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Abstract The highly regulated processes of mitochon-

drial fusion (joining), fission (division) and trafficking,

collectively called mitochondrial dynamics, determine cell-

type specific morphology, intracellular distribution and

activity of these critical organelles. Mitochondria are crit-

ical for cardiac function, while their structural and func-

tional abnormalities contribute to several common

cardiovascular diseases, including heart failure (HF). The

tightly balanced mitochondrial fusion and fission determine

number, morphology and activity of these multifunctional

organelles. Although the intracellular architecture of

mature cardiomyocytes greatly restricts mitochondrial

dynamics, this process occurs in the adult human heart.

Fusion and fission modulate multiple mitochondrial func-

tions, ranging from energy and reactive oxygen species

production to Ca2? homeostasis and cell death, allowing

the heart to respond properly to body demands. Tightly

controlled balance between fusion and fission is of utmost

importance in the high energy-demanding cardiomyocytes.

A shift toward fission leads to mitochondrial fragmenta-

tion, while a shift toward fusion results in the formation of

enlarged mitochondria and in the fusion of damaged

mitochondria with healthy organelles. Mfn1, Mfn2 and

OPA1 constitute the core machinery promoting mito-

chondrial fusion, whereas Drp1, Fis1, Mff and MiD49/51

are the core components of fission machinery. Growing

evidence suggests that fusion/fission factors in adult car-

diomyocytes play essential noncanonical roles in cardiac

development, Ca2? signaling, mitochondrial quality

control and cell death. Impairment of this complex circuit

causes cardiomyocyte dysfunction and death contributing

to heart injury culminating in HF. Pharmacological tar-

geting of components of this intricate network may be a

novel therapeutic modality for HF treatment.
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Introduction

In mammals, the relentlessly beating heart is one of the most

mitochondria-enriched organs. Mitochondrial oxidative

phosphorylation (OXPHOS) generates up to 90 % of ATP,

required for constant contraction of cardiomyocytes, and the

organelles occupy almost 30 % of their volume [1–3]. Over

the past two decades, mitochondria have emerged not only as

cellular powerhouses, but also as critical integrators of fun-

damental cellular processes, ranging from the generation of

reactive oxygen species (ROS) and signal transduction to the

maintenance of Ca2? homeostasis, stress responses and cell

death [4–6]. Comprehensive studies of cardiac mitochondria

have convincingly demonstrated that their dysfunction is

implicated in the pathogenesis of common cardiovascular

diseases (CVD), such as dysrhythmias, myocardial ische-

mia, cardiomyopathies culminating in end-stage heart fail-

ure (HF) [7–10].

Mitochondria are dynamic organelles—the two oppos-

ing highly regulated processes, fusion (joining) and fission

(division)—determine cell-type specific mitochondrial

morphology, intracellular distribution and activity (Fig. 1).

Furthermore, mitochondria can move along the cytoskele-

ton interacting with various intracellular organelles and
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ensuring region-specific cellular requirements. These finely

tuned processes, which have been termed mitochondrial

dynamics, modulate mitochondrial shape and function

allowing living cells to respond properly to frequently

changing environmental conditions [11–14].

Mitochondrial fusion produces interconnected mito-

chondrial network and is essential for the maintenance and

inheritance of mitochondrial DNA (mtDNA), the trans-

mission of membrane potential and Ca2? signaling along

the mitochondrial network [12, 15, 16]. The opposing

process, mitochondrial fission, leads to smaller, more dis-

crete organelles and plays important roles in mitochondrial

partitioning during mitosis, cytoskeleton-mediated traf-

ficking to energy-demanding intracellular compartments

and in selective autophagic removal of damaged mito-

chondria by the process called mitophagy [12, 15–17].

Moreover, elongation of mitochondrial tubules has been

shown upon differentiation of progenitor cells into car-

diomyocytes, while mitochondrial fragmentation can con-

tribute to cytochrome c release leading eventually to

apoptosis [18–21]. Alterations in the fine-tuned balance

between mitochondrial fusion and fission are implicated in

the pathogenesis of cancer, neurodegenerative, metabolic

and cardiac disorders [15, 20, 22–25].

Fig. 1 Roles of mitochondrial dynamics. Red Mitochondria with

high membrane potential, with high oxidative phosphorylation

(OXPHOS) activity. Blue Mitochondria with low membrane poten-

tial. Mitofusin 1 or 2 (Mfn1, Mfn2) mediates mitochondrial outer-

membrane fusion in a tissue-specific manner, and optic atrophy gene1

(OPA1) mediates inner-membrane fusion. The zinc metalloprotease

OMA, also known as ‘‘Overlapping with the m-AAA protease 1

homolog,’’ is an essential enzyme in mitochondrial maintenance that

proteolytically cleaves OPA1 under low membrane potential condi-

tions, promoting fission. Mitochondrial dynamics factors 49 and 51 or

mitochondrial fission factor (Mff) recruit dynamin-related protein 1

(DRP1) onto mitochondria at sites marked by endoplasmic reticulum

tubules (ER), and DRP1 mediates mitochondrial division. In cultured

cells, upon a decrease in mitochondrial membrane potential, PINK1

kinase recruits Parkin, a ubiquitin E3 ligase, which ubiquitinates

several mitochondrial targets, including MFN1 and mitochondria Rho

(Miro), to facilitate the degradation of mitochondria via mitophagy.

Parkin-mediated ubiquitination triggers outer mitochondrial mem-

brane-associated degradation (OMMAD)—a proteosomal pathway

that degrades ubiquitinated OM proteins in a CDC48-dependent

manner. OMMAD is probably cell type dependent and may also

function in quality control. In erythrocytes, mitophagy receptor Nix1

is involved in autophagosome recruitment. ER forms close contacts

with mitochondria, essential for calcium regulation in cellular

microcompartments. Miro (blue feet) is a mitochondrial receptor for

kinesin via Milton that facilitates the transport of mitochondria on

microtubules in a Ca2?-regulated manner. Upon synaptic activity in

neurons, influx of glutamate and Ca2? halts mitochondrial transport

via Miro to position them at sites of synaptic activity that require

Ca2? uptake and ATP. From Nunnari and Suomalainen [6] with

permission of Elsevier
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The mechanisms of mitochondrial dynamics have been

studied mainly in cell types other than cardiomyocytes.

The high energy need to fuel excitation–contraction cou-

pling determines not only the great density of mitochon-

dria, but also their specific arrangement within the

cardiomyocytes. In mature cardiomyocytes, mitochondria

are tightly packed between the sarcomere myofibrils or

between the myofibrils and the plasma membrane, or

clustered nearby the nucleus [1]. Furthermore, mitochon-

dria in cardiomyocytes are closely associated with the

sarcoplasmic reticulum (SR), the major compartment for

Ca2? storage and release, required for cardiac contraction

[26, 27]. Such mitochondrial localization provides close

contact with sarcomeres and efficient SR-mitochondrial

crosstalk, linking high Ca2? microdomains and energy

generation organelles during excitation–contraction cou-

pling [28]. However, this unique arrangement significantly

restricts mitochondrial dynamics in adult cardiomyocytes

compared to other cell types (e.g., neurons, fibroblasts or

liver cells). Notably, the major proteins, which mediate

mitochondrial dynamics, are highly expressed in the

mammalian myocardium and their cardiomyocyte-specific

genetic ablation is lethal [29–33]. Increasing evidence

suggests that fusion/fission factors in adult cardiomyocytes

play essential noncanonical roles in cardiac development,

Ca2? signaling, mitochondrial quality control and cell

death.

In this review, we will provide an overview of the

general mechanisms of mitochondrial fusion and fission,

and the core proteins that mediate these complex processes.

Then, we will discuss recent progress in our understanding

of the role of mitochondrial dynamics in the pathogenesis

of HF, focusing on noncanonical functions of fusion/fission

proteins in the mitophagic removal of damaged mito-

chondria and in the initiation of cell death. The potential of

therapeutic targeting of mitochondrial dynamics proteins

will also be discussed.

Mechanisms of mitochondrial dynamics

Evolutionary conserved large GTPases, related to the

dynamin superfamily, along with a number of binding

partners promote both mitochondrial fusion and fission

(Table 1) [20, 34–36]. Importantly, these dynamin family

GTPases are highly expressed in the human adult heart.

Mitochondrial fusion

In mammals, the dynamin family GTPases—two mitofusin

isoforms, Mfn1 (Mgm1 in yeast) and Mfn2, and optic atro-

phy protein 1 (OPA1; Fzo1 in yeast)—are the core compo-

nents of the mitochondrial fusion machinery [20, 37].

Mfn1 and Mfn2 share a similar molecular architecture:

the N-terminal GTPase domain, heptad-repeat domain 1

(HR1), two transmembrane (TM) domains, which anchor

the proteins in the outer mitochondrial membrane (OMM),

a short loop exposed in the intermembrane space (IMS) and

the C-terminal heptad-repeat domain 2 (HR2) (Fig. 2a)

[38]. The TM domains of Mfn1 and Mfn2 are embedded in

the OMM, while their HR1 and HR2 protrude into the

cytosol, where HR2 mediates interaction with their coun-

terparts in adjacent mitochondria [38–40]. Mfn2, but not

Mfn1, is also localized in the endoplasmic reticulum (ER)/

SR and is involved in tethering of mitochondria with these

organelles [41].

OPA1 is also the dynamin-related GTPase composed of

an N-terminal mitochondrial targeting sequence, cleaved

by matrix-processing peptidase (MPP), TM domain, HR

domain, GTPase domain, middle domain and a C-terminal

GTPase effector domain (Fig. 2b) [42]. OPA1 is localized

in the inner mitochondrial membrane (IMM) and the

intermembrane space [43].

OPA1 is regulated at both mRNA and protein levels.

Differential splicing generates eight distinct mRNA OPA1

splice forms depending on the tissue [44]. Multiple OPA1

isoforms result from processing at two sites between the

N-terminal TM region and HR [20, 36]. In mammals,

several proteases, such as presenilin-associated rhomboid-

like protease (PARL), i-AAA metalloprotease (Ymel), m-

AAA metalloprotease (paraplegin) and zinc metallopro-

tease OMA1, catalyze OPA1 cleavage [45–52]. As a result,

long OPA1 isoforms (L-OPA1), containing the TM

domain, and short isoforms (S-OPA1), lacking the TM

domain, can be generated (Fig. 2b). L-OPA1 is anchored to

the IMM by its TM domain, while S-OPA, which lacks the

TM, is targeted to the IMM via its association with the

IMM-anchored L-OPA1 [46, 47]. The loss of mitochon-

drial membrane potential induces L-OPA1 cleavage lead-

ing to accumulation of S-OPA1 isoforms and inhibition of

fusion and targeting mitochondria to mitophagy [48, 53].

Furthermore, proapoptotic stimuli induce OMA1-mediated

OPA1 cleavage resulting in the formation of fusion inac-

tive S-OPA1 isoforms [50].

According to current paradigm, mitochondrial fusion is

a 3-step process, which includes OMM tethering followed

by a highly coordinated OMM and IMM fusion. First, the

HR2 of mitofusins of adjacent mitochondria interacts to

form homodimers (Mfn1–Mfn1 or Mfn2–Mfn2) or more

potent heterodimers (Mfn1–Mfn2) to tether approaching

mitochondria [40]. This initial docking step brings the

OMM of two mitochondria close together to initiate the

OMM fusion. After fusion of OMM, OPA1 mediates IMM

fusion [54]. GTP hydrolysis catalyzed by the GTPase

activities of Mfn1/Mfn2 and OPA1 provides energy for

these processes [36]. In yeast, an additional OMM protein
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Ugo1 coordinates the OMM and IMM fusion [55, 56]. In

higher eukaryotes, no structural or functional Ugo1

equivalents have been found; hence, the precise mechanism

underlying the coupling of the OMM and IMM fusion

remains to be determined. It has been hypothesized that

interactions between mitofusins and OPA1 may be a part of

such coordination mechanism [57].

Mitochondrial fission

In mammals, mitochondrial fission is under control of a

80-kDa dynamin-related protein 1 (Drp1; Dnm1 in yeast),

also known as dynamin-like protein 1 (Dlp1) [17, 20, 37,

58]. Drp1 is the dynamin family GTPase composed of an

N-terminal GTPase domain, middle domain and a C-ter-

minal GTPase effector domain essential for self-assembly

(Fig. 2b) [59]. Drp1 is mainly a soluble cytosolic protein,

but its subpool colocalizes with mitochondria at sites of

future fission [60, 61]. It forms dimers/tetramers in the

cytosol and higher-order structures upon interaction with

membranes [62, 63]. Cytosolic Drp1 is recruited to mito-

chondria by interaction with OMM proteins, such as Fis1,

Mff and mitochondrial dynamics proteins of 49 and 51 kDa

(MiD49 and MiD51, respectively) [64–67].

Fis1 is a small (*17 kDa) single-pass TM protein with

a C-tail anchored in the OMM [64, 68, 69]. Its N-terminal

multiple tetratricopeptide repeat motif, facing the cytosol,

is thought to be involved in the recruitment of Drp1 to

mitochondria (Fig. 2b) [70–73]. Mff contains N-terminal

heptad repeats, coiled-coil domain and a C-terminal TM

tail, which anchor it to the OMM (Fig. 2b) [74]. In contrast

to the uniform Fis1 localization in the OMM, Mff mainly

colocalizes with the Drp1 foci on the OMM during fission.

However, the specific roles of Fis1, Mff and MiD49/51

in the recruitment of Drp1 to mitochondria and Drp1-me-

diated fission are uncertain [17, 58]. Yeast Fis1 is essential

for the recruitment of Dnm1 (yeast orthologue of mam-

malian Drp1) [75], in mammals; however, Fis1 appears to

be dispensable for Drp1 recruitment [65]. A recent study

has shown that Fis1, Mff and MiD49/51 contribute to Drp1

recruitment; however, they can serve as Drp1 receptors on

the OMM independently of each other [67]. Furthermore,

both Fis1 and Mff, beyond their role in Drp1 recruiting,

appear to facilitate Drp1 assembly into spirals on the OMM

during fission [67].

According to current paradigm, mitochondrial fission is

coupled to the inhibition of the mitochondrial fusion

machinery. Cytosolic Drp1 as small oligomers is recruited

to mitochondria through interactions with several OMM

proteins, including Fis1, Mff and MiD49/51. Drp1 oligo-

mers polymerize into spiral structures around the mito-

chondria and form fission foci, which constrict and divide

mitochondria in a GTP-dependent manner [17, 58].

Recently, it has been shown that MiD51 can stimulate the

GTPase activity of Drp1 and therefore assist Drp1-medi-

ated constriction [76, 77]. Several additional proteins, such

Table 1 Core components of the human mitochondrial fusion and fission machineries

Protein Location Function Disorder

Fusion proteins

Mitofusin 1 (Mfn1) OMM Dynamin family GTPase;

GTP-dependent OMM fusion

Unknown

Mitofusin 2 (Mfn2) OMM Dynamin family GTPase;

GTP-dependent OMM fusion

Charcot–Marie–Tooth

type 2A, pulmonary arterial

hypertension, arterial restenosis

Optic atrophy protein 1

(OPA1)

IMM (L-OPA1)

IMM and IMS (S-OPA1)

Dynamin family GTPase;

GTP-dependent IMM fusion

Optic atrophy type 1, hypertension

Fission proteins

Dynamin-related

protein 1 (Drp1, also

known as Dlp1)

Cytosol and OMM through

interaction with Mff, Fis1

and MiD49/51

Dynamin family GTPase; forms

oligomers;

GTP-dependent fission

Huntington’s disease, Parkinson’s

disease, pulmonary arterial

hypertension, congenital

microcephaly

Fission protein 1 (Fis1) OMM Putative factor for Drp1

recruitment to the OMM

Unknown

Mitochondrial fission

factor (Mff)

OMM Putative factor for Drp1

recruitment to the OMM

Unknown

Mitochondrial dynamics

proteins of 49/51 kDa

(Mid49/51)

OMM Putative factor for Drp1

recruitment to the OMM

Unknown

IMM mitochondrial inner membrane, IMS intermembrane space, OMM mitochondrial outer membrane, L- and S-OPA1 long and short OPA1

isoforms, respectively
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as mitochondrial protein of 18 kDa (MTP18), ganglioside-

induced differentiation-associated protein 1 (GDAP1),

endophilin B1 (Endo B1) and leucine-rich repeat kinase 2

(LRRK2), may contribute to mitochondrial fission; how-

ever, their roles in the process remain to be determined [17,

58].

Regulation of mitochondrial dynamics

Opposing processes of mitochondrial fusion and fission are

tightly regulated to maintain mitochondrial morphology

and function in response to changing conditions [17, 58].

The core components of the mammalian machineries that

promote mitochondrial dynamics represent main targets for

complex regulatory mechanisms operating at multiple

levels.

Complex regulation of OPA1 by mRNA and proteolytic

processing has already been described (Fig. 2b). Mfn2

concentration is regulated at the transcriptional level.

Peroxisome proliferator-activated receptor c coactivator 1a

(PGC-1a), one of the critical regulators of mitochondrial

biogenesis, upregulates Mfn2 expression in response to

increased metabolic demand [78]. Importantly, downregu-

lation of PGC-1a associated with reduced Mfn2 expression

has been found in rats and in patients with pulmonary

arterial hypertension that can contribute to the development

of HF [79, 80].

Furthermore, several E3 ubiquitin-protein ligases,

including anaphase-promoting complex (APC/C)CDH1,

Huwe1 and Parkin, catalyze the ubiquitination of both

Mfn1 and Mfn2 inhibiting their fusion activity as well as

targeting them to degradation [81–87]. Stress-induced

mitochondrial depolarization—the sign of mitochondrial

damage—targets PTEN-induced putative kinase 1 (PINK1)

and/or JNK to the OMM [82]. PINK1 selectively accu-

mulated on dysfunctional mitochondria phosphorylates

Mfn2 on Thr111 and Ser442 recruits and activates cytosolic

E3 ubiquitin ligase Parkin to ubiquitinate Mfn2 directing

thereby damaged mitochondria to mitophagy [85, 88–91].

PINK1/Parkin mediates the ubiquitination of Mfn1 and

Fig. 2 Molecular structure of core mitochondrial fusion and fission

proteins. a Fusion proteins. Mitofusins, Mfn1, Mfn2, located in the

outer mitochondrial membrane (OMM), contain a GTPase domain

(GTPase), two heptad-repeat regions (HR1 and HR2) and two

transmembrane (TM) domains. Phosphorylation sites of Mfn2 are also

shown. OPA1 is located in the inner mitochondrial membrane (IMM)

and contains mitochondrial targeting sequence (MTS), TM domain,

heptad-repeat region (HR), GTPase domain, middle domain (MD)

and GTPase effector domain (GED). Proteolytic cleavage within

MTS by matrix-processing peptidase (MPP) and at the S1 and S2 sites

by metalloproteases, which produce long OPA1 isoforms (L-OPA1)

and short isoforms (S-OPA1), is shown by arrows. b Fission proteins.

Cytoplasmic dynamin-related protein 1 (Drp1) contains a GTPase

domain, middle domain (MD), GTPase effector domain (GED) and

heptad-repeat region (HR). Phosphorylation sites of Drp1 are also

depicted. Fission protein 1 (Fis1) and mitochondrial fission factor

(Mff) are anchored by their TM domains to the OMM. In addition,

Fis1 contains tetratricopeptide repeat (TPR), while Mff contains

heptad-repeat region (HR) and coiled-coil region (CC)
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Mfn2 as well as other mitochondrial proteins, such as

voltage-dependent anion channel 1 (VDAC1) and p62 (also

known as sequestosome 1), targeting them to proteosomal

degradation [85, 92, 93].

Overexpression of fission protein Drp1 does not induce

mitochondrial fission suggesting that post-translational

modifications, which affect its mitochondrial recruitment,

GTPase activity or self-assembly ability, play an essential

regulatory role [17, 58]. Phosphorylation of Drp1 at Ser616

and Ser637 has been extensively studied. Cyclin B-depen-

dent kinase (CDK1) phosphorylates Drp1 at Ser616 to target

Drp1 to the mitochondria and stimulates mitochondrial

fission ensuring inheritance of mitochondria by daughter

cells during mitosis [94, 95]. In this process another mitotic

kinase Aurora A, the small Ras-like GTPase RALA, its

effector RALBP1 and Mff, but not Fis1, appear to be

involved [94, 96]. As the adult human heart has low mitotic

potential, this regulatory event occurs infrequently in this

organ. Oxidative stress induces protein kinase Cd[delta]-
mediated phosphorylation of human Drp1 at Ser616

resulting in aberrant mitochondrial fission associated with

hypertension-induced brain damage [97].

Both CDK1 and cAMP-dependent protein kinase A

(PKA) phosphorylate human Drp1 at Ser637 near the GED

domain interfering with the interaction between GED and

GTPase domains. This results in the inhibition of Drp1

GTPase activity and its recruitment to mitochondria and

eventually in attenuation of mitochondrial fission [98, 99].

The PKA-mediated Drp1 phosphorylation protects mito-

chondria from autophagosomal degradation and enhances

cell viability during nutrient starvation [100, 101]. Con-

versely, the phosphatase calcineurin dephosphorylates

Drp1-Ser637 in a Ca2?-dependent manner targeting Drp1 to

mitochondria and inducing mitochondrial fission [99, 102].

Moreover, the dephosphorylation of Drp1-Ser637 is

involved in apoptotic and programmed necrotic death

pathways [98, 99, 103, 104].

Drp1 is also subject of O-linked-N-acetyl-glucosamine

glycosylation (O-GlcNAcylation) and S-nitrosylation [105,

106]. In cardiomyocytes, the O-GlcNAcylation of Drp1 at

Thr585 and Thr586 has led to Drp1-Ser637 dephosphoryla-

tion associated with mitochondrial fragmentation and loss

of membrane potential [106, 107]. The O-GlcNAcylation

of OPA1 linked to mitochondrial fragmentation has also

been demonstrated in neonatal cardiomyocytes [106].

Intriguingly, the phosphorylation of the same residue by

calcium/calmodulin-dependent protein kinase 1a (CaMKIa
[alpha]) and the Rho-associated coiled-coil-containing

protein kinase1 (ROCK1) induces Drp1 recruitment to

mitochondria and enhances mitochondrial fission [108,

109]. Although the reason of this seemingly different

consequence of Drp1-Ser637 phosphorylation is yet unclear,

it might be linked to tissue-specific response and/or

phosphorylation of additional factors, which may be

involved in Drp1-promoted fission [17].

Mitochondrial dynamics, mitophagy and cell death
in heart failure

In contrast to other cell types and neonatal cardiomyocytes,

in adult human cardiomyocytes, mitochondrial fusion and

fission are very rare events due to specific intracellular

mitochondrial arrangements [110]. Growing evidence

suggests that the cardiomyocyte mitochondrial dynamics

machinery performs additional noncanonical functions

governing Ca2? handling, mitophagy, mitochondrial qual-

ity control and cell death pathways. Nevertheless, recent

conditional cardiac-specific ablation of both Mfn1 and

Mfn2 has provided clear evidence that mitochondrial

fusion occurs in adult mammalian cardiomyocytes, albeit

at extremely slow rate [29]. Moreover, perinatal cardiac-

specific deletion of both mitofusins caused early lethality

due to severe mitochondrial abnormalities associated with

cardiomyopathy [30]. The conditional Mfn1/Mfn2 double

knockout in the adult mouse heart has led to mitochondrial

fragmentation associated with severe cardiomyocyte res-

piratory defects culminating in HF within 6–8 weeks [29].

These findings highlight the critical role that mitofusins

play in cardiac development and homeostasis.

Importantly, single knockout of Mfn1 and Mfn2 in mice

has displayed distinct phenotypes. Mfn1 deficiency resul-

ted in fragmented mitochondria and elevated apoptosis in

neonatal rat cardiac myocytes, and these defects can be

rescued by Mfn1 overexpression [111]. However, although

mature mouse Mfn1-/- cardiomyocytes have also accu-

mulated fragmented mitochondria, they have paradoxically

been more resistant to stress-induced mitochondrial per-

meability transition pore (MPTP) opening and apoptosis

[112].

Unlike Mfn1 deficiency, ablation of Mfn2 in mouse

heart has not impaired mitochondrial fusion as evidenced

by increased mitochondrial size. However, Mfn2-/- car-

diac mitochondria displayed dissipation of mitochondrial

membrane potential and elevated ROS production [113,

114]. Importantly, Mfn2-deficient mice developed cardiac

hypertrophy and ventricular dysfunction with age [91].

Furthermore, cardiac-specific deletion of Mfn2, but not

Mfn1, has impaired tethering of mitochondria to SR and

disrupted Ca2? handling that is critical for cardiac function

[113, 114].

Another fusion protein OPA1 also plays an important

role in heart physiology. OPA1 deficiency caused mito-

chondrial fragmentation and abnormal cristae remodeling

[115]. Heterozygous OPA1?/- mice exhibited mitochon-

drial dysfunction, mtDNA instability and elevated ROS
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production and developed cardiomyopathy [116, 117].

Consistently, cardiomyocytes derived from these animals

have characterized abnormal Ca2? handling, contractility

and high susceptibility to ischemia reperfusion injury (IRI)

[116]. Importantly, reduced OPA1 levels associated with

accumulation of fragmented mitochondria have been

reported in human failing hearts [118].

Mitochondrial fusion has traditionally been envisioned

as a prosurvival antiapoptotic mechanism. Indeed, in some

cell types silencing of Mfn1 or Mfn2 has enhanced cellular

susceptibility to apoptotic stimuli, whereas overexpression

of Mfn2 or OPA1 has attenuated apoptosis [115, 119, 120].

However, recent studies on mature cardiomyocytes unex-

pected effects of inhibiting mitochondrial fusion have been

reported (see also above). Ablation of both mitofusins in

the adult heart has led to no significant change in MPTP

sensitivity, a key event in the initiation of apoptosis [29].

Similarly, although cardiac mitochondria of heterozygous

Opa1?/- mice displayed disorganized mitochondrial cris-

tae, unexpectedly they exhibited higher Ca2? retention

capacity and delayed MPTP opening under Ca2? stimula-

tion [117]. In addition, it has been demonstrated that

mitochondrial fusion can be harmful to the cell when

damaged mitochondria are fused with functional organelles

due to attenuated mitophagy [121].

Prolonged and/or high-level stress can eventually lead to

mitochondrial damage and dysfunction. Mitophagy

induced by cardiac stress removes damaged dysfunctional

mitochondria preventing thereby oxidative damage, which

can otherwise initiate apoptosis and ultimately HF [122,

123]. Increasing evidence suggests that Mfn2 plays a

complex role in cardiac physiology and pathophysiology

orchestrating mitochondrial fusion, mitochondrial-SR Ca2?

signaling, mitochondrial quality control and cell death [28,

124, 125]. Its localization in the OMM and the ER/SR may

facilitate organelles tethering and autophagosome forma-

tion and maturation during mitophagy [126]. It has also

been suggested that regulation of mitophagy rather than

mitochondrial remodeling per se is a primary role of Mfn2

in the adult human heart [21].

Mitofusins on the damaged mitochondria are rapidly

ubiquitinated by the PINK1/Parkin complex (critical

mediator of mitophagy), degraded by the proteosome,

preventing fusion of dysfunctional mitochondria with the

healthy mitochondrial network [127, 128]. Stabilization

and accumulation of mitochondrial kinase PINK1 in

damaged mitochondria is the initiating signal for translo-

cation of the cytosolic Parkin E3 ubiquitin ligase to dam-

aged organelles [129, 130]. Although crosstalk between

PINK1 and Parkin is yet poorly understood, PINK1-me-

diated phosphorylation of Mfn2 is essential for Parkin

recruitment to damaged mitochondria [91]. Parkin pro-

motes ubiquitination of multiple OMM proteins in

dysfunctional mitochondria, including both Mfn 1 and 2,

attracting autophagosomes and initiating thereby mito-

phagy. It is well established that loss-of-function mutations

in the PINK1 and Parkin genes cause early-onset autoso-

mal recessive Parkinson’s disease [131, 132]. Recently, it

has been shown that impairment in PINK1/Parkin-pro-

moted mitophagy has also led to cardiac dysfunction.

Indeed, Pink1-/- mice exhibited abnormal cardiac mito-

chondrial function and elevated oxidative stress [133],

whereas deletion of Parkin resulted in accumulation of

abnormal mitochondria associated with heart damaged

with age [122, 123]. Importantly, Mfn2-/- mice displayed

reduced PINK1/Parkin-mediated mitophagy associated

with severe cardiac dysfunction leading to HF by 30 weeks

of age [134].

Reduced OPA1 levels in the IMM of depolarized

mitochondria have also contributed to the prevention of the

damaged mitochondria to be fused, targeting them to

mitophagy [135]. Consistently, inhibition of the autophagic

processes has led to accumulation of dysfunctional mito-

chondria in various tissues, especially those with elevated

energy demands, such as brain, heart, kidney, liver and

pancreatic b [beta] cells [135–138].

Mitochondrial fission leading to organelle fragmentation

is a prerequisite for mitophagy. Drp1 recruitment and Fis1

recruitment to mitochondria are the early events of the

process in various cells, including cardiomyocytes [135,

139–142]. Cardiac-specific Drp1-/- mice exhibited accu-

mulation of dysfunctional mitochondria due to suppressed

mitophagy, developed left ventricular dysfunction and died

within 13 weeks. Furthermore, cardiac-specific heterozy-

gous Drp1?/- mice exhibit significantly greater infarct size

after ischemia/reperfusion than control animals [143].

Other proteins implicated in mitochondrial dynamics are

also active players in these processes forming the complex

mitochondrial dynamics-mitophagy-cell death interactome

[21, 144, 145].

Apoptotic stimuli have triggered mitochondrial hyper-

fusion followed by mitochondrial fragmentation concomi-

tantly with OMM permeabilization and cytochrome

c release [146, 147]. Consistently, fission protein Drp1 is

implicated in this process and its suppression has not only

resulted in reduced mitochondrial fission but also pre-

vented cytochrome c release and subsequent apoptosis

[148–151]. Of note, Drp1 depletion has not completely

attenuated mitochondrial fission suggesting that additional

factors contribute to this process during apoptosis [152,

153]. Drp1 collaborates with the proapoptotic Bcl-2 family

proteins Bax and Bak by enhancing Bax oligomerization

during apoptosis [154–156]. Apoptotic Bax activation

induces Bax/Bak-mediated sumoylation of Drp1 leading to

Drp1 translocation from the cytosol to mitochondria to

promote mitochondrial fission [157].
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Another mechanism contributing to ischemia-induced

mitochondrial fragmentation has recently been suggested.

It has been shown that myocardial ischemia has down-

regulated miR-499 leading to the activation of calcineurin

[158]. Activated calcineurin dephosphorylates and acti-

vates Drp1 stimulating its recruitment to mitochondria, to

promote mitochondrial fission. Usually, mdivi-1, a phar-

macological Drp1 inhibitor, has prevented mitochondrial

depolarization, fragmentation and ischemia-induced cell

death in both HL-1 cells and adult cardiomyocytes [151,

159]. Basically, the mdivi-1 inhibition of Drp1-mediated

fission has a cardioprotective effect reducing significantly

myocardial infarction size after IRI [159]. Attenuation of

other fission proteins, such as Fis1, Mff or MTP18, has also

led to a delay in cytochrome c release and reduced apop-

tosis [74, 149, 160].

In addition to Bax/Bak proteins, two other members of

Bcl-2 family, the BH3-only proteins Bnip3 and Nix (also

known as Bnip3L), which are involved in post-infarction

cardiac remodeling and cardiomyocyte death, also con-

tribute to this complex process [21]. Nix-/- mice have

developed cardiac dysfunction and hypertrophy with age,

while double Nix/Bnip3 knockout mice accumulated dys-

functional mitochondria and developed cardiac dysfunction

at about twice the rate than Nix-/- mice [161].

Consistent with their role in mitochondrial turnover,

overexpression of Bnip3 or Nix has led to activation of

PINK1/Parkin-mediated mitophagy playing a protective

role [142, 162]; however, upon cardiac stress these proteins

can exert detrimental effects. Bnip3 mediates cardiomy-

ocyte death in ischemia-induced HF [163, 164], whereas

Nix is upregulated in hypertrophic hearts and promotes the

transition from cardiac hypertrophy to HF [165–167].

Similar to Mfn2, these proteins have dual subcellular

localization to mitochondria and adjacent ER/SR. Inter-

estingly, Nix and Bnip3 localization to the mitochondria or

ER/SR determines whether they mediate cardiomyocyte

death, predominantly through apoptosis or necrosis,

respectively [167–169].

In summary, under physiological conditions, basal

levels of mitophagy are critical for maintaining the

appropriate number of functional mitochondria, preserving

therefore cardiac integrity and contractile function. Mito-

phagy also plays an essential role in the heart adaptation to

mild stress. However, upon prolonged and/or high stress,

mitophagy can be detrimental to the heart. Imbalanced

activation or inhibition of this process can lead to exces-

sively reduced number of functional mitochondria or

accumulation of damaged organelles, respectively, result-

ing in cardiac dysfunction and cardiomyocyte death (via

apoptosis or necrosis) and culminating in HF (Fig. 3)

[170].

Discussion

Over the past decade, cardiac mitochondria have emerged

as critical integrators of energy production, ROS genera-

tion, Ca2? handling and multiple signaling and cell death

pathways. Tightly balanced processes of mitochondrial

fusion and fission contribute to the multifaceted role that

mitochondria play in myocardial physiology. Great pro-

gress has been recently achieved deciphering the complex

multiprotein machineries that promote mitochondrial

dynamics, and growing evidence suggests that defects in

the core components of these machineries can cause

alteration in mitochondrial structure and function leading

eventually to various human disorders, including HF.

The most established causative link between mutations

in the genes encoding proteins, which mediate mitochon-

drial fusion and fission, and pathological conditions has

been demonstrated in inherited neurological and neurode-

generative disorders, including autosomal dominant optic

atrophy, Charcot–Marie–Tooth neuropathy and Wolf–

Hirschhorn syndrome. Abnormalities in mitochondrial

dynamics have also been associated with age-related pro-

gressive neurodegenerative disorders, such as Alzheimer’s,

Parkinson’s and Huntington’s diseases. Notably, patients

with Parkinson’s and Danon’s diseases, which are charac-

terized by impaired mitophagy, develop cardiomyopathy

and HF [171, 172].

Although the human heart has a great density of

mitochondria and is characterized by high levels of the

major proteins implicated in mitochondrial dynamics, we

have only begun to uncover the multifaceted role of the

fusion–fission processes in cardiac physiology and

pathophysiology. The simplified view that upregulation of

the fusion machinery is cardioprotective, while upregu-

lation of the fission factors inevitably lead to mitochon-

drial fragmentation and trigger cell death, has recently

been challenged. Similarly, mitophagy, a highly complex

and tightly regulated pathway, is mediated by the coor-

dinated action of multiple proteins. As a mitochondrial

quality control mechanism mitophagy plays a critical

cardioprotective role by removing dysfunctional mito-

chondria, although when impaired it can be detrimental to

the heart.

The role that fusion protein Mfn2 and other mitochon-

drial dynamics factors play in mitophagy and stress-in-

duced cardiomyocyte death remains controversial and

requires further investigation. Recent evidence suggests

that in the human heart Mfn2 interacts with various pro-

teins and primarily functions as a key orchestrator of

mitochondrial fate and cardiac homeostasis [21, 125].

However, the precise molecular mechanisms underlying

the interaction of mitochondrial dynamics proteins with
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mitophagy and cell death factors, and their involvement in

the development and progression of HF remain to be

determined.

Pharmacological targeting of components of the mito-

chondrial fusion and fission machineries that shift the

balance toward normal mitochondrial numbers, morphol-

ogy and function may be a novel therapeutic modality for

CVD, including HF. One of the first evidence that a

specific Drp1 inhibitor, mdivi-1, with direct effects on

mitochondrial fission can act as a preconditioning agent,

protecting the myocardium against IRI, is very promising

[159]. Another recent example of beneficial targeting of

mitochondrial dynamics is the generation of transgenic

mice overexpressing miR-499, which exhibited protection

against post-ischemic cardiomyocyte death, myocardial

infarction and ventricular remodeling [158]. The emerging

critical role of Mfn2 and OPA1 in the differentiation of

embryonic stem cells into cardiomyocytes may also be

important for the development of innovative cell-based

therapy for HF [173]. Lastly, further research is needed to

establish whether the targeting of mitochondrial fusion–

fission and mitophagy machineries can restore the number,

morphology and function of this critical organelle and

whether it could be translated into clinically relevant

therapy for HF.

Conclusions

• Mitochondria are able to vary their morphology

through complex processes of fusion and fission. These

processes also allow the transmission of signals and the

exchange of metabolites within the cell.

• Mitochondrial fusion and fission are implicated in

numerous biological processes including embryonic

development and cell death.

• It is important to understand at which stage mitophagy

is adaptive and when it is maladaptive, since excessive

mitophagy may deplete the mitochondrial pool, which

if falling below required level for cardiac contractile

activity or maintenance of cellular integrity will lead to

cardiac dysfunction and to the death of individual

cardiomyocytes.

• Changes in mitochondrial morphology may contribute

to cardiac development, the myocardial response to IRI,

and HF.

• Failure to remove damaged mitochondria might

increase cellular death from excessive ROS generated

by defective mitochondria.

• Targeting the mitochondrial fusion–fission and mito-

phagy machineries may restore the number, morphol-

ogy and function of this organelle. However, further

Fig. 3 Mitophagy and mitochondrial quality control. a Normal

mitophagy begins with the initiation and elongation of a double-

membraned autophagic vesicle. The vesicle then sequesters and

engulfs mitochondria for degradation. Proper regulation of mitophagy

leads to mitochondrial quality control and cellular homeostasis.

b Increased mitophagy may greatly reduce the pool of functional

mitochondria. With too few mitochondria, the cell loses its ability to

produce sufficient energy and eventually dies. c Reduction in

mitophagy causes accumulation of dysfunctional mitochondria. The

dysfunctional mitochondria generate excessive ROS and release

prodeath proteins, triggering rapid cell death. From Shires and

Gustafsson [170] with permission of Springer Publishing Co.
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research is needed to translate these findings into

successful therapy for HF.
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