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Abstract Despite significant progress in cardiovascular

medicine, myocardial ischemia and infarction, progressing

eventually to the final end point heart failure (HF), remain

the leading cause of morbidity and mortality in the USA.

HF is a complex syndrome that results from any structural

or functional impairment in ventricular filling or blood

ejection. Ultimately, the heart’s inability to supply the

body’s tissues with enough blood may lead to death.

Mechanistically, the hallmarks of the failing heart include

abnormal energy metabolism, increased production of

reactive oxygen species (ROS) and defects in excitation–

contraction coupling. HF is a highly dynamic pathological

process, and observed alterations in cardiac metabolism

and function depend on the disease progression. In the

early stages, cardiac remodeling characterized by normal

or slightly increased fatty acid (FA) oxidation plays a

compensatory, cardioprotective role. However, upon pro-

gression of HF, FA oxidation and mitochondrial oxidative

activity are decreased, resulting in a significant drop in

cardiac ATP levels. In HF, as a compensatory response to

decreased oxidative metabolism, glucose uptake and gly-

colysis are upregulated, but this upregulation is not suffi-

cient to compensate for a drop in ATP production. Elevated

mitochondrial ROS generation and ROS-mediated damage,

when they overwhelm the cellular antioxidant defense

system, induce heart injury and contribute to the progres-

sion of HF. Mitochondrial uncoupling proteins (UCPs),

which promote proton leak across the inner mitochondrial

membrane, have emerged as essential regulators of mito-

chondrial membrane potential, respiratory activity and

ROS generation. Although the physiological role of UCP2

and UCP3, expressed in the heart, has not been clearly

established, increasing evidence suggests that these pro-

teins by promoting mild uncoupling could reduce mito-

chondrial ROS generation and cardiomyocyte apoptosis

and ameliorate thereby myocardial function. Further

investigation on the alterations in cardiac UCP activity and

regulation will advance our understanding of their physi-

ological roles in the healthy and diseased heart and also

may facilitate the development of novel and more efficient

therapies.
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Introduction

Despite significant progress in cardiovascular medicine,

cardiovascular disease (CVD) remains the leading cause of

combined morbidity and mortality in Western industrialized

countries. According to the latest report from the American

Heart Association, in the USA in 2008, CVD accounted for

32.8 % of all deaths. Major contributors are coronary artery

disease, myocardial infarction (MI) and ischemic stroke,

leading eventually to the final end point of heart failure (HF)

[1, 2]. HF is a growing health problem, with a prevalence in

the USA of almost 6 million, and is expected to reach 8.5

million by 2030 [3–6]. More than 1 million Americans with

HF are hospitalized each year with a cost of approximately

$40 billion/year [4]. Furthermore, the outcome for patients

diagnosed with HF remains poor with approximately 50 %

mortality within 4–5 years [7].
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HF is ‘a complex syndrome that results from any

structural or functional impairment in ventricular filling or

ejection of blood’ [6]. Ultimately, this heart’s inability to

supply the body’s tissues with enough blood may lead to

death [8, 9]. Various types of heart damage, caused by

myocardial ischemia, MI, pressure and work overload and

genetic alterations, lead to cardiac remodeling progressing

to HF [10–14]. The failing heart is characterized by

impaired energy metabolism [15–20], increased production

of reactive oxygen species (ROS) [21–24] and abnormal

excitation–contraction coupling (ECC) [25–27].

HF is a highly dynamic pathological process, and

observed alterations in substrate preference and energy

metabolism depend on the disease progression [19, 20, 28–

30]. In the early stages, cardiac remodeling plays an

important compensatory, cardioprotective role with normal

or slightly increased fatty acid (FA) b-oxidation (FAO),

which provides 60–90 % of cardiac ATP production.

However, upon progression of HF, FAO and mitochondrial

respiratory activity decrease, resulting in cardiac ATP

content reduction to 60–70 % of its physiological levels.

As a compensatory response to decreased oxidative

metabolism, glucose uptake and glycolysis are upregulated;

however, this upregulation is not sufficient to compensate

for the drop in ATP production [31–33].

Mitochondrial function is particularly important in the

constantly energy demanding cardiomyocytes, in which

mitochondria generate up to 90 % of cellular adenosine

triphosphate (ATP) and occupy almost 1/3 of the cell

volume of a cardiomyocyte [30, 34–37]. Over the past two

decades, mitochondria have emerged not only as a pow-

erhouse of the cell, but also as critical integrators of other

essential cellular processes, such as cell death, contributing

to health and disease [38–40]. Recent studies of cardiac

mitochondria have convincingly demonstrated that the

structural and functional alterations of these multifaceted

organelles are implicated in the pathogenesis of various

CVD, such as dysrhythmias, myocardial ischemia, cardio-

myopathies and HF [15, 17, 41–47].

The double-membrane mitochondria use up to 90 % of

O2 consumed by the cell to mediate oxidative phosphory-

lation (OXPHOS), the process coupling the substrate oxi-

dation to ATP synthesis. In this process, the electrons

released upon oxidation of NADH (nicotinamide adenine

dinucleotide, reduced) and FADH2 (flavin adenine dinu-

cleotide, reduced), the major products of the Krebs cycle,

are transferred along the ‘respiratory chain,’ also known as

the ‘electron transport chain’ (ETC), to O2, the terminal

electron acceptor [48–50]. The ETC consists of four multi-

subunit enzyme complexes I–IV, embedded in the inner

mitochondrial membrane (IMM) and especially enriched in

the cristae, and two soluble electron carriers, cytochrome

c and coenzyme Q [51, 52]. According to Peter Mitchell’s

chemiosmotic theory, proposed more than 50 years ago,

the electron transfer generates a proton gradient (DpH)

across the IMM (protons outside and hydroxyl ions inside).

DpH along with the electrical gradient (DWm) forms the

proton-motive force (Dp also denoted as DlH), which

drives ATP synthesis from adenosine diphosphate (ADP)

and inorganic phosphate (Pi) by the F1F0 ATP synthase

(complex V) [53, 54].

However, OXPHOS is incompletely coupled, and pro-

tons can leak across the IMM and return to the mito-

chondrial matrix bypassing the F1F0 ATP synthase-

mediated ATP production [54]. This proton leak can reach

20–70 % of the cellular metabolic rate in various cell types

and depends on the presence of mitochondrial carrier

proteins, the adenine nucleotide translocase (ANT) and

uncoupling protein 1 (UCP1) in brown adipose tissue

(BAT) [55–58].

Originally, UCP1-mediated proton conductance was

believed to be a unique mechanism in BAT to generate

heating, which Mitchell called ‘protic heating,’ evolution-

arily acquired by mammals [54, 59–61]. However, it is

currently well recognized that such proton leak uncoupling

of OXPHOS occurs in other tissues, including the myo-

cardium, and distinct UCP1 paralogues are present in

various tissues and in all eukaryotic kingdoms: protists,

fungi, plants and animals [62–65]. Growing evidence

suggests that uncoupling proteins (UCPs) contribute to the

regulation of mitochondrial ROS production associated

with various disorders, including obesity, type 2 diabetes,

insulin resistance, tumorigenesis, atherosclerosis, HF and

aging [20, 64–67].

This review focuses on mitochondrial ROS generation

in the healthy and failing heart and on the emerging role of

UCPs in cardiac physiology and pathophysiology.

Oxidative stress and mitochondrial ROS production

In the heart, as one of the highest O2-consuming organs,

highly tuned balance between O2 supply and consumption

is vitally important to respond to physiological changes in

workload and to pathological stresses, such as hypoxia,

ischemia and excessive overload. ROS, including free

radicals (e.g., superoxide [O2
.-] and hydroxyl [.OH]), and

non-radical species (e.g., hydrogen peroxide [H2O2]), and

reactive nitrogen species (RNS) (e.g., nitric oxide [NO] and

peroxynitrite [ONOO-]), are permanently generated from

various intracellular sources [68–71].

Upon reduction of O2, one electron is added resulting in

the formation of O2
.-; the addition of the second electron

converts O2
.- into non-radical H2O2. The reduction of H2O2

in the presence of endogenous Fe yields the generation of

OH via the Fenton reaction. OH can also be generated
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through electron exchange between O2
.- and H2O2 in the

Haber–Weiss reaction. O2
.- can also react with NO, leading

to the production of ONOO-, the highly toxic lipid-soluble

RNS capable to damage multiple molecules, leading

eventually to cell dysfunction and death [70, 72–74]. At the

molecular level, ROS/RNS mediate cysteine and methio-

nine thiol oxidation, arginine and proline hydroxylation

and tyrosine nitration of various proteins and modifications

of other molecules affecting a variety of redox-sensitive

process.

Under physiological conditions, ROS/RNS exert a crit-

ical role of second messengers, inducing multiple signaling

pathways essential for cardiac function [23, 70, 75]. In

cardiomyocytes, physiological levels of ROS/RNS can

activate mitogen-activated protein kinases (MAPKs), such

as the extracellular signal-regulated kinase 1/2 (ERK1/2),

p38 and Jun N-terminal kinase (JNK) [76, 77], as well as

other protective kinases, such as phosphatidylinositol

3-kinase (PI3K), protein kinase B/Akt and PKC [78],

contributing to cardioprotection against ischemia/reperfu-

sion (I/R) injury (IRI) [75, 79, 80].

However, when ROS/RNS generation is sharply

increased and overwhelms the cellular antioxidant defense

system, the condition known as oxidative stress (OS), they

cause oxidative damage to a plethora of cellular macro-

molecules [23, 70, 75]. Among them are subunits of the

ETC complexes I, III and V [81, 82], multiple myocardial

proteins implicated in ECC, such as the ryanodine receptor

2 (RYR2) [83–86], myosin heavy chains [87], sarcoplasmic

reticulum (SR) Ca2?-ATPase 2a (SERCA2a) [88–90],

Ca2?/calmodulin-dependent kinase II (CaMKII) [91],

cAMP-dependent protein kinase A (PKA) [92–94], cGMP-

dependent protein kinase G 1a (PKG1a) [94, 95], and ion

channels and transporters, such as L-type Ca channels, the

plasmalemmal Ca2?-ATPase, the Na?/Ca2? exchanger

[96, 97]. S-nitrosylation of GAPDH and caspase-3 con-

tributes to the initiation of hyperglycemia and cardiomy-

ocyte death in the diabetic heart [98]. Oxidation of histone

deacetylases (HDACs) and transcription factors nuclear

factor-kB (NF-kB) and hypoxia-inducible factor 1 (HIF1)

modulate the transcription in response to OS [99–102]. A

recent list of ROS/RNS-modified key myocardial proteins

found in diabetic cardiomyopathy includes 30 entries

[103].

In addition to myocardial proteins, membrane lipids,

cardiolipin (CL) in particular, are also subject to ROS-

induced damage [104]. CL is a phospholipid predominantly

localized in the IMM and implicated in assembly and

function of the ETC, apoptotic signaling and mitochondrial

protein import [105–107]. Oxidation of CL results in its

pathogenic remodeling, affecting mitochondrial respiratory

activity and triggering mitochondria-dependent apoptosis

[106, 108–112]. Finally, excessive oxidative damage to

mitochondrial DNA (mtDNA), if overwhelms the repair

capacity, can cause severe mitochondrial dysfunction and

eventually cardiomyocyte death [113–117]. Accumulation

of oxidized and nitrated/nitrosylated proteins and lipids and

oxidative lesions in mtDNA can lead to myocardial

remodeling and dysfunction culminating eventually in HF

(Fig. 1).

In cardiomyocytes, the main sources of endogenously

generated ROS are mitochondria, NADPH oxidases

(NOXs), uncoupled NO synthases (NOSs) and xanthine

oxidase (XO). This review focuses on mitochondria-gen-

erated ROS/RNS and their role in the pathogenesis of HF.

Role of NOXs, NOSs and XO in myocardial physiology

and pathophysiology has been discussed in detail in recent

excellent reviews [23, 70, 75, 118].

Mitochondrial ROS

In cardiomyocytes, mitochondria are the major source of

ROS, which are generated as by-product of electron flow

through the ETC, predominantly at complexes I and III [64,

69, 119]. It is believed that complex I produces O2
.- on the

matrix side of the IMM, whereas complex III generates O2
.-

on both the matrix and intermembrane sides of the IMM

(Fig. 2). Complex I (NADH:ubiquinone oxidoreductase),

composed of approximately 45 subunits, promotes oxida-

tion of NADH to NAD. The electrons from NADH are

Fig. 1 Oxidative stress in the myocardium. Excessive generation of

reactive oxygen species (ROS) and reactive nitrogen species (RNS),

which overwhelms the capacity of antioxidant system, results in

oxidative damage to proteins, DNA and lipids. Oxidative damaged

cellular molecules affect a variety of essential cardiac processes,

including energy metabolism, excitation–contracting coupling, Ca2?

homeostasis and cardiomyocyte death. These detrimental alterations

lead to myocardial remodeling and dysfunction eventually culminat-

ing in heart failure (HF)
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accepted by the flavin mononucleotide (FMN) of complex I

and are then transferred through a series of Fe–S clusters to

ubiquinone (Q), resulting in its reduction to ubiquinol

(QH2) [120]. The FMN prosthetic group in the soluble arm

and the Q-binding site is mainly responsible for O2
.- gen-

eration by complex I [121–124].

Complex III (ubiquinol:cytochrome c oxidoreductase),

composed of 11 subunits, passes electrons from the ubi-

quinol produced by complex I and II to cytochrome c [125,

126]. The Q0 site of complex III is the major site respon-

sible for ROS production [127]. Although the electron

cycling process referred to the Q-cycle, in which lone

electrons are reused to produce QH2, prevents to utilize

these electrons for O2
.- production, complex III still

remains the main source of ROS generation [127–130].

O2
.- produced by complex I and III can further be con-

verted spontaneously or by action of mitochondrial Mn2?-

dependent superoxide dismutase (MnSOD) or cytosolic

Cu/ZnSOD to H2O2 [69, 71]. H2O2 is more stable than O2
.-

and can cross membranes and oxidize glutathione (GSH)

and thiol residues on various proteins, including kinases,

phosphatases and other enzymes, as well as transcription

factors [131]. Thus, H2O2 can modulate multiple signaling

pathways essential for cell adaptation. However, exces-

sively produced H2O2 results in the generation of highly

reactive OH, which causes cell damage contributing to IRI

[21].

It has recently been shown that NOX4, which is

expressed in cardiomyocytes and generates predominantly

H2O2, is located in the endoplasmic reticulum, nucleus and

mitochondria and therefore can be consider as a source of

mitochondrial ROS [75, 132]. Myocardial ischemia and

chronic pressure overload have activated NOX4 expression

in mouse hearts [133–135]. Transgenic mice with cardiac-

specific NOX4 overexpression have exhibited compro-

mised left-ventricular function and elevated apoptosis and

fibrosis upon aging [136]. Consistently, cardiac-specific

Nox4-/- mice have shown the reduced ROS levels in the

heart and attenuated apoptosis associated with improved

mitochondrial and cardiac function upon pressure overload

compared with wild-type animals [137]. Importantly, pre-

clinical studies of inhibitors specific for NOX4 and other

NOX isoforms for treatment various cardiovascular con-

ditions are in progress [138, 139].

In addition to the ETC-generated ROS on the IMM,

monoamine oxidases (MAOs), which appear to be local-

ized on the outer mitochondrial membrane (OMM), rep-

resent another potential mitochondrial source of ROS

(Fig. 2) [140]. These enzymes, present in two isoforms,

MAO-A and MAO-B, produce H2O2 and catalyze oxida-

tive deamination of catecholamines and biogenic amines

(e.g., epinephrine, norepinephrine and serotonin) [141].

Although the role of MAOs in the pathogenesis of human

HF remains yet to be determined, it has recently been

reported that MAO-A appears to contribute to adverse

cardiac remodeling in a mouse pressure-overload HF

model [142]. Functional role of MAOs in mitochondrial

ROS production and the pathogenesis of HF has to be

addressed in the future studies.

The presence of NOS in mitochondria was first reported

by Bates et al. [143] and subsequently confirmed by other

laboratories [144–147]. Despite some initial controversy

regarding the identity of mitochondrial NOS (mtNOS)

[148–152], current evidence suggests that mtNOS is a

splicing variant of nNOS, embedded into the IMM (Fig. 2)

[153–156]. Furthermore, the dependence of mtNOS activ-

ity on the function of the ETC complex I suggests their

association [157, 158]. Consistent with this hypothesis, it

has more recently been shown that inhibition of either

complex I or II or mtNOS has led to reduction in ROS

production in HF cardiomyocytes [159].

Fig. 2 Cardiac mitochondria are the main source of reactive oxygen

species (ROS). Superoxide (O2
.-) is generated as by-product of

electron flow through the electron transport chain (ETC), predomi-

nantly at complexes I and III. O2
.- can further be converted

spontaneously or by action of mitochondrial Mn2?-dependent super-

oxide dismutase (MnSOD) to hydrogen peroxide (H2O2). NADPH

oxidase 4 (NOX4), expressed in cardiomyocyte mitochondria,

endoplasmic reticulum and nucleus, appears to generate predomi-

nantly H2O2 contributing to mitochondrial ROS. Monoamine oxidase

(MAO), localized on the outer mitochondrial membrane (OMM), can

also contribute to H2O2 production. The reduction of H2O2 in the

presence of endogenous Fe2? or Cu2? yields the generation of

hydroxyl radicals (.OH) and hydroxyl anions (OH-). Mitochondrial

nitric oxide synthase (mtNOS), embedded in the inner mitochondrial

membrane (IMM), can generate nitric oxide (NO), which rapidly

reacts with O2
.- resulting in the production of peroxynitrite (ONOO-).

Mitochondrial uncoupling proteins (UCP), located in the IMM,

promote proton (H?) leak across the IMM from the intermembrane

space (IMS) to the matrix, dissipating the proton gradient (DpH) and

mitochondrial membrane potential (DWm), generated by electron flow

through the ETC, preventing excessive O2
.- generation
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mtNOS generates NO that reacts rapidly with O2
.-,

resulting in the production of ONOO-, a highly reactive

short-lived peroxide, which can modify and inactivate

several key mitochondrial proteins [160, 161]. ONOO-

nitrates and inhibits activity of mitochondrial aconitase, an

enzyme of Krebs cycle [162–164], and complexes I, II and

V (ATP synthase), compromising mitochondrial bioener-

getics [165, 166]. ONOO--mediated nitration of tyrosine

34 (Tyr-34) on MnSOD inactivates this essential antioxi-

dant amplifying mitochondrial OS [167–169]. MnSOD

Tyr-34 nitration has been detected in various CVD [170,

171]. Nitration of Tyr-74 on cytochrome c has resulted

in its translocation to the cytosol and nucleus and might be

related to apoptotic response [172, 173]. Importantly,

nitrated subunits of complex I and V and oxidized/nitrated

MnSOD have been detected in diabetic failing hearts [174–

176].

Antioxidant systems

In the heart, non-enzymatic and enzymatic antioxidative

defense systems are involved in the control of ROS/RNS

levels [70]. Non-enzymatic antioxidants include b-carotene

(a precursor of vitamin A), vitamins C (ascorbic acid) and

E (a-tocopherol), GSH, lipoic acid, ubiquinol (coenzyme

Q-10), urate, polyamines and polyphenols and other sub-

stances [70, 177, 178]. Ascorbic acid and GSH are the main

aqueous non-enzymatic scavengers playing a key role in

cellular redox homeostasis. Intracellular GSH provides

efficient protection against ONOO- and O2
.-, and cellular

susceptibility to ONOO- largely depends on GSH abun-

dance [73, 177].

Cytosolic and mitochondrial SODs, catalase (CAT) and

the mitochondrial thioredoxin (Trx)/peroxiredoxin (Prx)/

thioredoxin reductase and GSH/glutathione peroxidase

(GPx) systems represent the best characterized antioxidant

enzymes protecting the myocardium against OS [70, 179].

Superoxide dismutases (SODs)

SODs are key antioxidant enzymes, which catalyze the

very fast conversion (2 9 109 M-1 s-1) of O2
.- into

molecular O2 and H2O2 [180–182]. In humans, three types

of SODs with regard to the metal cofactor they contain are

known: Cu/ZnSOD, MnSOD and FeSOD. They have dis-

tinct structure and intracellular localization: Cu/ZnSOD is

a homodimeric enzyme located in the cytosol (also known

as SOD1 in humans) and in the extracellular space (also

known as extracellular SOD or SOD3), while MnSOD

(also known as SOD2) and FeSOD are homotetrameric

enzymes located in the mitochondrial matrix and peroxi-

somes and in the extracellular space, respectively [183].

Mitochondrial MnSOD accounts for up to 90 % of total

SOD activity in cardiomyocytes [70, 184].

Cu/ZnSOD deficiency in Sod1-/- mice has resulted in

high levels of oxidative damage associated with a signifi-

cant decrease in lifespan compared with wild-type animals

[185, 186]. Importantly, mutations in human gene encoded

Cu/ZnSOD have been shown to be associated with neu-

rodegenerative disorder amyotrophic lateral sclerosis (also

known as Lou Gehrig’s disease) [187–189].

The essential role of mitochondrial MnSOD has been

highlighted by studies on transgenic mice. Homozygous

deletion of the Sod2 gene encoded MnSOD in mice has led

to death within the first week of life with cardiomyopathy,

degeneration of neurons, lipid accumulation in the liver

and oxidative mitochondrial damage [190–193]. The most

severely affected tissues have been the high-energy

demanding heart and brain. Heterozygous Sod2?/- mice

have exhibited reduced MnSOD activity, elevated oxida-

tive mtDNA damage in the heart and have developed

cardiomyopathy during aging [114, 194]. Consistently,

MnSOD overexpression has mediated cardioprotective

effect against OS-induced cell death [195]. Furthermore,

MnSOD deficiency has been shown to be associated with

mtDNA damage and accelerate the development of ath-

erosclerosis in ApoE-/- mice [196]. However, in contrast

to data obtained from transgenic mice, current data on

dynamics of cardiac SOD activity in patients with HF are

controversial. Sam et al. [197] have reported decreased

SOD activity associated with elevated ROS generation in

the human failing heart, whereas others have failed to

detect any significant changes in myocardial SOD levels or

activities in patients with HF [198–200].

Catalase (CAT)

Mammalian CAT is a homotetrameric enzyme, which

promotes the reduction of H2O2 to H2O and O2 [201–203].

As mammalian CAT is located in the peroxisomes and

utilizes H2O2 generated during FAO in these organelles, it

is thought to be not directly implicated in mitochondrial

function. However, in some reports CAT has been found in

cardiac mitochondria [204, 205]. Treatment of cells with

H2O2 activates the Abelson (Abl) family of non-receptor

tyrosine kinases, c-Abl and Arg, that phosphorylate CAT

leading to its activation [206, 207]. To explore a role for

CAT in OS response transgenic mice, which overexpress

human CAT targeted to mitochondria (mCAT), have been

generated [208]. mCAT animals have displayed reduced

ROS production, oxidative mtDNA damage and deletion

accumulation and extended life spans. Importantly, cardiac

age-related alterations, including accumulation of mito-

chondrial protein oxidation, decreased cardiac SERCA2,

increased mtDNA mutations and deletions and
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mitochondrial biogenesis, increased ventricular fibrosis,

and enlarged myocardial fiber size, have significantly been

attenuated in mCAT mice [209–211]. Intriguingly, CAT-

deficient mice display no marked abnormalities, leaving

question on the precise role of CAT in OS response open to

debate [212].

Peroxiredoxins (Prxs) and glutathione peroxidases

(GPxs)

Both Prxs and GPxs play an important role in redox state

regulation by catalyzing the reduction of H2O2 to H2O and

limiting thereby H2O2-induced OS [179, 213–215]. Among

six mammalian Prx isoforms Prx3 and Prx5 are located in

mitochondria. Prxs function through H2O2 mediated oxi-

dation of its active cysteine site with subsequent reduction

of the active site by Trx enabling Prxs to act as a H2O2

sensor [214, 215].

Mammalian cells express eight GPx isoforms, among

them GPx1 is the predominant isoform and it is expressed

in the myocardium. GPxs are tetrameric enzymes con-

taining seleno-cysteine in the active site, which catalyze

the reduction of H2O2 to H2O via oxidation of GSH into its

disulfide form (GSSH) [179]. Similar to CAT, GPx1 can be

phosphorylated and activated by c-Abl and Arg [216].

Ablation of GPx1 in mice causes increased susceptibility to

H2O2-mediated OS and to myocardial IRI [217, 218].

Furthermore, GPx1 deficiency accelerates atherosclerotic

progression in ApoE-/- mice [219].

The role of Prxs and GPxs in ROS scavenging depends

on their relative abundance within mitochondria and on

levels of ROS. Highly abundant Prxs appear to be

responsible for conversion of low (nanomolar) levels of

H2O2 under physiological conditions, while similarly

active but less abundant GPxs can compete with Prxs at

elevated H2O2 concentrations upon OS [214].

Uncoupling proteins: structure, regulation and function

Mammalian cells have evolved multiple mechanisms to

tightly regulate levels of mitochondrial ROS. In addition to

ROS scavengers as the first line of defense, inducible

mitochondrial H? leak across the IMM controlled by UCPs

has emerged as an essential modulator of mitochondrial

function. UCPs located in the IMM promote proton trans-

port from the intermembrane space to the mitochondrial

matrix dissipating DpH. This UCP-regulated mild uncou-

pling plays an important physiological role to avoid over-

supply of electrons into the ETC adjusting energy

metabolism and preventing excessive mitochondrial ROS

generation [63–66, 220–222].

The UCP family

UCPs constitute a subfamily of the mitochondrial solute

carrier 25 (SLC25) protein family, which contains over 40

members that mediate transport of broad range of mole-

cules [223]. These ubiquitous eukaryotic trans-membrane

proteins with molecular masses of 31–34 kDa are metab-

olite transporters, sharing similar molecular structure. UCP

molecule is composed of six hydrophobic membrane-

spanning a-helices, arranged into three cassettes. The

amino and carboxyl termini and two loops, which connect

cassettes, are oriented toward the intermembrane space,

while three long loops that connect a-helices within each

cassette face the matrix (Fig. 3) [63, 65, 224–227]. UCP

a-helices appear to be arranged to create a channel within

the IMM, while the loops are implicated in control of

access to the channel [228]. Furthermore, UCPs contain

Fig. 3 Schematic representation of molecular structure and suggested

physiological role of cardiac uncoupling protein 2 and 3 (UCP2/3).

a Human UCPs share similar molecular structure. Six hydrophobic

a-helices (1a through 6a), which span the inner mitochondrial

membrane (IMM), are arranged into three cassettes. The N- and

C-termini and two loops, which connect cassettes, are oriented toward

the intermembrane space (IMS), while three long loops that connect

a-helices within each cassette face the matrix. UCP a-helices appear

to be arranged to create a channel within the IMM mediating proton

(H?) leak across the IMM, while the loops control access to the

channel. b Transcription factors (e.g., peroxisome proliferator-

activated receptor [PPAR], thyroid hormone [TH], myogenic differ-

entiation antigen [MyoD]), free fatty acids (FFA) and reactive oxygen

species (ROS) regulate UCP expression in the heart. Although the

physiological role of cardiac UCPs is not clearly defined, growing

evidence suggests that they are involved in the regulation of energy

metabolism, ROS generation, Ca2? handling and cardiomyocyte

apoptosis contributing to cardiac physiology and pathophysiology.

See text for details
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also a binding site for purine nucleotides, which inhibit

their uncoupling activity. Three arginine residues, Arg82,

Arg182 and Arg276, conserved in UCP paralogues

appear to play the crucial role in purine nucleotide

binding [229].

The first UCP, UCP1 (SLC25A7), was identified in BAT

more than 30 years ago and has since become the canonical

most characterized UCP [60, 230, 231]. UCP1 dissipates

DpH to produce heat required to maintain body tempera-

ture in mammals [58, 232, 233]. Subsequently, four para-

logues of UCP1, UCP2 through UCP5, have been

indentified in fungal, plant and animal kingdoms [63, 226,

227, 234]. Mammalian cells express all five UCP para-

logues, which share sequence similarities, but have dif-

ferent tissue distribution. UCP1 is predominantly expressed

in BAT and upon hyperglycemia is also expressed in white

adipose tissue, skeletal muscle, retinal cells and pancreatic

b cells [58, 59, 235, 236]. Human UCP2 (SLC25A48) and

UCP3 (SLC25A9) have high sequence identity with UCP1:

59 and 57 %, respectively, and *70 % identity with each

other [234]. UCP2 is widely expressed in various tissues,

including central nervous system, kidney, macrophages,

pancreas, spleen and thymus [237–239]; its expression in

the heart is the issue of debate [240, 241]. UCP3 is pre-

dominantly expressed in skeletal muscle and BAT; it is

also present in the heart albeit at lower levels compared

with skeletal muscle [242–244]. Despite high sequence

similarity of UCP2 and UCP3 with UCP1, they are not

implicated in adaptive thermogenesis and their physiolog-

ical role is largely unknown [63, 245–247].

UCP4 (SLC25A27) and UCP5 (SLC25A14; also known

as BMCP1) have less sequence identity with UCP1: *30

and 33 %, respectively; these UCPs are expressed mainly

in the brain [63, 234, 248–252]. It has been hypothesized

that the UCP4 and UCP5 genes are more closely related to

the ancestral gene, which possibly encoded a primitive

ADP/ATP transporter. Highly homologous to each other

UCP1, UCP2 and UCP3 have evolved later during evolu-

tion [253]. Similar to UCP2 and UCP3, the physiological

functions of human neuronal UCP4 and UCP5 remain yet

largely uncertain [254].

UCP activity and its regulation

All mitochondrial UCPs promote H? conductance dissi-

pating DpH and affecting thereby mitochondrial function,

although the precise mechanism of their action is still not

fully understood. UCP1, which is highly abundant in BAT

and implicated in the regulation of non-shivering thermo-

genesis, represents the archetypical UCP and our knowl-

edge of the mechanism of the UCP-mediated proton

conductance has mainly derived from studies of this pro-

tein. UCP1 is tightly regulated at several levels, including

acute regulation of its uncoupling activity, transcriptional

control of the Ucp1 gene expression and control of its

degradation [65, 67].

Small molecules, such as FAs, ROS and purine nucle-

oside di- and tri-phosphates, exert acute regulation of

UCP1 activity. Although the precise mechanism remains to

be determined, three models of FA activation of the UCP-

mediated proton leak have been proposed. According to the

first ‘cofactor’ model, UCP1 functions as a H? transloca-

tor, while anionic FAs (FA-) act as cofactors by associ-

ating with UCP1 and forming a H?-conducting channel

[255–257]. In the second model, called the FA-cycling or

flip-flop model, UCP1 functions as FA- carrier exporting

FA- from the mitochondrial matrix. In the intermembrane

space, exported FA- are protonated and diffuse back into

the mitochondrial matrix, where the accepted protons are

released [258]. Although according to this model UCP1

does not directly translocate H?, this cycle leads to a net

H? uptake into the matrix. Finally, given that the effect of

FAs and purine nucleotides on H? leak can be described by

a simple competitive kinetics, the competition model sug-

gests that FAs are not directly implicated in the H?

translocation, but rather act as allosteric activators influ-

encing UCP1 conformation [259, 260].

At the molecular level, UCP1 activity is acutely stimu-

lated not only by free FAs, but also by ROS (O2
.- and lipid

peroxidation products) and inhibited by purine nucleoside

di- and tri-phosphates, such as ADP, ATP, GDP and GTP

[65–67, 261]. The mechanism of the acute ROS-mediated

activation of UCPs is unclear and is currently debated. It

has been suggested that O2
.- promotes peroxidation of

membrane phospholipids resulting in the formation of

4-hydroxy-2-nonenal (4-HNE), which acts as a proximal

activator of UCPs [262–265]. However, this model is not

widely accepted and controversial observations exist [67,

247, 266–268].

Similarly, the precise mechanisms underlying inhibition

of uncoupling activity by purine nucleotides remain to be

determined. High affinity of UCPs to purine nucleotides

with binding constants in the micromolar range and the

millimolar concentrations of purine nucleotides in the cell

raise the question how FAs can overcome this inhibition

in vivo [63, 65, 260, 262, 269, 270].

More recently, distinct regulatory mechanisms for

UCP1 and UCP2 and 3 have been suggested [64, 246].

Elevated ROS levels stimulate proton leak mediated by

UCP2 and UCP3 leading subsequently to attenuation of

ROS generation and creating a negative feedback loop

[271, 272]. UCP1 is mainly activated by elevated free

FAs in response to sympathetic neuronal stimulation

resulting in mitochondria-promoted ROS generation [272,

273]. Furthermore, in vitro studies have shown that the

reversible glutathionylation of UCP2 and UCP3
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contributes to the regulation of mitochondrial ROS pro-

duction [271]. Under OS condition, high ROS levels

result in the glutathionylation of UCP2 and UCP3 inhib-

iting their uncoupling activity, while lower physiological

levels of ROS lead to deglutathionylation of these pro-

teins activating proton leak and attenuating thereby ROS

production. Two cysteine residues Cys25 and Cys259,

located in the first transmembrane region and the last loop

facing the matrix, respectively, are main sites for the

regulation of UCP3 function by glutathionylation. Given

high similarities in amino acid sequence between UCP2

and UCP3, it has been suggested that UCP2 is regulated

in a similar fashion [271]. Consistently, ROS-induced

proton leak has been observed in the primary cells from

wild-type but not from UCP2-/- or UCP3-/- mice [271].

Although UCP1 and UCP2/3 share high homology in

cysteine residues, UCP1 activity appears to be not regu-

lated by glutathionylation and is not involved in the

control of mitochondrial ROS generation [271]. However,

a physiological significance of this novel regulatory

mechanism remains to be determined.

UCP levels are also highly regulated at the transcrip-

tional level. In response to cold acclimation or chronic

overfeeding, BAT sympathetic neurons release catechola-

mines (e.g., noradrenaline), which engage b3-adrenocep-

tors. Induced b3-adrenergic signaling activates adenylyl

cyclase to produce cyclic AMP (cAMP). Elevated cAMP

activates in turn PKA. PKA-promoted phosphorylation and

activation of triacylglycerol lipase results in stimulation of

lipolysis leading to the elevation of FA levels [274, 275].

Furthermore, cAMP-mediated signaling cascades control

expression of the Ucp1 gene. A cAMP-responsive enhancer

region upstream of the Ucp1 gene has binding sites for

transcription factors belonging to the nuclear receptor

family, such as the peroxisome proliferator-activated

receptor c (PPARc), retinoic acid receptor (RXR) and

thyroid hormone receptor (TR) [276–278].

The Ucp2 gene expression is also induced by PPARs as

well as the sterol regulatory element-binding protein-1c

(SREBP-1c) and forkhead transcription factors [279–283].

Furthermore, Ucp2 expression is upregulated by FAO and

ROS contributing to cellular defense against OS [284–

286]. Similarly, Ucp3 translation is stimulated by free FAs

mediated through PPARs and the myogenic regulatory

factor MyoD, thyroid hormone, retinoic acid and tumor

necrosis factor a [287–291]. Furthermore, starvation-

induced Ucp3 expression appears to be conserved in ver-

tebrates including mammals [292, 293]. Finally, SIRT1, a

protein involved in metabolic stress resistance, suppresses

expression of both Ucp2 and Ucp3 genes and activates

insulin secretion [294, 295].

Ucp2 and Ucp3 expression is also controlled at the

translational level. The 50 untranslated region of Ucp2

mRNA contains an inhibitory upstream open reading frame

(ORF). Glutamine, an amino acid involved in insulin

secretion, overcomes inhibitory effect of the ORF and

upregulates Ucp2 mRNA translation [239, 296, 297].

Although Ucp3 mRNA translation is currently less studied,

the 50 untranslated region of Ucp3 mRNA also contains

pseudo-start codons that can affect its translation [67].

Intracellular levels of UCPs are also regulated by pro-

teolytic degradation. In BAT, UCP1 is relatively slowly

degraded with a half-life on the order of days. Furthermore,

noradrenergic stimulation upregulates not only UCP1

synthesis but also significantly extends its half-life [298,

299]. Although the precise mechanisms of the UCP1

turnover are largely unknown, its half-life is similar to

those of other mitochondrial proteins, mirrors whole

mitochondrial turnover and is extended upon lysosomal

inhibition [299, 300].

In contrast to UCP1 and other mitochondrial carriers,

including ANT, UCP2 and UCP3 are characterized by

rapid degradation with very short half-lives of approxi-

mately 1 and 1–4 h for UCP2 and UCP3, respectively

[239, 286, 301, 302]. Experiments with isolated energized

mitochondria have suggested that non-mitochondrial fac-

tors are needed for rapid proteolytic degradation of these

UCPs. Indeed, the cytosolic proteosome promotes rapid

degradation of UCP2 and UCP3, while UCP1 and ANT are

not degraded by this machinery [302, 303]. In fact, this has

been the first demonstration that the IMM proteins are

degraded by the cytosolic ubiquitin-proteosome system.

Similar to highly coordinated control of UCP1 synthesis

and degradation, cellular levels of UCP2 and UCP3 may

be also regulated in a concerted manner [63, 67]. However,

the precise mechanisms of these regulatory processes

remain to be determined.

Importantly, the components involved in the insulin

secretion pathway in the pancreatic b-cells are also under

control of the cytosolic ubiquitin-proteosome system [304–

306]. Therefore, rapid turnover of UCP2 and UCP3

expressed in the pancreatic b-cells may serve for rapid

response to changes in nutrients in coordinated fashion

with other proteins implicated in the same pathway [63, 67,

239]. Moreover, upregulation of UCP2, which has been

detected in type 2 diabetes mellitus, may be linked to the

proteosome system dysfunction [63, 307]. Physiological

role and regulation of UCP3 and UCP2, which is particu-

larly highly expressed in the pancreatic b-cells in type 2

diabetes mellitus, have been discussed in the several recent

reviews [308–311].

Taken together, emerging distinct mechanisms under-

lying the regulation of UCP1 compared with UCP2 and

UCP3 highlight the divergent physiological roles, which

these proteins play. Function of UCP1 in the regulation of

adaptive thermogenesis is well documented, whereas
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complex roles of UCP2 and UCP3 in the control of mito-

chondrial ROS generation and ROS signaling have to be

further explored.

UCP 2 and UCP3 in the healthy and failing heart

It has already been discussed that HF as the terminal

point of various CVD is characterized by abnormal

bioenergetics and profound mitochondrial dysfunction,

associated with excessive ROS production. Therefore, it

is not surprising that several studies have focused on

UCPs as regulators of these processes in the HF setting

as well as on their use as potential therapeutic targets in

treatment of HF. However, number of reports on UCP in

various CVD is relatively limited and different labora-

tories have reached controversial conclusions regarding

the functional roles of UCPs in cardiac physiology and

pathophysiology.

In contrast to UCP1 present predominantly in BAT,

highly homologous UCP2, found in various mammalian

tissues, and UCP3 are expressed in the mammalian myo-

cardium [237, 238, 240, 242, 312–314]. Cardiac UCP2

expression appears to be species specific; in the mouse

heart, higher levels of UCP2 have been observed compared

with those present in the human heart [237, 240]. UCP3 is a

major UCP isoform expressed in skeletal muscle and in the

heart, although its levels in the latter are lower [315]. The

physiological role of UCP2 and UCP3 in the heart is not

yet clearly defined; however, emerging evidence suggests

that they are implicated in the regulation of cardiac ener-

getics, mitochondrial ROS production, Ca2? handling and

cardiomyocyte death [241, 316, 317].

Several observations link cardiac UCPs, UCP3 in par-

ticular, and cardiac energy metabolism. Fasting and caloric

restriction have been shown to modulate cardiac UCP3

expression. Fasting has induced a significant (1.5- to

3-fold) increase in UCP3 transcript levels in rat hearts [318,

319]. Similarly, caloric restriction has been associated with

alterations in transcriptional profiles including upregulation

of UCP3 expression in mouse hearts [320].

Thyroid hormone influences cardiac metabolism and

bioenergetics [321]. It has been reported that thyroid hor-

mone induces UCP2 and UCP3 expression at both mRNA

and protein levels [317, 322–324]. Intriguingly, in the

heart, thyroid hormone has upregulated UCP3 and possibly

UCP2, but this upregulation has not been associated with

increased respiratory uncoupling and inhibition of ATP

production [325, 326]. Thus, the role of cardiac UCPs in

the thyroid hormone-mediated heart energy metabolism

remains to be determined.

Analyses of alterations in UCP2 and UCP3 expression in

various cellular and animal models as well as in patients

with CVD have provided to a certain degree contradictory

data (Table 1). Some studies have demonstrated that both

UCP2 and UCP3 are downregulated in the rat and human

failing heart. In a rat model of HF induced by pressure

overload, levels of UCP2 and UCP3 transcripts have been

significantly decreased compared with control rats [319].

Furthermore, transcript levels of two other regulators of

FAO and mitochondrial metabolism, pyruvate dehydroge-

nase kinase 4 (PDK4), malonyl-CoA decarboxylase (MCD),

have also been reduced [327]. Expression of all these pro-

teins are regulated by PPARa, consistently PPARa has been

downregulated in hypertrophic and failing hearts [319, 327,

328]. The authors have suggested that downregulation of

PPARa axis plays an adaptive cardioprotective role to pre-

vent severe cardiac contractile dysfunction [327].

Metabolic expression profile has been analyzed in

human fetal, non-failing (donor) and failing hearts. In

failing hearts, the expression of UCP2 and to some extent

UCP3 along with glucose transporter GLUT1 and GLUT4,

energy metabolism enzymes (e.g., carnitine palmitoyl

transferase, citrate synthase, pyruvate dehydrogenase

kinase) and myosin heavy chains have been downregulated

to the levels observed in fetal hearts [343]. Intriguingly, in

the subsequent study, significantly reduced mRNA levels

of UCP3, but not UCP2, have been detected in patients

with HF awaiting heart transplantation upon placement and

subsequent removal of a left ventricular assist device

(LVAD) [344]. Importantly, UCP3 expression has been

normalized with mechanical unloading after the LVAD

treatment. Unfortunately, UCP2 and UCP3 protein levels

have not been analyzed; therefore, it is not clear whether

observed alterations in mRNA levels are translated into

changes in protein concentrations.

Using a rat HF model caused by aortic regurgitation (AR),

more complex dynamics of UCP2 expression in the failing

heart has been shown. Initial decrease in UCP2 mRNA levels

has changed to a significant increase in UCP2 expression in the

late stage of HF [335]. Furthermore, upregulation of proin-

flammatory cytokine TNF-a has been detected in the late, but

not early, stage of the development of HF. Authors have

hypothesized that elevated TNF-a might be responsible for the

induction of cardiac UCP2 expression in the late, chronic

phase of HF. At the chronic stage of HF, increase in the cardiac

expression of UCP2 has been accompanied by significant

reduction of the high-energy phosphate, creatine phosphate

(CrP), implying a decrease in energy efficiency in failing

hearts [335]. In the follow-up study, authors have reported that

elevated cardiac UCP2 expression, observed in the chronic

stage of AR-induced HF, could be suppressed by the angio-

tensin-converting enzyme (ACE) inhibitor perindopril.

Importantly, perindopril has also normalized CrP levels [336].

Unfortunately, as in previous studies, dynamics of UCP2

protein levels has been not analyzed.
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More recently, in rat HF induced with intraperitoneal

injections of chemotherapeutic agent doxorubicin, sig-

nificant reduction in both UCP2 and UCP3 protein levels

have been demonstrated [337]. Consistently, mitochon-

dria isolated from failing hearts are characterized by

greater coupling between citric acid cycle flux and ATP

production. However, the beneficial effects of UCP2 and

UCP3 downregulation on mitochondrial bioenergetics

have been counteracted by augmented ROS generation

observed in this HF model [337]. The mechanism

responsible for UCP2 and UCP3 downregulation is also

unknown.

Table 1 UCP2 and UCP3 in cellular and animal models for myocardial ischemia and heart failure

Model UCP2/3 alterations Effects/comments References

Rat neonatal

cardiomyocytes

UCP2 overexpression Prevention of H2O2-induced mitochondrial potential loss,

attenuation of Ca2? overload and apoptosis

[329]

Rat cardiac H9c2

cells

UCP2 and 3 depletion by RNAi UCP2, but not UCP3, depletion alone reduces tolerance to IRI

due to increased ROS; however, the highest reduction was

upon UCP2 and 3 depletion

[330]

Rat adult

cardiomyocytes

UCP2 overexpression Reduction in ATP production, increase in pro-apoptotic

protein BNIP3 associated with lower survival after IRI

[331]

UCP2-/- mice Loss of UCP2 UCP2 expression depends on PPARc-PGC1a axis. Chronic

PPARc stimulation upregulates UCP2, leading to mild

mitochondrial membrane depolarization and reduced ROS

generation

[332]

Cardiac UCP2-/-

and UCP3-/-

mice

Loss of UCP2 or UCP3 UCP2-/-, but not UCP3-/-, hearts produce more ROS during

I/R, display impaired cardiac energetics and poor recovery

during IRI

[333]

UCP3-/- mice Loss of UCP3 UCP3-/- hearts exhibit increased oxidative coupling

efficiency, ROS generation, apoptosis, and larger IRI-

induced infarct size

[334]

Rat pressure-

overload HF

Reduced UCP2 mRNA and 3 UCP2 and 3 protein levels have not been assessed. Other

PPARa-controlled regulators of FAO have also been

downregulated

[319, 327]

Rat aortic

regurgitation HF

Initial decrease in mRNA UCP2 then its

increase at the late stage of HF

Elevated UCP2 expression has been accompanied by

reduction of CrP. Increase in UCP2 transcription may be

mediated by elevated TNF-a, observed also at the late stage

of HF. Alterations in both UCP2 and CrP could be

normalized by perindopril

[335, 336]

Rat doxorubicin-

induced HF

Reduced UCP2 and 3 Mitochondria isolated from failing hearts have exhibited

greater coupling and ATP synthesis and increased ROS

generation

[337]

Rat myocardial

ischemia

Increased UCP2 and 3 Isolated mitochondria have had increased proton leak and

reduced ROS production and infarct size

[330]

Rat Dahl salt-

sensitive HF

Increased UCP2 mRNA Reduced ATP production, upregulated pro-apoptotic protein

BNIP3 associated with augmented cardiomyocyte death

[331]

Rat chronic HF Increased UCP3 Increased UCP3 may be induced by elevated FA.

Mitochondria have exhibited greater uncoupling and

reduced efficiency

[338]

Rat acute

myocardial IRI

Increased UCP2 in ischemic area; increased

UCP3 in ischemic and non-ischemic area

UCP2 has been increased at protein level only, while UCP3

has been increased at both mRNA and protein level. I/R-

induced UCP2 upregulation can be suppressed by losartan

and ramiprilat

[339, 340]

Porcine chronic

myocardial

ischemia

Increased UCP2, unchanged UCP3 Isolated mitochondria have exhibited mild membrane

depolarization and reduced ROS generation

[341]

Dog acute

myocardial

ischemia

Increased UCP3 Elevated UCP3 has been found in the non-ischemic wall.

Mitochondria within this area have been uncoupled, ROS

have been increased

[342]

CrP creatine phosphate, FA fatty acid, FAO FA oxidation, HF heart failure, I/R ischemia/reperfusion, IRI ischemia/reperfusion injury, PGC1a
peroxisome proliferator-activated receptor c coactivator 1a, PPARc peroxisome proliferator-activated receptor c, UCP uncoupled protein
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It is well known that myocardial ischemia and infarction

leading eventually to HF are associated with significant

augmentation of circulating free FA levels [29, 345]. In

contrast to UCP2 and UCP3 downregulation in HF

observed in cited above reports, several studies have shown

that elevated plasma free FA levels in HF are associated

with upregulation of UCP2 and UCP3 in the failing heart.

In animal models and in patients with HF, increased

plasma long-chain FAs have activated PPARa leading to

increased cardiac UCP mRNA and protein concentrations

and reduced glucose transporter GLUT4 [240, 346–348].

Consistent with the regulatory role of PPARa, increased

FA levels have been associated with UCP3 upregulation in

wild-type mice but not in PPARa-deficient animals [348].

In the failing heart, elevated UCP2 and UCP3 increase

mitochondrial uncoupling to attenuate ATP synthesis,

while reduced GLUT4 downregulates glucose uptake. In

addition, FAs may also act as activators of UCP activity

further increasing mitochondrial uncoupling [349]. Simi-

larly, in animal models of diabetic cardiomyopathy, ele-

vated plasma free FA levels have been associated with

significant upregulation of FA transporters (e.g., FATP and

CD36) and UCP3 [325, 348, 350–354]. Moreover, signif-

icant increase in UCP2 mRNA levels, associated with

reduced ATP production, has been detected in the Dahl

salt-sensitive rat HF model [331].

In a rat model for chronically infarcted heart, UCP3

alterations along with mitochondrial respiration and effi-

ciency of the isolated working heart have been measured

[338]. Increased UCP3 levels in the failing heart have

positively correlated with FA concentrations in the plasma.

UCP3 upregulation has been associated with greater

mitochondrial respiratory uncoupling and low efficiency in

the failing heart [338]. Although augmented UCP-mediated

respiratory uncoupling appears to underlie mitochondrial

and cardiac dysfunction, it is not clear whether these

alterations play adaptive or detrimental role in the devel-

opment of HF.

Myocardial ischemia and infarction leading to HF are

characterized by IRI, which affect cardiac energy metab-

olism, induce ROS generation, Ca2? overload, acidosis and

cardiomyocyte death [355, 356]. Mild mitochondrial

uncoupling through UCP-mediated proton leak can play a

protective role against myocardial IRI. One of the first

direct evidence of a role of UCP3 in cardioprotection

against I/R has recently been reported [333]. Ex vivo

induced IRI in UPC3-/- mouse hearts has resulted in

poorer recovery of LV contractile function compared with

wild-type mouse hearts under I/R conditions. Interestingly,

isolated UPC2-/- and wild-type mouse hearts have dis-

played a similar recovery of LV function, suggesting that

UCP2 function is less essential for protection against car-

diac IRI [333]. Using in vivo occlusion of the left coronary

artery, these authors have further demonstrated that

UPC3-/- mice have twofold larger infarct size and higher

incidence of I/R dysrhythmias than wild-type animals.

Moreover, I/R has induced more severe alterations in car-

diac energetics associated with more prominent increase in

ROS generation in UPC3-/- hearts compared with wild-

type hearts. Pretreatment of UPC3-deficient hearts with the

uncoupling drug carbonyl cyanide p-(trifluoromethoxy)

phenylhydrazone has ameliorated recovery after IRI.

Finally, ischemic preconditioning has been completely

abolished in UPC3-deficient hearts further confirming an

essential role of UCP3 in cardioprotection against IRI

[333].

In a porcine model of chronic myocardial ischemia,

UCP2 protein levels have been found to be significantly

increased within ischemic region, while UCP3 protein

levels have not been changed. Importantly, mitochondria

isolated from ischemic myocardium have displayed stress-

resistant state characterized by mild uncoupling and

reduced ROS production [341]. More recently, these

authors using transgenic mouse model have demonstrated

that UCP2 upregulation depends on the PPARc-PGC1a
axis. Chronic stimulation of PPARc with its agonist piog-

litazone has resulted in twofold increase in nuclear-located

PGC1a and UCP2 levels [332]. Furthermore, isolated

cardiac mitochondria with PPARc-mediated UCP2 upreg-

ulation have displayed mild IMM depolarization and

reduced ROS generation. These beneficial effects have not

been detected in UPC2-deficient mice, suggesting that

observed cardioprotection against IRI depends on UCP2

[332].

Acute MI in dog has led to significant upregulation

(*1.7- and 3-fold 6 and 24 h post-infarction, respectively)

of levels of UCP3 protein, the main cardiac UCP in dog

[357], in the non-ischemic wall of the right ventricle (RV)

[342]. Mitochondria within the non-ischemic wall have

been uncoupled and levels of ROS have significantly been

elevated. Authors have hypothesized that an increase in

ROS induced by acute MI is responsible for the adaptive

UCP3 upregulation [342].

It is well established that the heart can be protected

against IRI by ischemic conditioning—brief repetitive

cycles of ischemia delivered before or after the ischemic

event [358–362]. Emerging evidence suggests that myo-

cardial UCPs may be implicated in this complex process. It

has recently been shown that cardiac ischemic precondi-

tioning triggers upregulation of UCP2 and UCP3 on both

mRNA and protein levels [330]. Mitochondria from pre-

conditioned hearts have displayed increased proton leak

associated with decreased ROS production. Significantly,

UCP upregulation has been associated with reduced infarct

size in preconditioned rat hearts. Furthermore, UCP

depletion by RNA interference (RNAi) in rat cardiac H9c2
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cells has resulted in attenuation of preconditioning of these

cells and augmentation of ROS generation [330]. Similar

ischemic preconditioning-induced upregulation of UCP2

have been demonstrated in the brain, where elevated UCP2

levels protect against neuronal ischemic injury possibly

through attenuation of ROS generation [363, 364].

More recently, levels of cardiac UCP2 have been mea-

sured following acute cardiac I/R in rats. Acute myocardial

I/R has induced significant increase in UCP2 protein levels

in the ischemic area of the left ventricle (LV) but not in the

RV [339]. Interestingly, the angiotensin type 1 receptor

blocker losartan and the ACE inhibitor ramiprilat could

suppress UCP2 expression induced by myocardial I/R

protecting the heart against IRI. In the follow-up study,

these authors have extended their analyses to UCP3 in

cardiac I/R setting. Protein levels of both UCP2 and UCP3

have been significantly increased as an early response to

acute myocardial I/R in rats [340]. However, the mecha-

nism underplaying this upregulation appears to be different

for UCP2 and UCP3. First, UCP2 has been upregulated

only in ischemic area of the LV, while UCP3 has been

increased in both ischemic area of the LV and non-ische-

mic region of the RV [340]. Authors have hypothesized

that local upregulation of both UCP2 and UCP3 in ische-

mic region may be caused mainly by elevated ROS. A

more global cardiac upregulation of UCP3 might be due to

a higher responsiveness of UCP3 expression to elevated

circulating free FAs observed in rats with HF [338]. Sec-

ond, I/R-induced UCP2 upregulation has been shown on

protein level, but not on UCP2 mRNA level, while

upregulation of both UCP3 mRNA and protein has been

detected [340].

Myocardial ischemia leading eventually to HF causes

cardiomyocyte death resulting in significant cardiomyocyte

loss, which represents the main prognostic parameter in the

disease progression [365, 366]. Cardioprotective roles of

UCPs against IRI may be linked to their involvement in

cardiomyocyte death. UCP1 overexpression in cultured

heart-derived H9c2 cells has limited ROS generation after

I/R and prevented ROS-induced cell death preserving

mitochondrial structure and function [367]. Consistently,

using adenovirus-mediated transfection of cultured neona-

tal rat cardiomyocytes, it has been demonstrated that the

overexpression of human UCP2 protects these cells from

OS induced by H2O2 [329]. UCP2 overexpression has

prevented mitochondrial membrane potential loss, ROS

generation and Ca2? overload. In addition, elevated UCP2

levels have attenuated the appearance of mitochondria-

mediated apoptosis markers, such as TUNEL positivity,

phosphatidyl serine exposure, propidium iodide uptake,

and caspase-3 cleavage [329].

On the other hand, the overexpression of UCP2 in pri-

mary adult rat cardiomyocytes has led to controversial

results [331]. Although UCP2 overexpression in these cells

has resulted in significant decrease in ATP production and

acidosis as well as in upregulation of pro-apoptotic protein

BNIP3, cell survival at baseline has not been affected.

However, UCP2-overexpressing cells have displayed lower

survival after I/R compared with control cardiomyocytes.

Furthermore, authors have demonstrated using a rat HF

model the significant upregulation of UCP2 and BNIP3 in

failing hearts [331]. Authors have concluded that under

used experimental conditions UCP2 plays a detrimental

role in cardiomyocyte survival in HF. However, they have

suggested that it might have a protective effect under dif-

ferent conditions and/or in other species.

More recently, role of UCP3 in cell death induced by

myocardial ischemia leading to HF has been studied using

UPC3-/- mice [334]. UPC3-/- mouse embryonic fibro-

blasts and cardiomyocytes have displayed mitochondrial

dysfunction, increased ROS generation and apoptosis

under hypoxia. Infarct size has been larger in UPC3-/-

mice and these animals have exhibited lower survival

compared with wild-type animals. Treatment with the

antioxidant agent a-tocopherol has decreased infarct size in

UPC3-/- hearts to values found in wild-type hearts.

UPC3-/- hearts have been characterized by elevated of

oxidative damage markers (e.g., TUNEL positive nuclei,

p53 and cleaved caspase-3 levels). Finally, mitochondrial

structural and functional abnormalities and elevated ROS

production in ischemic UPC3-/- hearts have occurred

despite a normal UCP2 upregulation at mRNA and protein

level [334]. Thus, these findings suggest a cardioprotective

role of UCP3 in the ischemic heart.

Cardiac mitochondria play a critical role in Ca2? han-

dling in cardiomyocytes, which is vital for myocardial ECC

and for proper cardiac function [368–370]. Data on the

involvement of UCP2 and UCP3 in mitochondrial Ca2?

uniport activity in non-cardiac cells have been controver-

sial [371, 372]. Using adenovirus-mediated UCP2 delivery

into neonatal rat cardiomyocytes, Turner et al. [373] have

demonstrated that UCP2 overexpression has suppressed

mitochondrial Ca2? uptake exerting thereby detrimental

effects on beat-to-beat Ca2? handling and ECC. Authors

suggest that UCP2 upregulation observed in HF may

enhance dysrhythmogenic potential and exacerbate con-

tractile dysfunction contributing to the progression of the

disease [373].

Finally, UCP2 protein may play a protective role against

atherosclerosis, although data are so far limited. It has been

reported that transplantation of bone marrow from

UCP2-/- mice into irradiated low-density lipoprotein

receptor deficient (LDLR-/-) mice has led to significantly

increased atherosclerotic lesion size when animals have

been fed an atherogenic diet [374]. In addition, UCP2-/-

transplanted mice have displayed elevated levels of OS
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markers and the plaques from these animals have shown

higher apoptosis. Consistent with a protective role of UCP2

in atherogenesis, the 866G/A and of a 45nt-del/ins poly-

morphism in the 30-untranslated region of the UCP2 gene

have been identified to be associated with carotid athero-

sclerosis in female study participants [375].

Conclusions

Despite great progress in our understanding of the molecular

mechanisms underlying HF, this devastating disease repre-

sents a true challenge. Hallmarks of the failing heart are

abnormal energy metabolism, increased production of ROS

and defects in ECC. HF is a highly dynamic pathological

process, and observed alterations in cardiac metabolism and

function depend on the disease progression.

Mitochondrial ROS generation and ROS-mediated

damage clearly contribute to the development and pro-

gression of HF. Cardiac UCP2 and UCP3 promoting proton

leak across the IMM have emerged as essential regulators

of mitochondrial membrane potential and respiratory

function. However, unlike the well established role of their

homolog UCP1 in adaptive thermogenesis in BAT, the

physiological function of UCP2 and UCP3 in the heart is

not clearly understood. Growing evidence suggests that

cardiac UCPs are able to promote mild uncoupling reduc-

ing excessive mitochondrial ROS generation and amelio-

rating thereby myocardial function.

Controversial data have been reported regarding altera-

tions in the expression of UCP2 and UCP3 seen in different

animal HF models. Poorly understood variability in animal

models of HF combined with species-specific UCP

expression pattern might be responsible at least in part for

these controversies. Unfortunately, it is even less known

the alterations in UCP2 and UCP3 expression in patients

with HF. Nevertheless, more recent studies suggest an

upregulation of UCP2 or UCP3, leading to mitochondrial

uncoupling and reduced ROS generation especially in

ischemia-induced HF (Table 1). Since UCP2 and/or UCP3

can limit excessive mitochondrial ROS generation reduc-

ing the efficiency of ATP synthesis, it is unclear under

which conditions their function would be protective or

deleterious in the development of HF.

Similarly, although emerging evidence suggests that

cardiac UCPs contribute to triggering cardiomyocyte death

and ECC dysfunction in the failing heart, the underlying

mechanisms remain largely undefined. For example,

upregulated cardiac UCPs appear to trigger the expression

of several apoptotic markers; however, this does not nec-

essarily affect cardiomyocyte survival. Finally, it remains

possible that the observed alterations in cardiac UCPs

levels and/or activity are secondary to pathological cardiac

remodeling. Future research efforts should address these

critical issues.

High-throughput screening of mutations and polymor-

phisms in the genes encoding these proteins associated

with increased risk for CVD is a novel promising approach.

Recent identification of several polymorphisms in the

UCP1, UCP2 and UCP3 genes associated with diabetes

mellitus represents a successful example of such approach

[311]. As discussed above, this approach has successfully

been applied to identifying polymorphisms in the UCP3

gene associated with atherosclerosis.

In summary, further research on UCPs activity and

regulation will be necessary to advance our understanding

of their function in the healthy and diseased heart. More-

over, the combined effort of molecular and clinical cardi-

ologists is needed before we can use cardiac UCPs as

targets to treat HF.
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