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Abstract Heart failure represents a systemic disease with
profound effects on multiple peripheral tissues including
skeletal muscle. Within the context of heart failure, per-
turbations in skeletal muscle physiology, structure, and
function strongly contribute to exercise intolerance and
the morbidity of this devastating disease. There is growing
evidence that chronic heart failure imparts specific pathological
changes within skeletal muscle beds resulting inmuscle dysfunc-
tion and tissue atrophy. Mechanistically, systemic and local in-
flammatory responses drive critical aspects of this pathology. In
this review, we will discuss pathological mechanisms that drive
skeletal muscle inflammation and highlight emerging roles for
distinct innate immune subsets that reside within damage muscle
tissue focusing on the recently described embryonic and
monocyte-derived macrophage lineages. Within this context,
we will discuss how immune mechanisms can be differentially
targeted to stimulate skeletal muscle inflammation, catabolism,
fiber atrophy, and regeneration.
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Skeletal muscle myopathy and inflammation It is now
recognized that heart failure is a systemic disease with
profound effects on multiple peripheral tissues including
skeletal muscle. Several clinical studies have convincing-
ly demonstrated that impairments in skeletal muscle phys-
iology and function are largely responsible for exercise
intolerance in patients with chronic systolic heart failure.
Structurally, cachexia and skeletal muscle atrophy repre-
sent important comorbidities associated with poor progno-
sis [2]. Within the chronic heart failure population, skele-
tal muscle atrophy and intrinsic reductions in oxidative
metabolism are tightly associated with reduced exercise
capacity [55]. Patients with chronic heart failure not only
have smaller peripheral muscle mass but also display re-
duced oxidative metabolism during exercise. Moreover,
measurement of skeletal muscle lactate production during
exercise demonstrated metabolic abnormalities in patients
with chronic heart failure independent of tissue perfusion.
Consistent with this, skeletal mitochondria density is reduced
in patients with chronic heart failure and the extent of mito-
chondrial loss correlates with peak exercise capacity [24, 110].

These observations demonstrate that while reductions in
tissue perfusion may contribute to skeletal muscle dysfunction
in patients with chronic systolic heart failure, there is substan-
tial evidence indicating that pathologic and metabolic abnor-
malities intrinsic to skeletal muscle beds are the primary me-
diators of muscle atrophy and dysfunction [53, 54, 90].
Examination of muscle biopsies has demonstrated that com-
pared to control subjects, patients with chronic systolic heart
failure display multiple pathological findings including fiber
atrophy, myocyte apoptosis, and increased interstitial inflam-
matory cells. In addition, immunostaining studies have re-
vealed evidence of muscle fiber reprogramming favoring an-
aerobic muscle fiber types, namely, reduced type I slow twitch
fibers and increased type II fast twitch fibers. Consistent with
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these observations, biochemical studies focused on mitochon-
drial function have revealed that subjects with chronic heart
failure have significant deficits in oxidative metabolism and
morphological studies have reported reduced capillary density
[25, 40, 53, 55, 81, 90, 102, 110]. Together, these findings
suggest that patients with heart failure display an intrinsic
skeletal muscle myopathy, which likely contributes to the
prominent muscle wasting, contractile dysfunction, and re-
duced exercise capacity observed in this patient population.
While the molecular mechanisms that govern the develop-
ment of heart failure-associated skeletal muscle myopathy
have not yet been completely defined, recent findings have
provided important and exciting insights.

Intriguingly, the pathology of heart failure-associated skel-
etal muscle myopathy closely resembles what has been ob-
served in myopathies due to chronic inflammatory conditions,
such as Crohn’s disease. Examination of muscle biopsies ob-
tained from patients with Crohn’s disease demonstrated fiber
atrophy, myocyte apoptosis, reduced type I fibers, increased
type II fibers, and increased numbers of inflammatory cells.
These findings were associatedwith elevated levels of the pro-
inflammatory cytokines TNFα, sphingosine, and lipopolysac-
charide (LPS) [17]. Importantly, numerous large studies have
revealed that patients with systolic heart failure also have el-
evated serum levels of pro-inflammatory cytokines including
TNFα, IL-1β, IL-6, and IL-2 [22, 29, 73, 96]. These findings
highlight a potentially shared pathogenesis of skeletal muscle
atrophy in Crohn’s disease and chronic systolic heart failure
and implicate systemic and/or local inflammation as a poten-
tial causative mechanism in heart failure-associated skeletal
muscle myopathy.

In this review, we will discuss pathologic mechanisms that
drive skeletal muscle inflammation in the setting of chronic
heart failure. In addition, we will highlight potential roles for
distinct innate immune subsets that reside within damagemus-
cle tissue focusing on the recently described embryonic-
derived and monocyte-derived macrophage lineages.
Specifically, we will discuss what these cell types represent
and how they may differentially impact on skeletal muscle
repair and inflammation. Finally, we will connect inflamma-
tory mechanisms with pathways known to stimulate skeletal
muscle atrophy, dysfunction, catabolism, and myokine pro-
duction. Where appropriate, we will comment on potential
contributions of aging to skeletal muscle inflammation and
dysfunction.

Skeletal muscle injury and inflammation in heart failure
Whether due to systolic or diastolic dysfunction, the systemic
syndrome of heart failure imparts multiple insults on periph-
eral tissues including skeletal muscle. Collectively, these per-
turbations contribute to heart failure-associated skeletal
myocyte injury and dysfunction. Within the context of heart
failure, skeletal muscle injury can be divided into primary and

secondary mechanisms. We will define primary injury mech-
anisms as those directly related to the syndrome of heart fail-
ure, namely, derangements in tissue perfusion, neurohormonal
activation, disruption of skeletal muscle homeostasis, and sys-
temic inflammation. Each of these primary mechanisms con-
tributes to skeletal myocyte injury or death. Secondary injury
mechanisms will be defined as the activation of local immune
responses by injured or damaged skeletal muscle. In the fol-
lowing sections, we will outline the pathophysiological trig-
gers of primary skeletal muscle injury in the setting of chronic
heart failure (Fig. 1), describe the mechanisms by which these
pathologies stimulate local inflammatory responses, and dis-
cuss the pathological and clinical implications of skeletal mus-
cle inflammation as they relate to muscle atrophy and
dysfunction.
Skeletal muscle insults in heart failure: primary
injury mechanisms

Derangements in tissue perfusion Reduced cardiac output
(particularly during exercise) and increased venous pressure
are central to all etiologies of heart failure and result in re-
duced skeletal muscle blood flow. Failure to augment blood
flow during exercise due to reduced forward flow and im-
paired vasodilation leads to inadequate skeletal muscle perfu-
sion and production of lactate, a hallmark of tissue ischemia
[89]. Similarly, increased central venous pressures not only
result in microvascular congestion and tissue edema but also
reduced perfusion pressure across skeletal muscle capillary
beds [84, 89]. As a consequence, skeletal myocytes receive
inadequate nutrient supply including oxygen and are either
stressed, reversibly injured, or in more extreme conditions
undergo apoptotic and/or necrotic cell death.

Neurohormonal activation In addition to episodic tissue is-
chemia, patients with heart failure display several systemic
perturbations that contribute to skeletal muscle pathology in-
cluding neurohormonal activation and systemic inflammation.
Neurohormonal activation defined as exaggerated sympathet-
ic tone and increased systemic epinephrine, norepinephrine,
and angiotensin II levels are commonly observed in patients
with acute and chronic heart failure [60]. In addition to pro-
moting myocardial adverse remodeling, neurohormonal acti-
vation has direct effects on skeletal myocytes including induc-
tion of oxidative injury, sarcomere loss, and myocyte death.
Chronic epinephrine and norepinephrine exposure is sufficient
to promote oxidative stress, capillary rarefaction, and skeletal
muscle atrophy. These effects appear to occur through a com-
bination of chronic β1-adrenergic stimulation and downregu-
lation of β2-adrenergic signaling [5, 107]. Moreover, norepi-
nephrine may contribute to reduced tissue perfusion through
exaggerated α-adrenergic-mediated vasoconstriction [67].
Lastly, increased local and systemic sympathetic nerve activ-
ity and reduced vagal tone have important effects on innate
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immune cell recruitment, pro-inflammatory signaling, and
resolution of inflammatory responses. Sympathetic activation
is an essential cue to mobilize monocytes from the bone mar-
row potentially through a β3-adrenergic mechanism, while
parasympathetic signaling via nicotinic acetylcholine recep-
tors is an important negative regulator of pro-inflammatory
innate immune responses to sterile tissue injury [16, 26, 71].

Angiotensin II levels are also elevated in the setting of
chronic heart failure and trigger the generation of damaging
reactive oxygen species through direct stimulation of NADPH
oxidase [38, 47]. In addition, angiotensin II signaling directly
contributes to skeletal muscle inflammation through augmen-
tation of inflammatory and inhibition of anti-inflammatory
signaling mechanisms. Angiotensin II signaling activates ca-
nonical NFκB-dependent pro-inflammatory gene expression
in skeletal muscle myocytes. Importantly, angiotensin II also
suppresses insulin-like growth factor 1 (IGF1) signaling in
skeletal myocytes, a central anti-inflammatory signaling
mechanism that governs skeletal muscle homeostasis and
growth [6, 9, 47, 76, 113].

Disruption of the IGF1 signaling axis Patients with heart
failure display reductions in circulating factors that are protec-
tive towards skeletal muscle, the most notable of which is
IGF1 [7, 99]. Serum IGF1 levels are inversely associated with
LV systolic dysfunction, neurohormonal activation, cytokine
production, and muscle atrophy [3, 68, 74]. IGF1 is expressed
bymultiple tissues in the body including liver and skeletal and
cardiac muscle. The exact mechanism by which systemic
IGF1 is reduced in heart failure is not well defined.
However, elevated angiotensin II activity may play an

important role [76]. IGF1 signaling represents a well-
established mechanism to stimulate muscle growth and regen-
eration [64]. IGF transgenicmice are resistant to angiotensin II
and heart failure-induced muscle atrophy, and local IGF1
treatment can reverse disuse atrophy [83, 87, 88]. These pro-
tective properties of IGF1 signaling are mediated through an
AKT1, mTOR, and FoxO axis supporting cell survival, myo-
fibril growth, and protein synthesis, while inhibiting protein
degradation [7]. Importantly, IGF1 also possesses significant
immunomodulatory activity. Specifically, IGF1 is a robust
inhibitor of pro-inflammatory responses through IL10-
dependent suppression of monocyte activation [34].

Systemic inflammation Numerous clinical studies have doc-
umented that patients with heart failure display signs of sys-
temic inflammation [17, 22, 29, 73, 96]. Biomarker analysis of
1200 heart failure patients enrolled in the VEST trial demon-
strated that serum levels of TNFα and IL6 are elevated in heart
failure and prognostically important. Specifically, patients
with elevated cytokine levels displayed higher mortality
[22]. Moreover, serum TNFα and IL6 levels are predictive
of the development of heart failure and are reduced in patients
receiving optimal medical therapy for heart failure [97, 100].
The exact source of cytokines is not well established, but
likely includes both the myocardium as well as peripheral
tissues including but not limited to the gastrointestinal tract,
liver, and circulating monocytes [49, 50, 100]. One proposed
mechanism is that increased gut permeability leads to system-
ic inflammation through either systemic LPS exposure and/or
dysregulated mucosal immune responses [69]. In either sce-
nario, activation of innate immune cells results in elevated

Fig. 1 Schematic depicting mechanisms of skeletal muscle injury in the
context of chronic heart failure. IGF-1 insulin-like growth factor 1, IL-6
interleukin 6, LPS lipopolysaccharide, NF-kb nuclear factor kappa-light

chain-enhancer of activated B cells, TNFα tumor necrosis factor α,
TWEAK TNF-related weak inducer of apoptosis
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systemic levels of TNFα, IL-1β, IL-6, and IL-2 with delete-
rious effects on skeletal muscle. Cytokine signaling is suffi-
cient to trigger skeletal myocyte injury, generation of reactive
oxygen intermediates, and muscle atrophy [18, 59]. IL6 sig-
naling via STAT3 has been reported to regulate myostatin, an
important mediator of skeletal muscle catabolism [115]. In addi-
tion, muscle-specific TNFα signaling throughNF-kB results in a
severe muscle wasting phenotype that is mediated by the ubiq-
uitin ligase MuRF1 and suppression of IGF1 signaling [10, 20].
The TNF superfamily member, TNF-like weak inducer of apo-
ptosis (TWEAK), induces a similar phenotype by binding to the
Fn14 receptor and activating NF-kB signaling [23].

Local skeletal muscle immune responses: secondary inju-
ry mechanisms While primary mechanisms that contribute
skeletal muscle dysfunction and injury are well established,
less is known regarding the role of skeletal muscle cell death
and local inflammatory responses. In the following section,
we will highlight the importance of local inflammation and
discuss the mechanistic basis by which myocyte cell death
contributes to local activation of the innate immune system.
In addition, we will introduce the concept of macrophage di-
versity and propose a conceptual framework explaining why
local inflammation paradoxically contributes to both tissue
repair and collateral tissue injury.

Immune recognition of injured and dying skeletal
myocytes In recent years, details have emerged clarifying
the mechanisms by which tissue injury is recognized by the
immune system and inflammatory responses are generated. It
is now understood that cells that are injured or those that
undergo cell death through necrosis, necroptosis, and aborted
apoptosis release an array of intracellular signaling molecules
with potent effects on tissue-resident immune cells [56].
Indeed, defective autophagocytic responses associated with
skeletal muscle catabolism and atrophy also result in cell death
and local inflammation [65]. Dying myocytes release an array
of signals collectively referred to as danger-associated molec-
ular patterns (DAMPs) that encompass a variety of mediators
including alarmins (HMGB1, S100A8/9/12, S100B, IL1α,
HSPs), nucleotides (ATP, CpG, dsRNA), bioactive lipids, ex-
tracellular matrix fragments (glycans, heparin sulfate,
hyaluronan), and lectins [13].

The majority of DAMPs are recognized by a set of germ
line-encoded pattern recognition receptors (PRRs) most prom-
inently expressed on leukocytes, endothelial cells, and fibro-
blasts. PRRs are well known for their roles in recognizing
pathogen-derived products referred to as pathogen-
associated molecular patterns (PAMPs). Examples of
PAMPs include gram-negative bacterial lipopolysaccharides
(LPS), gram-positive bacterial teichoic acids, yeast zymosans,
mycobacterial glycolipids, and viral dsRNAs [65].
Classically, engagement of PRRs such as toll-like receptor 4

(TLR4) by pathogen-derived products (i.e., LPS) results in
activation of mononuclear phagocytes and generation of pro-
found inflammation responses aimed at eliminating both path-
ogens and infected cells [57, 61, 95].

An array of recent studies has provided substantial evi-
dence indicating that recognition of DAMPs by PRRs is re-
sponsible for sterile injury-associated inflammation and, in
some scenarios, tissue repair. PRRs implicated in sterile injury
responses include toll-like receptors (TLR2, 3, 4, and 9),
NOD-like receptors (NOD, NLRs, NLRP3), RIG-I-like recep-
tors, C-type lectin receptors (CLRs), RAGE receptors, and
formyl peptide receptors (FPRs) [92, 101], all of which are
present in healthy and diseased skeletal muscle [93, 109].
TLRs are found on either the plasma membrane (TLR2, 4)
or endosomes (TLR3, 9) and recognize an array of DAMPs
including HMGB1, S100A/B, HSPs, ECM fragments, and
dsDNA including mitochondrial DNA and CpG fragments
[92]. Engagement of TLR receptors by various DAMPS leads
to the activation of a well-described cascade of signaling
events culminating in the release of pro-inflammatory
chemokines and cytokines [72]. Activation of the NOD-like
receptors NOD1, NOD2, and NLRP3 by nucleotides and oth-
er metabolites including uric acid results in inflammasome
activation and generation of robust inflammatory responses
[35]. Formyl peptide receptors recognize products released
from damaged mitochondria and have been shown to trigger
robust activation of neutrophils in the setting of sterile liver
injury [58]. At this point in time, considerably less is known
regarding the roles of RIG-like receptors, C-type lectin recep-
tors, and RAGE receptors in sterile tissue injury. However, it
is likely that much will be learned in the near future.

With respect to skeletal muscle, multiple DAMPs have
been implicated in skeletal myocyte injury, inflammation,
and tissue repair. Traumatic or ischemic skeletal muscle injury
elicits the release of mitochondria-associated DAMPs includ-
ing formyl peptides and mitochondrial DNA. In this context,
formyl peptides are recognized by FPR1 present on neutro-
phils, while mitochondrial DNA is recognized by neutrophils,
monocytes, and macrophages expressing TLR9. Collectively,
mitochondrial DAMPs appear to drive local and systemic in-
flammatory responses [114]. In contrast to mitochondrial-
derived DAMPS, high-mobility group box 1 protein
(HMGB1) release from injured skeletal muscle is required
for tissue repair and regeneration. HMGB1 is a ubiquitous
multifunctional protein, which under homeostatic conditions
functions within the nucleus to augment interactions between
transcription factors and chromatin. However, following tis-
sue injury, HMGB1 is released into the extracellular matrix by
injured or dying cells where it activates mononuclear phago-
cytes through TLR4 and RAGE receptor signaling [1, 32,
108]. HMGB1 may also signal directly to satellite cells and
endothelial cells [21]. Importantly, HMGB1 is required for
revascularization and myocyte regeneration following skeletal
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muscle injury [11, 21], suggesting that activation of local im-
mune responses through a DAMP-mediated mechanism is a
key determinant of not only inflammation but also tissue
repair.

To date, no studies have investigated whether skeletal mus-
cle DAMPs are activated in the setting of heart failure. Given
data demonstrating increased skeletal myocyte death, inflam-
mation, and the multiple insults imparted on skeletal muscle in
the setting of chronic heart failure, it would not be surprising
that heart failure-associated skeletal muscle inflammation is
driven by DAMP signaling. Whether DAMP signaling con-
tributes to heart failure-associated skeletal muscle atrophy,
fiber type switching, metabolic derangements, fibrosis, and
impairedmicrovasculature remains unclear. Moreover, wheth-
er DAMP signaling can be manipulated to favor satellite cell
activation and regenerative responses is yet to be studied.
Furthermore, the mechanistic determinants explaining why
some DAMPs trigger inflammatory responses while others
stimulate tissue repair is not fully understood; however, some
clues are beginning to emerge.

Macrophage diversity Immune cells represent the predomi-
nate cell type that utilizes PRRs to recognize and respond to
tissue injury. Macrophages, neutrophils, dendritic cells, and B
cells harbor an array of PRRs poised to recognize the release
of an array of DAMPs. Within muscular tissues, macrophages
represent the most abundant resident innate immune cell.
Macrophages are evolutionary conserved phagocytes that
were first discovered late in the nineteenth century by Ilya
Metchnikoff [15, 94]. In the 1960s, Van Furth proposed that
tissue macrophages originated from circulating blood mono-
cytes, which has been the prevailing view for the last 40 years.
However, evolving evidence has challenged this dogma and
suggested that tissue macrophages may exist independent of
circulating monocytes [80, 98, 106].

More recently, a series of studies performed in model sys-
tems have drastically revised our understanding of macro-
phage origin. Collectively, these publications demonstrated
that many tissue-resident macrophages are established during
embryonic development and persist into adulthood indepen-
dent of blood monocyte input [27, 36, 39, 42, 48, 82, 112].
This advancement in knowledge was dependent on the devel-
opment and utilization of genetic lineage tracing and parabi-
otic systems. Several detailed review articles have been pub-
lished describing different aspects of macrophage ontogeny
and related functions [19, 86, 111]. However, few publications
have explored macrophage ontogeny within the skeletal mus-
cle. In the following section, we will describe the currently
available knowledge regarding tissue-resident macrophage
subsets, origins, and potential functions in injured skeletal
muscle.

In the mouse, embryonic and adult monocyte-derived mac-
rophages can be readily distinguished through genetic lineage

tracing. Adult monocyte-derived macrophages are derived
from definitive hematopoietic stem cells, which express
FLT3 as they differentiate. Based on this finding, a Flt3-Cre
mouse was developed to track the progeny of adult definitive
hematopoietic stem cells [8]. Using this genetic lineage trac-
ing tool, several studies have identified embryonic-derived
(Flt3-Cre negative) and adult monocyte-derived (Flt3-Cre
positive) macrophages in multiple tissues including the brain,
heart, lung, kidney, liver, and skin [28, 45]. Using a combina-
tion of immunostaining and genetic lineage tracing, we were
able to similarly identify embryonic-derived and monocyte-
derived macrophages in skeletal muscle (Fig. 2).

Collectively, studies utilizing Flt3-Cre mice have revealed
that adult monocyte-derived macrophages do fully replace
embryonic-derived macrophages during steady state condi-
tions [27, 42, 82]. In fact, macrophages of embryonic and
adult monocyte origin coexist within tissues. Intriguingly, in
the context of aging, adult monocyte-derived macrophages
increase in number and progressively replace embryonic-
derived macrophages in some tissues including the heart
[62]. Furthermore, detailed studies have better refined the
composition of Flt3-Cre-negative embryonic-derived macro-
phages suggesting that this population consists of a compella-
tion of two lineages derived from progenitors located within
the early yolk sac and those that migrate from the yolk sac to
the fetal liver at later developmental stages [27].

Embryonic-derived macrophages are first observed during
early gestation (embryonic day 6.5–8.5 in the mouse) in the
extra-embryonic yolk sac where they arise from an early
bipotent erythromyeloid progenitor. At this early stage of de-
velopment, the yolk sac supports primitive hematopoiesis pro-
ducing erythrocytes and yolk sac-derived macrophages [78].
In the mouse, primitive hematopoiesis can be distinguished
from definitive hematopoiesis based on the requirement for
the transcription factor MYB. Myb−/− embryos have a selec-
tive deficiency in definitive hematopoietic stems and are un-
able to support definitive hematopoiesis. While Myb−/− em-
bryos lack definitive hematopoietic progeny (lymphocytes,
granulocytes, monocytes, and megakaryocytes), their ability
to produce early erythrocytes and yolk sac-derived macro-
phages is not perturbed [82]. Yolk sac-derived macrophages
have a characteristic CX3CR1hi F4/80hi CD11blo expression
pattern in the embryo and give rise to adult brain microglia, a
subset of cardiac macrophages, and a transient population of
skin Langerhans’s cells [27, 36, 42, 44, 82, 112].

At later stages during embryonic development (embryonic
day 8.5–10.5 in the mouse), definitive hematopoietic stem cells
emerge from the aorta-gonades mesonephros, hemogenic endo-
thelium, and yolk sac giving rise to definitive fetal immune lin-
eages. Beginning at E10.5, HSCsmigrate to the fetal liver, which
then serves as the major hematopoietic organ during the remain-
der of embryonic development [36, 79]. During this period, fetal
monocytes emigrating from the liver take residence within
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multiple developing organs and likely constitute the primary or-
igin of the majority of tissue-resident embryonic-derived macro-
phages [28, 45]. Within the skin, fetal monocytes out-compete
yolk sac-derived macrophages and contribute to the overwhelm-
ing majority of adult Langerhans cells. Recent data suggests that
a similar phenomenon occurs in the developing liver, kidney, and
lung [39, 45, 48].

During the perinatal period, definitive hematopoietic stem
cells take residence within the bone marrow where they estab-
lish the primary site of hematopoiesis for the remainder of life.
Within this compartment, Flt3-Cre-positive definitive hema-
topoietic stem cells produce the full complement of immune
lineages including adult monocyte-derived macrophages [70].
Adult monocytes arise from definitive hematopoietic stem
cells through a well-characterized cascade involving the pro-
gressive differentiation of committed progenitor cells includ-
ing the monocyte-macrophage dendritic cell progenitor
(MDP) [30]. Recently, a Ly6C-positive monocyte-specific
progenitor downstream of MDPs has been identified in the
bone marrow and spleen [43]. In the mouse and human, there
appear to be two principle monocyte subsets: classical
Ly6Chigh monocytes and nonclassical Ly6Clow monocytes
[46]. Ly6Chi monocytes are direct descendants of the Ly6C-
positive monocyte progenitor and give rise to tissue-resident
adult monocyte-derived macrophages [28, 48]. Nonclassical

Ly6Clow monocytes differentiate from Ly6Chigh monocytes
through an Nr4a1-dependent transcriptional program [41,
43, 112]. Within the vasculature, nonclassical Ly6Clow mono-
cytes crawling over the endothelium in a LFA-1 integrin-de-
pendent manner where they clear damaged endothelial cells
and maintain vascular integrity (Auffray et al. 2007) [12].
While some have considered these monocytes to be Bvascular
macrophages,^ they transcriptionally cluster with monocytes
and do not express core macrophage transcripts, including
Mer tyrosine kinase [33, 48].

Impact of local skeletal muscle immune responses As
discussed above, innate immune cells (predominately macro-
phages) recognize skeletal muscle injury and drive both dam-
aging inflammatory as well as reparative responses. Until re-
cently, it has remained relatively unclear how activation of the
innate immune system can trigger such divergent responses.
In fact, there are numerous examples of seemingly contradic-
tory reports claiming that inflammation is both harmful fol-
lowing injury and an essential mediator of tissue repair [37].
This paradox is well established in models of ischemic cardiac
injury. Macrophages within the infarcted heart not only drive
robust inflammatory responses and pathological remodeling
but also are required for the resolution of inflammation, tissue
repair, and coronary angiogenesis [31]. One explanation for

Fig. 2 Skeletal muscle macrophages in heart failure. a Immunostaining
for CD68 (green) and DAPI (blue) in skeletal muscle obtained from
controls and a mouse model of dilated cardiomyopathy demonstrating
increased macrophage abundance. b Diagram illustrating that
macrophages are derived from distinct lineages including primitive and
definitive hematopoietic progenitors. c Genetic lineage tracing with Flt3-

Cre (red) revealing the presence of CD68+ macrophages derived from
embryonic (Flt3-Cre-negative) and adult monocyte (Flt3-Cre-positive)
origins. d Schematic describing the potential roles for embryonic-
derived (blue) and monocyte-derived (red) macrophages in the context
of skeletal muscle injury
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these findings is that distinct macrophage populations may
mediate inflammatory (M1-like) and reparative (M2-like)
macrophage behaviors [66]. Until recently, the exact identities
of these proposed macrophage subsets have remained largely
undefined.

Recently, we have demonstrated that distinct resident and
recruited macrophage subsets derived from embryonic and
definitive monocyte progenitors, respectively, govern tissue
repair and inflammation in the context of acute cardiac injury
[51]. Conceptually, whether these findings apply to other tis-
sues such as skeletal muscle remains to be established.
However, it is intriguing to postulate that in the context of
chronic heart failure recognition of injured or stressed skeletal
myocytes by resident and newly recruited inflammatory mac-
rophages may similarly contribute to tissue repair and second-
ary pro-inflammatory responses.

In support of this concept, M2-like skeletal muscle macro-
phages are required for skeletal muscle regeneration following
cardiotoxin injury through augmentation of satellite cell pro-
liferation and angiogenesis [4, 91]. In distinction to the heart,
monocyte recruitment was necessary for skeletal muscle re-
generation [14, 85]. However, in this scenario, monocytes
differentiated into anti-inflammatory M2-like macrophages
through a mechanism involving phagocytosis [4]. How these
M2-like macrophages compare to embryonic-derived macro-
phages resident in cardiac and skeletal muscle remains to be
studied. These data do highlight the possibility that monocyte-
derived macrophages can be instructed by tissue-derived fac-
tors to acquire a reparative phenotype and promote tissue re-
generation. To date, it has not yet been explored whether mac-
rophages resident within the skeletal muscle in the context of
failure contribute to muscle regeneration.

Similar to following cardiac injury, monocyte-derived pro-
inflammatory M1-like macrophages infiltrate injured skeletal
muscle and secrete an array of inflammatory chemokines and
cytokines including MCP1, IL1β, and TNFα [4]. Each of
these factors is sufficient to drive inflammation through re-
cruitment of additional pro-inflammatory monocytes and col-
lateral tissue injury. In addition, IL1β and TNFα signaling to
skeletal myocytes contribute to skeletal muscle atrophy and
catabolism through reductions in oxidative metabolism and
IGF1 signaling [20, 47, 52]. Furthermore, pro-inflammatory
macrophages inhibit regeneration as persistence of these cells
leads to ongoing damage and defective tissue healing [63, 75,
77]. Examination of a chronic model of skeletal muscle injury
(i.e., muscular dystrophy) revealed the existence of pro-
inflammatory M1-like and reparative alternatively activated
BM2-like^macrophages [103–105], supporting the possibility
that distinct macrophage subsets may also govern inflamma-
tion and regeneration in chronic skeletal muscle pathologies.

Could inflammation be a target for heart failure-
associated skeletal muscle myopathy? Based on the above

findings, it is reasonable to postulate that manipulation of
innate immune responses in the context of skeletal muscle
injury or chronically disease may impact outcomes. With re-
spect to heart failure, is it possible to bias the immune re-
sponse to skeletal muscle injury in a manner that might slow
the progression or reverse heart failure-associated skeletal
muscle myopathy? Selective targeting of distinct macrophage
subsets may represent one potential avenue for intervention.
For example, manipulations favoring M2-like macrophages
would likely bias the immune response towards muscle regen-
eration and ultimately restoration of skeletal muscle function.
Such a manipulation may also minimize the collateral injury,
metabolic perturbations, and muscle atrophy associated with
excessive inflammation. At this point in time, the exact mech-
anisms that might be suitable for therapeutic intervention have
not yet been identified. Future studies delineating specific
mechanisms by which inflammatory M1-like and resident
M2-like macrophages are recruited to sites of skeletal
myocyte injury, become activated, and exert their functions
will undoubtedly provide critical details that will likely be
informative with respect to potential therapeutic intervention.

Conclusions It has long been known that skeletal muscle
wasting represents an important pathology contributing to
the morbidity of heart failure. Recently, important insights
have beenmademechanistically linking inflammation tomus-
cle atrophy and dysfunction. In addition, paradigm shifting
studies have revealed that distinct components of the innate
immune system may govern inflammation and tissue repair
following sterile injury. Together, these advances have raised
the question of whether it is possible to develop therapeutics
that target systemic and local inflammatory responses in an
effort to restore muscle mass and function. Future studies will
be required to determine whether these exciting opportunities
represent a reality and new hope for patients crippled by
chronic heart failure.
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