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Abstract Cardiac Magnetic Resonance Imaging has become
a cornerstone in the evaluation of heart failure. It provides a
comprehensive evaluation by answering all the pertinent clin-
ical questions across the full pathological spectrum of heart
failure. Nowadays, CMR is considered the gold standard in
evaluation of ventricular volumes, wall motion and systolic
function. Through its unique ability of tissue characterization,
it provides incremental diagnostic and prognostic information
and thus has emerged as a comprehensive imagingmodality in
heart failure. This review outlines the role of main conven-
tional CMR sequences in the evaluation of heart failure and
their impact in the management and prognosis.
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Introduction

Cardiac Magnetic Resonance Imaging (CMR) has emerged as
a comprehensive tool in the management of wide spectrum of
cardiovascular diseases [1–3]. The high special resolution, the
lack of ionizing radiation and ability to characterize biological
tissue make CMR very attractive for initial diagnosis and fol-
low up of many cardiovascular conditions across various age
groups [4, 5]. The ability of CMR to provide valuable infor-
mation about the diagnosis, etiology, current status and prog-
nosis made it a versatile and pivotal part of the comprehensive
evaluation of heart failure.

Heart failure (HF) is a clinical syndrome caused by
inability of the heart to meet the physiological demands
of the body organs resulting in either symptoms of vol-
ume overload or low cardiac output or both [6]. Although
left ventricular ejection fraction (LVEF) is thought to be a
sine qua non of heart failure, HF can present irrespective
of LVEF. Hence, there are two types of HF; HF with
reduced ejection fraction (HFrEF), LVEF ≤40%, and HF
with preserved ejection fraction (HFpEF), LVEF ≥50%
[7]. In the US, the annual cost of HF care exceeds 30
billion dollars and the mortality rate is around 50% within
5 years [7, 8]. The aging population and the advances in
coronary care further contributed to the epidemic of HF
adding to the financial burden of HF [9, 10]. Therefore,
early detection and accurate diagnosis are essential in the
care of patients with HF. Traditionally; 2-Dimisional echo-
cardiogram (2D–Echo) is the first step in the diagnosis of
HF. However, it is limited by geometric assumption, inter-
observer variability and poor acoustic window in some
cases [11, 12]. CMR overcomes most of the limitations
of 2D–Echo and provides incremental information in rela-
tion to the etiology and prognosis of HF, thus answering
the majority of pertinent clinical questions of HF. In this
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review we will explore the role of CMR in the evaluation
and management of HF from different etiologies.

CMR Protocols & Safety

Most of the contemporary magnetic resonance imaging
(MRI) scanners are capable of performing the main car-
diac protocols. A CMR study for HF takes around 30–
45 min and typically starts with ECG-gated cine
(steady-state free precession (SSFP)) imaging to assess
ventricular morphology, size and systolic function
followed by images to assess myocardial edema (T2-
weighted images) as well as the pericardium [13, 14].
Gadolinium is an extracellular contrast agent that does
not cross intact cell membrane. Acute and chronic myo-
cardial infection (MI) increases the volume of distribu-
tion due to cellular damage and extracellular fibrosis
respectively [15, 16] resulting in delayed washout of
the contrast in areas with myocardial damage, thus, dif-
ferentiating normal and abnormal myocardium. The ab-
normal myocardium appears white, hyper-enhanced,
while normal myocardium appears black because gado-
linium has completely washed out from normal myocar-
dium at the time of image acquisition (8–10 min after
gadolinium administration) [17]. Hence the term, myo-
cardial delayed enhancement (MDE) or late gadolinium
enhancement (LGE) images. The pattern and distribution
of MDE provide diagnostic and prognostic information
in HF (Fig. 1). Several sequences are obtained after
administration of intravenous gadolinium-based contrast
agent (GBCA). GBCA could be used for stress and rest
myocardial perfusion imaging (MPI) [13, 18]. It is also
used for myocardial tissue characterization through
delayed myocardial enhancement images [19] .
Additionally, flow quantification sequences are used to
evaluate and presence and the severity of valvular re-
gurgitation as well as other flow abnormalities [20, 21].
(Table 1).

CMR can be safely performed in the majority of
cardiac patients. It does not employ ionizing radiation
limiting the concerns about radiation injury. Nowadays
most of the modern cardiac devices are MRI conditional
or compatible allowing the performance of CMR with
some precautions [22]. All the coronary stents and pros-
thetic valves are generally safe.

However, there are some limitations to CMR in heart fail-
ure patients. Many heart failure patients have concomitant
renal failure and GBCA should not be used in patients with
severe renal dysfunction (glomerular filtration rate < 30 ml/
min/1.73 m2) or heamodialysis due to risk of Nephrogenic
Systemic Fibrosis (NSF). NSF is a serious and non-curable
condition characterized by fibrosis of the skin and internal
organs following exposure to gadolinium [23]. Additionally,

claustrophobia is a common cause of cancelation of CMR
studies [24]. This can be sometimes overcome with adminis-
tration of small doses of anxiolytic medications. In addition,
many advanced heart failure patients have devices that are not
compatible to CMR imaging.

Early detection of heart failure

The current definition of HF identifies patient who already
have clinical symptoms and therefore, may lack the ability
to identify subclinical and asymptomatic patients or those with
early stages of HF. Identifying early stages of HF is of para-
mount importance. It helps in early initiation of medical ther-
apy of asymptomatic patient and controlling risk factors of
patients at risk of HF. Further to its superiority in assessment
of LVEF and LV mass, CMR is the only cardiac imaging
modality capable of precisely recognizing the presence and
the extent of prior myocardial infarction irrespective of its size
[25, 26]. Identifying a prior infarct necessitate initiation of
medication according to the ACC/AHA guidelines [7].

Quantification of ventricular size and systolic function

CMR is the gold standard modality for assessment of ventric-
ular volumes and systolic function [27, 28]. Accurate quanti-
fication of LVEF is essential in the classification and manage-
ment decisions of HF. [7]. CMR has the edge over other im-
aging modalities in assessment of LVEF and wall motion ab-
normalities owing its high spatial resolution, good temporal
resolution, unrestricted view of the heart and high reproduc-
ibility [3, 29, 30]. CMR calculate the ejection fraction (EF) by
true volumetric evaluation without geometric assumption,
resulting in accurate EF calculation irrespective of the degree
of LV remodeling or systolic dysfunction. The inter and intra
observer reproducibility of LVEF by CMR is high [28, 31].
Equivalently, CMR can assess the right ventricular EF despite
its complex 3D–dimensional and highly variable shape [29,
32].

In addition to their role in the diagnosis of HF, both LV
dilatation and LVEF have prognostic value. LVEF is a strong
and independent predictor of arrhythmic death in heart failure
and it dictates the need for device therapy for primary preven-
tion [7, 33]. In addition, LV dilatation is also a marker of poor
prognosis [34]. CMR can also provide excellent assessment of
RVEF which is an independent prognostic value in patients
with dilated cardiomyopathy [35, 36] and in patients with
myocardial infarction irrespective of LVEF and infarct size
[37].

Etiology of heart failure

Etiology of HF is fundamental for the management and prog-
nosis. While some of HF cases can be completely treated by
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controlling the underlying condition such as inflammation in
cardiac sarcoidosis and enzyme replacement Anderson-Fabry
disease [38, 39], knowing other causes such as coronary artery
disease (CAD) is essential for the choice of therapy and initi-
ation of secondary prevention measures [6, 7].

CAD remains the most common cause of HF and it carries
the worse prognosis [40–42]. Therefore, CAD has to be ruled
out in any case with new diagnosis of HF. Traditionally, CAD
is evaluated with invasive coronary angiography (ICA).
However, due to its invasive nature, ICA should be avoided
if possible particularly in cases of low likelihood of CAD.
Since its inception, CMR provided a reliable method for
assessing CAD in patients with HF through myocardial tissue
characterization.

Heart failure due to ischemic heart disease

In cases of ischemic heart disease, the DME is typically locat-
ed in the subendocardail area corresponding to a coronary
artery territory and may extend to the epicardial area depend-
ing on whether the infarct is transmural or subendocardail [25,
43] (Fig. 2). The presence of MDE can differentiate between
infracted and stunned myocardium in the presence of wall
motion abnormalities. Furthermore, it predicts the likelihood
of recovery of myocardial segments after revascularization.
There is an inverse relation between the extent of the MDE
and recovery of the contractile function after revascularization
[44]. The larger the extent of the MDE within a myocardial
segment, the less likely it is viable [45, 46].

Fig. 1 Distribution and pattern of
delayed myocardial enhancement
in different types of
cardiomyopathy
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CMR is highly sensitive in detecting MI, 99% and 94% in
acute and chronic infractions respectively [47]. Additionally,
CMR can evaluate the presence of CAD through ischemia
evaluation by vasodilator MPI with sensitivity and specificity
of 91% and 83% respectively [48]. Alternatively, dobutamine
stress CMR can evaluate the presence of ischemia and im-
proves the detection of contractile reserve in segments with
intermediate MDE [49]. On the other hand, 15% of patient
with HF due to CAD has no or non-ischemic DME on CMR,
this is thought to be due to coronary collaterals or myocardial
hibernation without infarct [50, 51]. Accordingly, MDE-CMR
can be reasonably used alone or with CMR ischemia evalua-
tion to rule out CAD in HF particularly in cases with low-
intermediate likelihood of CAD. In fact, about 13% of patients
with HF and normal ICA, have evidence of ischemicMDE on
CMR that may be related to recanalization of the culprit artery
or embolic phenomenon [52]. Therefore, CMR provides in-
cremental information about CAD that may help guide further
therapy even in patients with normal ICA.

Edema CMR images provide additional information to
MDE. It helps differentiate acute from chronic MI, detect is-
chemic injury without infarction and identify peri-infarct area,
area at risk, which represents salvageable myocardium
[53–56]. Thus, it accurately differentiates areas of reversible
and irreversible damage. Both MDE and edema images pro-
vide incremental prognostic information. While, the peri-
infarct zone and infract heterogeneity are associated with
higher risk of future arrhythmia [57, 58], MDE has 6-fold
increase in adverse cardiac outcomes and 11-fold increase of
all-cause mortality [59, 60]. Microvascular obstruction
(MVO) in the setting of acute MI has shown to be a strong

and independent predictor of LV remodeling irrespective of
infarct size [61]. It is also associated with increased cardiac
death, nonfatal MI and ischemic stroke [62, 63]. MVO can be
easily identified in the DME images, where it appears as dark
areas within the hyper-enhanced infracted myocardium
(Fig. 3). Moreover, CMR is superior to other imaging modal-
ities in detecting complications of CAD that may contribute to
HF morbidities, including aneurysm formation and intramural
thrombi [64–67]. There upon, CMR can evaluate all the path-
ological processes involved in the development and progres-
sion of HF due to CAD.

Heart failure due to non-ischemic etiologies

Dilated cardiomyopathy

Dilated Cardiomyopathy (DCM) is a common phenotypic
end-result of many pathophysiological processes. It can be
reversible or irreversible and albeit mostly idiopathic, about
half of the cases of DCM are familial type [68, 69]. The diag-
nosis is usually made after excluding CAD [68]. However,
ICA is invasive and it may miss ischemic component of HF
in approximately 13% of cases [52], CMR may provide an
alternate option for the evaluation of CAD in DCM particu-
larly in patients with low likelihood of CAD. With the current
advances in CT imaging, CT angiography is a more common-
ly used test in this population.

As discussed above, Ischemic MDE has high sensitivity in
detecting obstructive CAD in HF [70]. On the other hand, the
majority of cases with DCM (59%) have no MDE on CMR,
and around 28% have the classical mid wall longitudinal striae

Table 1 Basic CMR protocols performed for evaluation of heart failure

CMR sequence
Technical terminology

CMR sequence
Simplified terminology

Provided Information

Steady-state free precession (SSFP) Cine CMR images Evaluation of ventricular size, morphology
and systolic function.

Evaluation of wall motion abnormalities
Axial, Cardiac Short and long axis views

T2-weighted images
Double-inversion recovery/triple-inversion

Edema CMR images Evaluation of myocarditis and acute ischemic injury

In plane/through-plane motion-encoded
phase-sensitive spoiled gradient echo

Flow CMR Quantification of valvular regurgitation
Quantification of shunt (Qp;Qs)

T2*-weighted spoiled gradient echo sequence Iron CMR Evaluation of cardiac iron overload
Assessment of intra-myocardial hemorrhage in

acute myocardial infarction

First Pass Perfusion Images
(with & without stressor)

Perfusion CMR Ischemia evaluation

Inversion-recovery gradient echo sequence
Delayed (hyper) enhancement sequence

Late gadolinium enhancement (LGE) CMR

Early Delayed Enhancement Images
(3 min after contrast administration)

Evaluation of the possible thrombus

Delayed Enhancement Images
(8–10 min after contrast administration)

Evaluation of viability, presence and type of scar
(Ischemic Vs non-ischemic myocardial injury)
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Fig. 2 Role of CMR in
evaluation of ischemic heart
disease. Panel A demonstrates
acute myocardial infection
showing transmural enhancement
(yellow arrows) with myocardial
edema (asterix) (A-1: Myocardial
delayed enhancement image, A-2:
CM edema image and A-3: rest
perfusion image). Panels B and C:
demonstrate the role of CMR in
evaluation of thrombi (red
arrows) complicating myocardial
infarction (B-1 and C-1: SSFP
images of the LV, B-2 and C-2:
early delayed enhancement
images and B-3 and C-3:
Myocardial delayed enhancement
images. Panel D shows a
transmural myocardial delayed
encashment (yellow arrows) in
the left anterior descending
coronary artery

Fig. 3 Myocardial delayed
enhancement (A and B) and CME
edema image (C) showing acute
anteroseptal myocardial
infarction with microvascular
obstruction/ hemorrhage (black
areas within the delayed
enhancement)
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(Fig. 4) or patchy DME that does not correspond to a partic-
ular coronary artery territory [52]. On the other hand
subepicardial MDE denotes previous myocarditis [71, 72].
An additional value of CMR is its ability to accurately evalu-
ate the size and systolic function of the RV, which is common-
ly involved in this cardiomyopathy, further aiding the diagno-
sis of non-ischemic DCM.

MDE also aids in the prognostic stratification of DCM. It
presence is associated with increased risk of all-cause mortal-
ity (3-folds increase), sudden cardiac death (5-fold increase)
and adverse cardiac events independent of LV volumes and
LVEF [73–79].

Myocarditis

Acute myocarditis can present as new heart failure. Around
9% of DCM are thought to be a chronic sequelae of myocar-
ditis [68]. The diagnosis of myocarditis is usually made after
excluding CAD and confirmed by endomyocardial biopsy.
However, this approach is not attractive because it is invasive
and associated with sampling error due to patchy nature of
acute myocarditis. CMR has emerged as a robust tool for the
diagnosis of acute myocarditis. The non-ischemic MDE in
myocarditis is typically subepicardial and more commonly
affecting the lateral and inferolateral walls (Fig. 5). It can also
be seen as mid-wall distribution similar to that classically seen
in DCM [71, 80, 81]. It should be kept in mind that absence of
MDE does not exclude the diagnosis of myocarditis. Some
cases do not have cellular damage and hence will not have
MDE, in which case the diagnosis is made based on the pres-
ence of myocardial edema [72]. In addition, MDE usually
disappears in cases of healed myocarditis [81]. CMR diagno-
sis of myocarditis is based on Lake Louise Criteria, which
takes in account all the pathophysiological processes in acute
myocarditis. Diagnosis of acute myocarditis is made when
there are two out of three criteria, edema by T2-weighted
images, hyperemia by early T1-weighted images and the pres-
ence of non-ischemic MDE [82]. Other newer tools used in
the diagnosis of myocarditis including T1 and T2 mapping
will be discussed in a separate article in this special issue.

LV non-compaction cardiomyopathy

Isolated LV non-compaction (LVNC) is a rare cause of heart
failure. The hallmark of the diagnosis of LVNC is the presence
of prominent LV trabeculations with deep inter-trabecular re-
cesses, hence, the classical appearance of two layers, the
compacted and noncompacted myocardium. [83]. The diag-
nosis is usually made on echocardiography when the maxi-
mum ratio of noncompacted to compacted myocardium
>2:1 at end-systole and the presence of color Doppler flow
in the deep inter-trabecular recesses [84]. However, echocar-
diography can miss or over-diagnose cases particularly in
African-Americans and athletes [85, 86]. CMR improves the
diagnostic accuracy of LVNC through quantitative diagnostic
criteria. There are three proposed criteria for the diagnosis of
LVNC on CMR, either, maximum end-diastolic non-
compacted to compacted myocardial thickness ratio of >2.3
(sensitivity of 86% and specificity of 99%), trabeculated LV
mass > 20% of total LV mass (sensitivity of 94% and a spec-
ificity of 94%) or end-systolic noncompacted to compacted
ratio ≥ 2.0 (Fig. 6) [87–89]. The latter is more strongly asso-
ciated with heart failure, death, arrhythmia and embolic phe-
nomena [89]. Additionally, CMR is superior to echocardiog-
raphy in detecting small thrombi within the trabeculations. It
is worth noting that since LVNC can share some phenotypic
features of other cardiomyopathies; the diagnosis of LVNC
should not be solely based on the compacted\noncompacted
ratio [90].

Cardiac sarcoidosis

Cardiac involvement with sarcoidosis is heterogeneous. It
can be asymptomatic or present with heart failure, heart
block or malignant arrhythmia [91, 92]. It is seen in 25%
of patients with sarcoidosis and 25–75% of sarcoidosis
mortality is due to HF [93–95]. CMR can accurately as-
sess the pathological spectrum of sarcoidosis from active
inflammation to myocardial fibrosis and subsequent HF.
Ventricular size, wall motion and systolic function as well
as the pericardium can be accurately assessed by CMR. In
addition DME can aid the diagnosis and prognosis of

Fig. 4 Patterns of myocardial delayed enhancement in dilated
cardiomyopathy. Absence of MDE (A), classical midwall MDE (B and
C): red arrows point to the non-ischemic injury while yellow arrow points

to small ischemic myocardial injury indicating concomitant coronary
artery disease with dilated cardiomyopathy
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patients with cardiac sarcoidosis. In fact, CMR is currently
part of the Japanese Ministry of Health criteria for the
diagnosis of cardiac sarcoidosis [96]. Active inflammation
can be detected with edema images while areas of myo-
cardial fibrosis can be easily identified with DME images
[97, 98]. The MDE distribution in cardiac sarcoidosis is
variable and can affect any part of the myocardium of left
and right ventricles or even the papillary muscles [92, 99].
It is typically patchy and non-ischemic affecting the mid-
wall of the basal anteroseptal and inferolateral walls [92,
99, 100]. The presence of MDE in sarcoidosis is associ-
ated with poor outcomes. It is associated with higher risk
of sudden cardiac death (10-fold increase) and adverse
events including appropriate ICD discharge and bradycar-
dia requiring pacemaker insertion. CMR can monitor dis-
ease activity and response to therapy through edema and
MDE images [101, 102]. Furthermore, MDE in the right
ventricle has also been shown to predictor of arrhythmia
independent of the LVEF [103].

Stress induced (tako-tsubo) cardiomyopathy

Stress induced cardiomyopathy is a reversible condition char-
acterized by a transient wall motion abnormalities and LV
systolic dysfunction [104, 105]. It is diagnosed after excluding
CAD since it usually mimics acute myocardial infarction.
Multiple types have been reported based on the distribution
of wall motion abnormalities including apical (typical presen-
tation), mid-ventricular, basal and focal types [106, 107].
CMR readily and accurately assess the extension of the re-
gional wall motion abnormalities in each type and can identify
possible thrombi within the dysfunctional areas that can be
easily missed by echocardiography [108]. Moreover, MDE
can differentiate stress cardiomyopathy, which classically
has no delayed enhancement, from myocardial infarction
and myocarditis that have typical MDE distributions [109,
110]. CMR diagnosis of stress cardiomyopathy is based on
typical pattern of LV dysfunction (apical akinesia and balloon-
ing), myocardial edema and the absence of MDE [110]

Fig. 6 SSFP images showing
increased LV trabeculation in LV
non-compaction cardiomyopathy

Fig. 5 Myocardial delayed
enhancement images (A and B)
and CMR edema image (C)
showing the classical
subepicardial myocardial delayed
enhancement (yellow arrows) and
myocardial edema (red arrow)
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(Fig. 7). In addition, the resolution of the cardiomyopathy
within few days/weeks confirms the diagnosis.

Heart failure due to valvular heart disease

Untreated valvular heart diseases can lead to heart failure. LV
dilatation and systolic dysfunction are among the indications
of valve intervention in asymptomatic patients [111]. ACC/
AHA guidelines recommend the use of CMR for evaluation of
ventricular size and systolic function particularly if the echo-
cardiography images are suboptimal. Moreover, CMR pro-
vides accurate quantitative assessment of valvular regurgita-
tion by direct measurement regurgitant volume and calcula-
tion of the regurgitant fraction [112–115] (Fig. 8). In cases of
mitral regurgitation, CMR adds to the management by provid-
ing insight about the etiology through evaluation the morphol-
ogy of the LVand papillary muscle, wall motion abnormalities
and detection of the CAD by MDE [116]. Valvular stenosis
parameters that can be evaluated by CMR include measure-
ment of valve area by planimetry, peak antegrade velocity and
pressure gradients. [117–119]. In addition, MDE is seen in
patients with severe aortic stenosis and has demonstrated to
be an independent predictor of mortality post valve replace-
ment [120, 121].

Heart failure with preserved ejection fraction

Hypertrophic cardiomyopathy

Hypertrophic Cardiomyopathy (HCM) is an inherited disease
with variable phenotypes characterized by asymmetrical hy-
pertrophy of the LV [122]. Owing its superior spatial resolu-
tion, CMR precisely assess the location and extent of the

hypertrophy particularly the apical form that can be easily
missed with echocardiography [123–125]. It can also identify
the presence of apical aneurysm that can complicate apical
form and associated with embolic complications [126]. The
MDE in HCMhas diverse pattern and distribution (Figs. 9 and
10). It is most frequently seen as patchy midwall at the RV
insertion points and in areas of hypertrophy but it has
also been observed in normal segments [125, 127].
Prognostic information can be provided by assessment
of anterior systolic motion of the mitral valve, a marker
of left ventricular outflow obstruction [128, 129], and
the presence of MDE. MDE is an independent predictor
of sudden cardiac death and ventricular arrhythmia,
while absence of MDE incurs a very low risk [130,
131]. Anderson-Fabry disease (AFD) is a condition
c ommon l y m i s t a k e n w i t h HCM [132 , 133 ] .
Differentiation between the two cases is crucial since
AFD is a treatable and responds well to enzyme re-
placement therapy [134]. CMR can help ascertain the
diagnosis since the MDE in AFD is distinctly seen in
the epicardium of the basal and mid segments of the
anterolateral and inferolateral walls [135, 136].

Amyliodosis

Cardiac amyloidosis (CA) can be the first manifestation
of systemic amyloidosis and it carries grave prognosis
[137–139]. When HF ensues, untreated patients die within
6 months; therefore early recognition is of paramount impor-
tance [3]. CMR readily detect the morphological abnormali-
ties including ventricular hypertrophy, thickening of the atrial
septum and valves, atrial dilatation and pericardial effusion.
MDE in cardiac amyloidosis is not constant; it can be

Fig. 7 CMR images
demonstrating the findings in
Tako-Tsubo cardiomyopathy. A
and B: SSFP images in diastole
(A) and systole (B) demonstrating
the apical wall motion
abnormalities. C: myocardial
delayed enhancement images
showing absence of MDE. D1–3:
CMR edema images showing the
edema of the apical segments of
the LV
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Forward Flow

Backward Flow

Fig. 8 Flow CMR of the aortic valve demonstrating the forward and backward flow across the aortic valve in a case of severe aortic regurgitation

Fig. 9 SSFP (A,B) and
myocardial delayed enhancement
(C, D) images showing the
asymmetrical hypertrophy of the
septum (hypertrophic
cardiomyopathy) and the classical
delayed enhancement in the RV
insertion points (yellow arrows)
as well as delayed enhancement
in the hypertrophic areas (red
arrow)
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circumferential subendocardial enhancement of the LV, a
zebra-stripe appearance with subendocardial enhancement of
the LV and RV or patchy transmural appearance [137, 140,

141]. Rapid exchange of gadolinium between blood pool
and amyloid fibrils within the myocardium precludes assess-
ment of DME in some cases. Recently, MDE has been

Fig. 10 SSFP (A,B) and
myocardial delayed enhancement
(C, D) images showing the apical
hypertrophy (apical HCM)
showing hypertrophy of the LV
apex (yellow arrows) and delayed
enhancement in the apex (red
arrows)

Fig. 11 SSFP (A,B) and
myocardial delayed enhancement
(C, D) images showing
pericardial thickening as well as
delayed enhancement in a case of
acute pericarditis
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observed in the left atrium and is used to improve diagnosis of
CA on CMR [142]. MDE of the LV correlates well with HF
severity and survival in CA [143, 144].

Constrictive pericarditis

CMR can help in the diagnosis of constrictive pericarditis
(CP) by demonstrating the thickening of the pericardium and
the other morphological changes such as dilated atria and
small tubular ventricles and inter-ventricular dependence (sep-
tal bounce on cine images) [145, 146]. Pericardial thick-
ness > 4 mm highly suggests constriction although 18% of
surgically proven constriction have normal pericardial thick-
ness. [147]. Pericardial inflammation can be assessed by ede-
ma and delayed enhancement images, which can also be used
to monitor therapy [145, 148] (Fig. 11). Thus, CMR is very
useful in differentiating CP from restrictive cardiomyopathy
(93% diagnostic accuracy) [147].

Arrhythmogenic right ventricular cardiomyopathy

CMR is fundamental in the diagnosis of Arrhythmogenic
Right Ventricular Cardiomyopathy (ARVC). The diagnosis re-
quires accurate evaluation of RV volume, systolic function and
wall motion, which can readily be evaluated by CMR.
According to the modified task force criteria for the diagnosis
of the ARVC, regional RV akinesia or dyskinesia and either
ratio of RVend-diastolic volume to BSA 110mL/m2 (male) or
100 mL/m2 (female), or RVejection fraction 40% constitutes a
major criterion, while regional RV akinesia or dyskinesia and
one of the following: whether ratio of RVend-diastolic volume
to BSA 100 to 110 mL/m2 (male) or 90 to 100mL/m2 (female)
or RV ejection fraction >40% to ≤45% is considered a minor
criterion [149]. MDE has low diagnostic accuracy for diagnos-
ing ARVC [150], however it correlates well to fibrofatty infil-
tration of the RVand inducible arrhythmia [151].

Advanced heart failure

LVEF is pivotal for decision of device therapy in advancedHF
[7]. CMR provides accurate assessment of LVEF and can
predict response to cardiac resynchronization therapy (CRT).
Large scar burden and MDE in septum or posterolateral wall
are associated with limited response to CRT [152–155].
Moreover, CMR is promising in the detection of CAD and
rejection post cardiac transplant as well as monitoring re-
sponse to stem-cell therapy in advance HF [156, 157].

In conclusion, CMR has emerged as a robust and pivotal tool
in the comprehensive evaluation of HF. It can answer all the
clinical questions across the entire HF pathological spectrum.
Although CMR requires sophisticated software, most of the
modern MRI scanners have the ability to perform basic cardiac
sequences that can accurately evaluate cardiac anatomy,

function and wall motion. In addition, CMR distinct ability to
characterizemyocardial tissue provides indispensable diagnostic
and prognostic information incremental to other imagingmodal-
ities. CMR has a real potential of being a one-stop shop in
evaluation of HF and should be considered in the comprehen-
sive evaluation of all new and established cases of heart failure.
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