of FGF-1, prelim-
inary in vivo studies with this agent have not been
encouraging [53]. FGF-1 and FGF-2 have a 55% amino
acid homology [54].

Basic FGF (FGF-2)

Basic fibroblast growth factor (bFGF), also known as FGF-2,
is an 18-kDa single chain polypeptide with extensive mito-
genic capability. FGFs are produced by and can act directly
upon vascular endothelial and smooth muscle cells and

Table 2 Clinical trials using VEGF gene transfer

Route of administration Trial phase Therapeutic target Follow-up Outcome Reference

Plasmid, intramyocardial I CAD not amenable to
revascularization

10 weeks Improved results on rest and stress
nuclear perfusion, increased
function on electromechanical
mapping

[26]

Plasmid, transendocardial
with NOGA catheter

I/II CAD not amenable to
revascularization

12 weeks Improved results on rest and stress
nuclear perfusion

[39]

Plasmid human VEGF-2,
intramyocardial via
electromechanical catheter in LV

I CAD not amenable to
revascularization

1 year Improved function on rest nuclear
perfusion and
electromechanical
mapping

[40]

Plasmid human VEGF-2,
intramyocardial via
electromechanical catheter in LV

I/II multicenter CAD not amenable to
revascularization w
ith type III–IV
angina

3 months Significant reduction in angina
class, improvement in exercise
time, improvement in perfusion
of hypoperfused segments

[41]

Adenovirus VEGF121,
intramyocardial injection
during CABG

I CAD not amenable to
revascularization

1 month Decreased angina, 2 perioperative
deaths, improvement in
treadmill exercise

[42]

Adenovirus VEGF165,
intracoronary

II CAD at time of PTCA 6 months Decreased coronary restenosis,
improved myocardial perfusion

[43]

Plasmid (VEGF165),
Intramyocardial

Euro inject One
trial

Severe, stable angina.
No option for CAD

3 months Improved regional wall motion [44]

Plasmid (VEGF165),
intramyocardial-NOGA

II CMI, NR 3 months Though there was an
improvement,
perfusion abnormalities
did not normalize

[45]

Plasmid (VEGF165),
intramyocardial-NOGA

II CMI, NR 6–12 months Improved SPECT, wall motion
score

[46]

NOGA is a novel strategy of catheter-based electromechanical assessment of myocardial perfusion (NOGA system, Biosense-Webster, J&J)

CAD coronary artery disease, CMI chronic myocardial ischemia, NR not candidate for revascularization, SPECT single-positron emission-computed
tomography, CABG coronary artery bypass grafting, LV left ventricle, PTCA percutaneous transluminal coronary angioplasty

Table 1 Clinical trials using VEGF165 recombinant protein

Route of administration Trial phase Therapeutic target Follow-up Outcome Reference

Intracoronary I Angina, viable underperfused myocardium 30 and 60 days Decreased angina [36]

Intravenous I Angina, viable underperfused myocardium not
amenable to revascularization

2 months Improved SPECT,
collaterals

[35]

Intracoronary plus 3
intravenous injections

II (VIVA
multicenter
study)

Angina, viable underperfused myocardium not
amenable to revascularization

60 days,
120 days,
1 year

Trend toward
decreased angina

[37]

Intracoronary with
intravenous supplement

I (VIVA trial) CAD not amenable to revascularization 2 months Decreased angina
episodes

[38]

CAD coronary artery disease, VIVAVEGF in ischemia for vascular angiogenesis, SPECT single-positron emission-computed tomography
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function as angiogenic factors [5]. The single copy gene for
human FGF-2 has been localized on chromosome 4 [55].
Human FGF-2 is expressed in four forms: an 18-kDa (155-
amino acid) form generated by initiation at the AUG codon
and 22-, 22.5-, and 24-kDa forms (196, 201, and 210 amino
acids) arising from the CUG codons located upstream of the
conventional AUG start site [56].

One of the characteristic properties of fibroblast growth
factors is their ability to bind to heparin, a glycosaminoglycan.
This property allows them to be classified among the heparin-
binding growth factors [57]. Yet, another characteristic feature
of FGF is that they need a signal sequence to direct their
secretion. Hence, they are not secreted in cultures and they
are closely associated with extracellular matrix [58]. The fi-
broblast growth factor-receptor family consists of four
membrane-spanning tyrosine kinases. Each of these receptors
gives rise to multiple isoforms as a result of alternative splic-
ing of their mRNAs [59]. Activation of the FGF receptors
expressed on endothelial cells, smooth muscle cells, and myo-
blasts stimulates the proliferation of the respective cell types
[60]. FGF-2 can be activated through physical stimuli, such as
hypoxia, and through the activity of a variety of other growth
factors [52]. Recent studies have suggested that VEGF and
FGF-2 may have synergistic effects, both in vitro [61] and
in vivo [62]. Since FGF-2 is one of the most potent mitogens
and chemotactic factors for the vascular endothelial cell, it has
also been considered the prime candidate for inducing angio-
genesis in the ischemic heart [63]. Zhao et al. [64] have re-
ported that the enhanced expression of acidic and basic fibro-
blast growth factors (FGF-1/FGF-2) and FGF receptors
(FGFR) at early stages in the infarct rat heart coincides with
the angiogenesis, suggesting their involvement in regulating
cardiac angiogenesis and repair.

In addition to its effects on angiogenesis and wound
healing, bFGF has been shown to be a moderately potent
NO-dependent vasodilator, and it has been reported to have
direct neuroprotective and myoprotective properties [65].

Therapeutic efficacy of bFGF in MI has been proved by
many studies (66–71). Nakajima et al. [66] report that there is
an improvement in left ventricular function and increased re-
gional blood flow in the peri-infarct area of rat hearts, when
bFGF is subepicardially injected in a controlled manner from
biodegradable gelatin hydrogel. Recombinant human bFGF,
when administered intramyocardially, stimulates angiogene-
sis, salvages the myocardium in the border zone, and im-
proves ventricular function after MI in rabbits [7], dogs [67],
etc. Garbern et al. [68] have shown that there is a sustained,
local delivery of bFGF if it is delivered along with a pH- and
temperature-responsive injectable hydrogel. This sustained lo-
cal delivery improves angiogenesis and cardiac function in a
rat model of MI. Liu et al. [69] have developed a novel hep-
arinized bFGF incorporated stent. This stent might keep the
myocardial channel open with full luminal endothelization.

Short half-life of the naked protein is a major therapeutic chal-
lenge in clinical trials and hence studies are focusing on
sustained release of angiogenic factors. Yang et al. [70] report-
ed that sustained release of bFGF and VEGF was possible
with alginate beads. It facilitated vascular growth in a porcine
model of cryoinjury, while Chu et al. [71] reported that injec-
tion of bFGF coacervate ameliorated ischemic injury caused
by MI. Due to the encouraging results in animal models, sev-
eral clinical trials have been designed to study the effect of
bFGF in humans; the results of which are summarized in
Table 3.

Hepatocyte growth factor

HGF is another potent multifunctional protein that exerts high
proangiogenic activity. It is a novel member of the
endothelium-specific growth factors whose mitogenic activity
on endothelial cells is very potent. HGF (also called as scatter
factor) is a basic heparin-binding glycoprotein consisting of a
heavy (58 kDa) and light (31 kDa) subunit. The α and β
subunits originate from proteolytic cleavage of a single 92-
kD inactive precursor [83, 84]. It is secreted by the stromal
cells and it stimulates cell motility and proliferation. In vitro,
HGF stimulates vascular endothelial cell migration, prolifera-
tion, and organization into capillary-like tubes [85]. It has 38%
amino acid sequence identity with the proenzyme plasmino-
gen [84] and is thus related to the blood coagulation family of
proteases. It acts through the tyrosine-kinase receptor c-met,
which is expressed on a variety of cells, including endothelial
cells and hematopoietic stem cells [60].

Circulating levels of HGF have been found to be increased
in the early phase of MI. An elevation in the levels of serum
HGF, within 3 h after onset of chest pain in patients with acute
MI, has been observed [86]. Sato et al. [87] report HGF as a
new biochemical marker for acute MI. He et al. [88] have
noticed that administration of HGF (adenovirus HGF) along
with granulocyte colony-stimulating factor induces synergis-
tic effect and enhances myocardial endothelial density, angio-
genesis, geometric preservation, and heart function in an is-
chemic cardiomyopathy model of rats. It has been reported
that transfection of human HGF gene into infarct rat myocar-
dium results in improved angiogenesis [8], while Ahmet et al.
[89] report the same in ischemic canine myocardium. Saeed
et al. [90] have shown that HGF gene (pCK-HGF-X7) ame-
liorates global function, increases regional perfusion and in-
farct resorption, and enhances angiogenesis/arteriogenesis in a
swine model of myocardial infarction. Xin et al. [91] demon-
strate that the combination of HGF and VEGF increases neo-
vascularization in the rat corneal assay greater than either fac-
tor alone. Ueda et al. [92] report that the treatment using HGF
enhances the survival of the cardiomyocytes subjected to ox-
idant stress, thus proving HGF’s cardioprotective effect.
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Therapeutic angiogenesis is induced in the ischemic canine
heart by the direct injection of plasmid complementary DNA
encoding human HGF [93]. Duan et al. [94] report that the
treatment of myocardial ischemia with bone marrow-derived
mesenchymal stem cells overexpressing HGF restores blood
flow and regenerates lost cardiomyocytes. In order to over-
come the limitations of the adenoviral vectors used in gene
delivery, Konda et al. [95] have used the ultrasound-mediated
microbubble destruction method to deliver the HGF gene to
the infarct rat heart. This method has resulted in an enhanced
angiogenesis and reduced infarct size, and left ventricular re-
modeling is prevented after MI. Deuse et al. [49] observe that
the efficacy of mesenchymal stem cell-based regenerative
strategies is maximized on supplementation with HGF pro-
tein. Transendocardial delivery of human HGF gene
(VM202) in a pig model of chronic myocardial ischemia pre-
serves microcirculatory perfusion and improves wall motion
[96]. Lu et al. [97] reported that mesenchymal stem cells
(MSCs) transfected with HGF was superior to MSCs
transfected with VEGF in improving cardiac function and
perfusion in a porcine model of MI, possibly owing to its
enhanced antifibrotic effect. Transplantation of umbilical
cord-derived MSCs overexpressing HGF in peri-infarct
region of mice after MI proved to be more promising in
enhancing angiogenesis and proliferation of cardiomyocytes
[98]. Though the results from animal studies are prom-
ising, more work has to be done before taking up the
clinical trials.

Platelet derived growth factor

PDGF is composed of two distinct but highly homologous
polypeptide chains, designated the PDGF-A chain and the
PDGF-B chain (99–100). The PDGF-A chain and the B chain
are encoded by two different genes, and they have a similar
size (approximately 24 kb) and structure [101]. PDGF-A and
B chains form disulfide-linked homo- and heterodimers.
PDGF can therefore be assembled into at least three isoforms
with an approximate molecular weight of 28 kDa called
PDGF-AA, PDGF-AB, and PDGF-BB [99]. The cellular
response to each of these isoforms depends on the pres-
ence of specific, high affinity receptors. The two recep-
tor subtypes, viz., PDGFR-α and PDGFR-β [100, 101],
belong to the tyrosine-kinase receptor family [102]. Two
PDGF receptor subunits are usually necessary for a
PDGF ligand dimer to bind and create isoform-specific
PDGF receptors [103].

Most of the cells such as monocytes/macrophages,
mast cells, lymphocytes, connective tissue cells,
pericytes, endothelial cells, and tumor cells normally
express PDGF at undetectable or very low levels
[104]. Injuries such as perturbations of the extracellular

milieu, growth-regulatory molecules, cytokines, and in-
flammatory mediators can induce the expression of
PDGF [104]. Hypoxia increases expression of PDGF-B
chain [105].

PDGF has been originally discovered and isolated from
platelets as a major mitogen for mesenchymal cells such as
glial cells, fibroblasts, and smooth muscle cells and its gener-
ation is tightly regulated [99, 100]. It is stored in platelets
[106] and is released upon platelet degranulation, e.g., in re-
sponse to thrombin and other stimuli [99]. All three isoforms
of PDGF can be released from human platelets [106]. In vivo
studies have suggested the possibility that PDGFmight induce
the migration of endothelial cells [107], a prerequisite for
angiogenesis.

PDGF-BB stimulates smooth muscle cell recruitment
to newly formed vessels and is partially responsible for
functionality and maturation [108]. PDGF signaling reg-
ulates events critical to fibrous tissue deposition and
angiogenesis through interactions with its two PDGF
receptors (PDGFR). Activation of both PDGFR-α and
PDGFR-β pathways stimulate fibroblast migration, pro-
liferation, and activation [109]. In addition, PDGF-BB/
PDGFR-β interactions play a crucial role for investment
of developing vessels with pericytes, a key process in
vascular maturation [110].

Zhao et al. [111] have reported that increased levels
of PDGF-A, PDGF-B, and PDGFR in the infarct rat
myocardium are coincident with angiogenesis, inflam-
matory, and fibrogenic responses. Edelberg et al. [9]
state that aging hearts have impaired angiogenic func-
tion as a result of depressed PDGF-B production. So,
pretreatment by intramyocardial delivery of PDGF-AB
promotes angiogenesis and minimizes the extent of
myocardial infarction in aging hearts after coronary ar-
tery ligation in rats [9]. PDGF-B mediates pericyte pro-
liferation and migration and is thus associated with ves-
sel stabilization [112]. The stabilization of angiogenic
vessels through pericyte recruitment is regarded to be
essential for the maintenance of blood flow after angio-
genic gene therapy of ischemic disease [113]. Korpisalo
et al. [28] have observed a combinatorial gene transfer
of adenoviral VEGF and adenoviral PDGF-B into rabbit
hindlimb skeletal muscle by an intramyocardial injec-
tion. The combination therapy results in a prolonged
angiogenic response, though the pericyte recruitment to
angiogenic vessels is not improved. Hao et al. [114] have
employed the same combination in MI-induced rats. Alginate
gels of VEGF-A165 and PDGF-BB when administered
intramyocardially along the border zone of MI result in im-
proved cardiac function and formation of matured blood ves-
sels. Zymek et al. [115] conclusively show from their experi-
ments on reperfused mice infarcts that PDGF signaling criti-
cally regulates post-infarction repair.
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Platelet derived endothelial cell growth factor

PDECGF has been initially identified as a novel angiogenic
factor present in plate lets [116]. I t is a 45-kDa
nonglycosylated single-chain polypeptide that stimulates
growth and chemotaxis of endothelial cells in vitro and angio-
genesis in vivo [117] and confers resistance to hypoxia-
induced apoptosis [118]. It is involved in a wide range of
activities including angiogenesis, wound healing, etc. It plays
a role in maintaining the integrity of blood vessels and pro-
moting the repair of the endothelium [119].

PDECGF differs from many endothelial mitogens in that it
lacks both heparin-binding domains and a secretion peptide.
The mechanism of its angiogenic action is still unclear; how-
ever, the angiogenic action is dependent on its enzymatic ac-
tivity [120]. PDECGF is chemotactic for endothelial cells
[121]. Usuki et al. [122] reported that human thymidine phos-
phorylase (dThdPase) is identical with PDECGF, while
Miyadera et al. [120] through their mutant studies have proved
that dThdPase activity is indispensable to the angiogenic ac-
tivity of PDECGF/(dThdPase).

Thymidine phosphorylase/PDECGF is involved in pyrim-
idine nucleoside metabolism, catalyzing the reversible phos-
phorolysis of thymidine, deoxyuridine, and their analogues to
their respective bases and 2-deoxyribose-1-phosphate in the
presence of inorganic orthophosphate [122]. This degradation
product, viz., 2-deoxy-D-ribose, is found to have angiogenic
and chemotactic activity [123]. PDECGF is upregulated by
both the low oxygen partial pressure and low pH seen in
poorly perfused areas [124]. The pattern of thymidine phos-
phorylase expression in a diseased area often indicates that
PDECGF upregulation is due to the hypoxia caused by the
disease state [125].

The expression of PDECGF has been reported in a wide
range of chronic inflammatory diseases and in solid tumors.
Cells known to express PDECGF include mononuclear cells,
macrophages, keratinocytes, glial cells, fibroblasts, and epi-
thelial cells within the endothelium of breast, brain, and pla-
centa and within the cells of atherosclerotic plaque [126].

Hemalatha et al. [127] have reported the expression of
PDECGF in a rat model of MI, induced by coronary artery
ligation (CAL). Macrophages, endothelial cells, fibroblasts,
and myocytes, especially at the border region of the lesion,
show an enhanced expression for PDECGF. The level of
PDECGF expression is enhanced from day 2 after CAL, and
a prominent level of expression is observed on day 4 and day 8
after CAL, which coincides with the process of angiogenesis
and on day 32 after CAL; the level of expression shows a
decrease. Li et al. [119] have reported that transmyocardial
laser revascularization-induced angiogenesis is shown to cor-
relate with the expression of PDECGF in infarct myocardium
of beagle dogs. The therapeutic effect of PDECGF gene ther-
apy on rabbit severe limb ischemia has already been

demonstrated [128]. Gene transfer of PDECGF markedly in-
hibits rat vascular smooth muscle cell proliferation and migra-
tion in vitro and inhibits neointima formation of balloon-
injured rat carotid arteries in vivo [129]. Li et al. [130] have
demonstrated that targeting of ischemic myocardium using
plasmid vector of PDECGF gene has generated long-term
improvement in cardiac function by causing angiogenesis
and arteriogenesis and inhibiting apoptosis, but it does not
induce neoplasm in the remote organs, and hence, it may be
a promising therapy to treat chronic ischemia. The
antiapoptotic potential of PDECGF in the presence of hypoxic
stress is conclusively demonstrated by Hemalatha et al. [131]
with rat aortic endothelial cells.

Erythropoietin

Erythropoietin (EPO) is a low molecular weight (30 kDa) gly-
coprotein hormone stimulator of erythropoiesis produced in
the fetal liver and subsequently in the adult kidney [132]. EPO
is the best known hypoxia-regulated gene, and this regulation
occurs mainly at the mRNA level and is mediated by HIF-1
[133]. The potential role of EPO in angiogenesis may be con-
sidered as a subset of its possible function in improving over-
all tissue oxygenation and of its antiapoptotic role. HIF-1 is
responsible for the transcription of both EPO and VEGF. HIF-
1 is a heterodimeric DNA binding complex consisting of α
and β subunits [134].

Effects of EPO in the bone marrow are mediated by bind-
ing to a specific transmembrane receptor (EPO-R), which is
expressed primarily by hematopoietic progenitor cells [135].
The expression of EPO-R is found in a variety of cell lines
originating from the cardiovascular system. In vitro, EPO-R is
synthesized and is present on the surface of human vascular
endothelial cells [136] and administration of EPO prevents
apoptosis of endothelial cells subjected to hypoxia through
direct modulation of PI3K/Akt phosphorylation [137].

Pretreatment of adult rats with EPO (5000 IU/kg) 24 h
preceding ischemia/reperfusion (I/R) increases the functional
recovery of isolated hearts during reperfusion [138]. This is
accompanied by protection against apoptosis. The involve-
ment of signal transducing pathways is further elucidated by
Shi et al. [139] in a rabbit isolated heart model in which the
cardioprotective effects of EPO are abolished by inhibitors of
two different MAPK (p38 and p42/44). In the same study,
potassium channel inhibitors are also shown to block the
EPO effects, indicating a role for potassium channels in
EPO-mediated preservation of heart function, possibly caused
by reduction of calcium overload. Hanlon et al. [140] have
shown the importance of protein kinase C (PKC), in EPO-
mediated cardioprotection. EPO can also improve the cardiac
function by directly modulating the cardiac Na+/K+ pump
[141] or stimulating the production of atrial natriuretic peptide
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in cardiac atrium [142]. In a rabbit model of MI, treatment
with EPO at the time of permanent coronary ligation results
in a trend toward reduced infarct size and improvement of
cardiac contractility and relaxation when measured 3 days lat-
er [143]. In addition, EPO administration in I/R model in
rabbit hearts is also noticed to be beneficial, resulting in a
significant reduction of infarct size, expressed as a percentage
of total ischemic area at risk [144]. This protection is associ-
ated with the mitigation of myocardial cell apoptosis.
Furthermore, in line with the results from ex vivo experi-
ments, reduction of infarct size in vivo is dependent on the
activation of pro-survival pathways PI3K/Akt and MAPK
[145]. Hirata et al. [146] have approached the issue of minimal
EPO dose still rendering cardioprotection. The EPO treatment
in a canine model of I/R is observed to reduce infarct size in a
dose-dependent manner, establishing the lowest effective dose
of 100 IU/kg. Moon et al. [147] have found that a single dose
of EPO (3000 IU/kg) immediately after coronary artery liga-
tion in rats reduces the infarct size (15 to 25%) when com-
pared to ligated animals examined 8 weeks later. This reduc-
tion in myocardial damage is accompanied by prevention of
LV dilation and improves LVejection fraction, as measured by
repeated echocardiography. It seems that EPOmay protect the
myocardium also against more severe insults, such as perma-
nent coronary occlusion, and this effect becomes even more
pronounced with time. EPO-induced neovascularization in
post-MI heart failure in a rat model is mediated through a
combination of endothelial progenitor cell (EPC) recruitment
from the bone marrow and increases myocardial expression of
VEGF [148]. Van der Meer et al. [149] report that an increase
in alpha-MHC expression is also associated with improve-
ment in cardiac function. In a murine model of surgically
induced MI, EPO-treated animals show significant improve-
ment of survival post-MI with attenuated remodeling, en-
hanced neovascularization, and diminished apoptotic cells
[150]. Hirata et al. [151] show from their experiments on dogs
that EPO enhances neovascularization likely via EPC mobili-
zation and improves cardiac dysfunction in the chronic phase.
Broberg et al. [152] report that erythropoietin (darbepoetin-α)
at moderate doses after MI is not angiogenic but antiapoptotic
in MI-induced mice. Bagla et al. [153] reported that erythro-
poietin administration after MI reduced caspase 3 expression
(apoptotic activity) and induced neovascularization around the
infarct area in rats and also further higher erythropoietin ad-
ministration (10,000 U kg−1) did not provide an additional
benefit over the standard dose (5000 U kg−1) in myocardial
protection.

Recently, two larger placebo-controlled phase II studies
with EPO treatment in anemic chronic heart failure (CHF)
patients have been conducted that also suggest potential ben-
eficial effects both in terms of quality of life and clinical end
points [154]. A possible positive effect of darbepoetin treat-
ment on longer-term infarct healing and/or cardiac

remodeling is demonstrated by a single-center, investi-
gator-initiated, prospective study with 22 non-anemic
patients with first acute MI [155].

From the experimental studies, EPO seems to influence
two crucial processes during cardiac ischemic injury, first by
acutely reducing the infarct size and inhibiting the apoptosis
and second by promoting new vessel formation over a longer
time frame. Although treatment with EPO is generally well
tolerated and safe, it may be associated with adverse effects
such as hypertension and thromboembolism. These side ef-
fects are related mainly to high-dose chronic EPO treatment,
associated with increased hematocrit. Using variants of EPO
without hematopoietic effect but retaining tissue protective
activity could be useful in a clinical situation in which multi-
ple EPO administrations would be warranted [156]. Ferrario
et al. [157] have investigated the effects of short-term high-
dose EPO on peripheral blood cells (PBCs) and infarct size in
30 patients with a first uncomplicated acute MI undergoing
percutaneous coronary intervention (PCI) in a single-center
study and report that the EPO administration increases the
levels of circulating CD34+ cells and decreases infarct size.
CD34+ cells helps to maintain the vascular integrity and also
serve as a source of angiogenic factors [158]. Based on the
literature analysis, Ali-Hassan Sayegh et al. [159] also con-
cluded that short-term administration of EPO in patients with
MI does not result in improved cardiac function. Higher doses
might be more effective than low-dose EPO therapy.

Angiopoietins

A further family of growth factors involved in the early pro-
cesses of angiogenesis and vasculogenesis is the
angiopoietins. One isotype, angiopoietin 1 (Ang1), is present
in tissues adjacent to blood vessels suggesting a paracrine
mode of action, while another, angiopoietin 2 (Ang2), is only
found at sites of tissue remodeling [160]. Both angiopoietins,
including the two recently discovered angiopoietin-3 (in
mouse) and angiopoietin-4 (in humans), have been identified
as ligands for the Tie-2/Tek receptor [161]. In vitro neither
Ang1 nor Ang2 have mitogenic effects mediated via Tie-2.
However, Ang1 facilitates endothelial cell sprouting and vas-
cular network maturation [162]. It potentiates the action of
VEGF and acts as a survival factor for endothelial cells [25].

Ang2 antagonizes Ang1 by blocking Ang1-induced phos-
phorylation of Tie-2 [160]. On the other hand, Ang2, in com-
bination with VEGF, promotes neovascularization [162].
Ang2 is upregulated by conditions known to promote angio-
genesis, including hypoxia, VEGF, and bFGF, but is reduced
by molecules that have been implicated in vessel maturation
and stabilization, including Ang1 and TGF-β1 [25].

Sun et al. [163] have used human angiopoietin-1 (hAng1)-
modified MSCs to treat acute MI in rats. The hAng1 gene is
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transfected into cultured rat MSCs using an adenoviral vector.
Five million hAng-transfected MSCs (MSCAng1) or green
fluorescent protein transfected MSCs (MSCGFP) or PBS only
(PBS group) were injected intramyocardially into the inbred
Lewis rat hearts immediately afterMI.MSCAng1 survive in the
infarct myocardium and express hAng1 at both mRNA and
protein levels. The measurements of infarct ventricular wall
thickness, infarction area, and left ventricular diameter indi-
cate that heart remodeling is inhibited and heart function is
improved in both the MSCAng1 and MSCGFP groups. The
results indicate that hAng1-modified MSCs improve heart
function, followed by angiogenic effects in salvaging ische-
mic myocardium and reduce cardiac remodeling.

Granulocyte colony stimulating factor

Granulocyte colony stimulating factor (G-CSF) is a potent
hematopoietic cytokine that influences the proliferation, sur-
vival, maturation, and the functional activation of
granulocytes, and it is involved in mobilization of
granulocytes, stem, and progenitor cells from bone marrow
into blood circulation [164]. The process of mobilization is
not fully understood but seems to be mediated through bind-
ing of G-CSF to a specific cell surface receptor, the G-CSF
receptor, leading to a subsequent digestion of adhesion mole-
cules by enzyme release and through trophic chemokines.
Stem cell-derived factor-1 (SDF-1) and its receptor CXCR-4
seem to play a central role [165].

Animal studies have suggested a beneficial effect of G-CSF
mobilization of stem cells on left ventricular function after MI,
with regeneration of myocardium by inducing myogenesis
and vasculogenesis and by diminishing post-infarction remod-
eling. Orlic et al. [166] have injected mice with recombinant
rat stem cell factor and recombinant human G-CSF to mobi-
lize stem cells for 5 days, then ligated the coronary artery, and
continued the treatment with stem cell factor and G-CSF for
3 days. Afterwards, the ejection fraction progressively im-
proves significantly as a consequence of the formation of
new myocytes with arterioles and capillaries. These results
are confirmed in another experiment with G-CSF after reper-
fused myocardial infarction in rabbits and it shows improve-
ment in left ventricular ejection fraction and reduces remodel-
ing [167]. In contrast, G-CSF fails to improve myocardial
function in a rat MI model after non-reperfused MI [168].
Study in mice has indicated that the mechanism by which G-
CSF prevents cardiac remodeling after ST elevation myocar-
dial infarction (STEMI) is by inhibiting apoptosis of
cardiomyocytes through the Jak2-STAT3 pathway, rather than
through mobilization of bone marrow cells [169]. In addition,
in a murine model of infarction, G-CSF induces improvement
in left ventricular function, enhances arteriogenesis, and in-
creases ICAM-1 expression on endothelial cells [170]. Zhao

et al. [171] reported that G-CSF treatment after myocardial
ischemia improves survival by accelerating neovasculariza-
tion and reducing apoptosis.

Mobilization of stem cells into the peripheral circulation for
myocardial regeneration using subcutaneous injections of G-
CSF has been tested in both patients with acute MI and pa-
tients with chronic myocardial ischemia. G-CSF treatment
seems to be safe, and unblinded trials in patients with acute
MI are encouraging. However, larger double-blind placebo-
controlled trials have not been able to demonstrate the effect of
G-CSF treatment. The known complex interaction of stem
cells and cytokines for induction of vasculogenesis could be
thought of in future clinical trials, to elucidate whether G-CSF
mobilization of stem cells might be useful as a new regenera-
tive treatment in patients with ischemic heart disease [172].
Engelmann et al. [173] have investigated the influence of the
timing of G-CSF treatment on myocardial function and perfu-
sion in a subgroup study of the G-CSF-ST elevation myocar-
dial infarction clinical trial. Results demonstrate that the
timing of G-CSF after MI does not improve myocardial func-
tion but myocardial perfusion is increased if the cytokine is
given early. Overgaard et al. [174] also state that the timing of
G-CSF treatment, between 17 and 65 h after STEMI with
primary PCI, does not seem to affect the recovery of left ven-
tricular ejection fraction (LVEF).

Placenta growth factor

The first VEGF-related protein, placenta growth factor, dis-
covered in 1991, owes its name to its predominance in pla-
cental tissue. It has been later identified as a member of the
VEGF family as the molecule shares 53% of a homologous
domain with the platelet derived growth factor-like region of
VEGF [175]. Three isoforms arise by means of alternate splic-
ing, PlGF-1/PlGF131, PlGF-2/ PlGF152, and PlGF-3 [176].
These molecules are, like VEGF, dimeric glycoproteins.
However, the PlGF expression pattern is limited to the placen-
ta and some form of tumors such as brain tumor and renal cell
carcinoma [177, 178]. PlGF homodimers bind VEGFR-1 (Flt-
1) but have little effect on angiogenesis in vitro [176]. On the
other hand, naturally occuring VEGF/PlGF heterodimers,
identified in rat glioma cells, are mitogenic; their poten-
cy is approximately sevenfold lower than that of the
VEGF homodimer [177, 178].

Roncal et al. [179] have analyzed the effect of sys-
temic PIGF delivery on myocardial recovery post-MI in
mice. MI is induced by permanent ligation of the left
anterior descending coronary artery in mice, followed
by systemic injection of a PIGF adenovirus, resulting
in elevated circulating levels of PIGF for 4 weeks.
Functional and morphological analysis has revealed that
PIGF treatment induces cardiomyocyte hypertrophy and
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improves cardiac recovery at day 28 post-MI [179].
PIGF stimulates angiogenesis in the infarct border and
vessel enlargement in the remote myocardium. In this
model, capillary to cardiomyocyte ratios in the remote
myocardium are maintained post-MI but PIGF is shown
to increase the vascular perfusion area in balance with
the cardiomyocyte hypertrophy. Systemic delivery of
PIGF improves cardiac performance and promotes adap-
tive remodeling of the post-MI heart.

Insulin-like growth factor

IGF-I and II, also known as somatomedins [180], are shown to
be survival factors to motor neurons [181]. IGF-I and II are
single-chain polypeptides usually of 7.5 kDa. These growth
factors have an important role in controlling the proliferation,
differentiation, and metabolic activity of mesodermal cells.
IGFs can attach not only to binding proteins that are thought
to regulate their biological action and bioavailability but also
to insulin receptors and type 1 or 2 receptors [180]. IGF-1 has
been shown to be an angiogenic growth factor as potent as
FGF-2 in promoting rabbit corneal angiogenesis [182].
Dobrucki et al. [183] have stated that delivery of human
IGF-1 gene by adeno-associated virus (AAV) in to MI-
induced rats renders a sustained transduction and im-
proves cardiac function at 4 weeks post-MI. IGF-1 ex-
pression enhances αv integrin activation which is linked
to angiogenesis.

Patients with chronic heart failure have high levels of
growth hormone associated with low levels of IGF-1 which
is secreted in response to growth hormone and mediate
most of the effects of growth hormone [184]. Battler
et al. [185] have reported that exogenous IGF-II, deliv-
ered to the infarct area, ameliorates regional cardiac
function in the pig, perhaps by inducing peri-infarct
myocyte growth.

Transforming growth factor

Transforming growth factor β (TGFβ) is a locally generated
cytokine involved in healing processes and tissue fibrosis,
relevant for cardiac remodeling and the development of heart
failure after MI. Frantz et al. [186] have studied the effect of
TGFβ inhibition by application of a blocking antibody
in mice with MI. Results clearly establish that anti-
TGFβ treatment before or after coronary artery ligation
increases mortality and worsens left ventricular remod-
eling in mice with non-reperfused MI. Pertovaara et al.
[187] have revealed that TGFβ induces an increase in
the level of VEGF mRNA and protein expression and
thus its angiogenic effect.

Nitric oxide

Nitric oxide (NO) donors are pharmacologically active sub-
stances that release NO in vivo or in vitro. Apart from vaso-
dilation, NO has a variety of functions such as the release of
prostanoids, inhibition of platelet aggregation, effect on angio-
genesis, and production of free radicals [188]. The relation-
ship between NO and angiogenesis has been confirmed re-
peatedly in infarct myocardium. NO donors and growth fac-
tors induce angiogenesis in vivo and cause proliferation of
endothelial cells in cell cultures [189]. VEGF acts on endo-
thelial cells through NO synthase activation and cGMP pro-
duction [190]. NO production is necessary for the growth-
promoting effect of VEGF. These findings have considerable
implication for the use of NO donors as angiogenesis-
promoting factors in ischemic myocardium.

Potential hazards

The risks associated with therapeutic angiogenesis include
those specific to the growth factor and those generic promot-
ing angiogenesis. The potential side effects include (i) aber-
rant vascular proliferation in nontargeted tissues, (ii) increased
vascular permeability (iii) induction of the development of
functionally abnormal blood vessels, (iv) triggering growth
of neoplasms, (v) increase in atherosclerotic plaque mass
and instability, (vi) vasodilation and hypotension during
short-term administration of FGF and VEGF proteins, (vii)
hazards associated with viral vectors such as the induction of
immune and inflammatory responses, and (viii) hazards asso-
ciated with direct myocardial delivery such as myocardial in-
flammation, fibrosis, and angioma formation [191]. The an-
giogenic factors are double-edged swords which have the ca-
pacity to stimulate the growth of new blood vessels as well,
and they have also the potential to cause serious complica-
tions. However, these limitations could be overcome by deliv-
ering the angiogenic agents to target tissues with enough se-
lectivity, so that nontargeted tissues are not aberrantly
stimulated.

Future prospects

Normal vessel development requires the expression and activ-
ity of multiple gene products; therefore, it seems unlikely that
overexpression of a single gene or delivery or a single growth
factor would induce the formation of structurally and func-
tionally normal vessels. Hence, multigene/protein therapy
may be important to induce increased perfusion and function
in cardiac patients [192]. Also, much is still unknown about
the optimal delivery of angiogenic factors, i.e., should it be
delivered directly into the peri-ischemic or nonischemic
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region from which the collaterals will originate or to both?
[193]. Hence, a comprehensive evaluation of potential side
effects is needed to determine the optimal dose and
delivery strategy for each factor or combination of fac-
tors. The above questions could be properly answered
by controlled clinical trials. Chen et al. [194] have re-
ported the use of plant-derived angiogenic molecule,
viz., Angio-T in ischemic rat hearts, which stimulates
the growth of new collateral microvessels and improves
heart function. A number of plant-derived compounds
are proven to be angiogenic, viz., β-sitosterol derived
from Aloe vera [195], resveratrol from grapes [196],
ginsenoside Rg1 from ginseng [197], etc. Hence, future
researches could focus on the use of plant-derived an-
giogenic compounds for therapeutic angiogenesis in MI,
either alone or in combination with other factors, provided
the side effects are harmless. Apart from angiogenic factors,
Trelles et al. [198] report the cardiomyocyte-specific deletion
of the transcription factor recombination signal binding pro-
tein for immunoglobulin kappa J region (RBPJ) could also
improve the microvasculature of the heart without adversely
affecting cardiac structure or function. Singla [199] proposes
that stem cell-derived exosomes are antiapoptotic and
proangiogenic in nature, and they could play a pivotal role
in the repair of ischemic myocardium. Zhaofu and Dongging
[200] report that cardiac telocytes present in the interstitium of
the heart are also damaged during MI which contributes to
poor healing. Transplantation of cardiac telocytes in MI im-
proves myocardial function and decreases infract size.

Conclusion

A number of angiogenic factors are expressed in response to
an occlusion in a coronary artery. But when this effort by
nature becomes inadequate, exogenous supplementation with
recombinant genes or growth factors to enhance myocardial
collateral blood vessel formation looks to be a promising ap-
proach for the treatment of MI. Angiogenesis has generated
tremendous enthusiasm due to its promise as a novel thera-
peutic modality for ischemic heart disease, especially for pa-
tients who could not benefit from standard revasculariza-
tion techniques. Each growth factor mentioned above
has its own advantages and limitations and yet proves
to be potential as a candidate for therapeutic angiogen-
esis. But still, there are a number of unanswered ques-
tions which are to be addressed in this growing field.
Well-designed clinical studies are required to delineate
the long-term benefits of this therapy on the morbidity
and mortality of chronic human ischemic disease. The
delivery of angiogenic growth factors appears to be po-
tentially feasible, but more studies are necessary to
prove this point.
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