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Abstract Echocardiography is one of the most important

clinical tools in the diagnosis and management of various

pericardial diseases, including constrictive pericarditis,

effusive constrictive pericarditis, pericardial effusion,

tamponade, absence of the pericardium and cysts or

tumors. During recent years, remarkable progress has been

made in echocardiography: cardiac tissue Doppler analysis

(TDI), strain and strain rate imaging by speckle tracking

imaging (STE) and three-dimensional (3D) echocardiog-

raphy. The assessment of early diastolic annulus velocity

and annulus reversus by TDI improves the differentiation

of constriction from restrictive myocardial disease, which

can be further facilitated by STE as a complementary tool.

3D echocardiography may be useful for the more precise

assessment of pericardial diseases, such as pericardial

effusion or pericardial masses as it provides incremental

value to 2D echocardiography by detecting anatomic

structures with higher accuracy. Applications of these

newer echocardiographic techniques in the assessment of

pericardial diseases are discussed in this chapter.
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Introduction

TDI and STE characterize the mechanics of myocardial

contraction and relaxation (deformation imaging) and find

applications in many cardiac pathologies. Tissue Doppler

velocity estimation is based on the same principles as

pulsed-wave and color Doppler echocardiography for

blood flow. To distinguish between signals originating

from moving tissue and blood flow, a high-pass filter is

used to image blood velocities and a low-pass filter is used

to display tissue velocities. TDI can be applied to the

assessment of both regional and global left ventricular

(LV) function. Measuring velocities of myocardial seg-

ments gives information about regional ventricular con-

tractility, while the measurement of mitral annular

velocities provides information on overall longitudinal LV

systolic and diastolic function.

STE is an alternative and innovative way to obtain myo-

cardial tissue motion information [1]. Two-dimensional

(2D) strain imaging techniques measure Langrangian strain

and strain rate (SR) by tracking echocardiographic B-mode

speckles (natural acoustic markers or acoustic backscatter

generated by ultrasound interactions (reflection, scattering

and interference) within the myocardium (generally made up

of 20–40 pixels)). The speckle pattern created by the inter-

ference remains reasonably stable serving as a digital fin-

gerprint for the given myocardial area. The geometric shift of

each speckle represents myocardial motion and can be

tracked from frame to frame, thus allowing for the calcula-

tion of strain and SR.

The development of real-time 3D echocardiography

with matrix transducer technology and analyzing software

made a more reliable analysis of LV function feasible [2].

3D echocardiography improves the accuracy of determin-

ing LV volumes and mass compared with 2D echo because
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geometric assumptions are eliminated [3]. As a result, these

measurements correlate well with those of direct MRI

measurements. The major proven advantage of 3D echo-

cardiography is the improvement in the accuracy of the

echocardiographic evaluation of cardiac anatomy and the

more realistic and comprehensive view of intracardiac

structures [4]. With 3D, the full-volume data set cropped in

any desired plane, the entire views of inter-atrial and inter-

ventricular septum and their relations with neighboring

structures can be displayed.

Tissue Doppler imaging (TDI) in pericardial diseases

CP often masquerades as other cardiovascular or non-car-

diovascular disease and often poses diagnostic and thera-

peutic dilemmas for physicians. The correct diagnosis and

appropriate therapy are frequently delayed. Lately, appli-

cation of TDI facilitated the diagnosis of CP by echocar-

diography along with 2-D and Doppler echocardiography.

Since the mechano-elastic properties of the myocardium are

preserved in CP, the longitudinal mitral annular velocities

remain normal or can be exaggerated as lateral expansion in

CP is limited. Garcia et al. [5] were the first to report that

measurement of longitudinal axis expansion by TDI using

the lateral mitral annulus provided a clinically useful dis-

tinction between CP and restrictive cardiomyopathy (RCM)

(Fig. 1). Rajagopalan et al. [6] showed that a peak early

diastolic lateral annulus velocity (e0 or E0) velocity C8 cm/s

could discriminate between the entities CP and RCM with

high sensitivity (89 %) and specificity (100 %). Studies by

Ha et al. and by Sohn et al. [7, 8] recommended that e0

velocity can provide a helpful diagnostic indicator and

should be measured routinely in the evaluation of heart

failure or suspected CP. Ha et al. [7] recommended the same

8 cm/s cut-off value for CP diagnosis where e0 velocity is

equal or greater than 8 cm/s, with 95 % sensitivity and

96 % specificity. Ha et al. [9] also evaluated the role of TDI

in the diagnosis of CP in patients without diagnostic

respiratory variation of transmitral early diastolic filling

velocity. It was confirmed that e0 velocity was well-pre-

served independent of any respiratory variation in mitral

inflow velocities. Other studies suggested that e0 should be

used with caution if CP is combined with myocardial dis-

eases, extensive annular calcification or segmental non-

uniform myocardial velocities [10–12]. It has been shown

by Choi et al. [13] that the addition of extra parameters to

the e0 velocities such as measurement of s0 velocities and the

time difference between onset of mitral inflow and onset of

e0 increases sensitivity and provides additional information

to e0 for the differentiation of CP from RCM.

Several investigators have shown that E/e0 ratio corre-

lates well with LV filling pressure [14, 15]. E/e0 [15

identifies increased LV filling pressure while E/e0 \8

describes normal filling pressure. Ha and his associates

introduced the concept of ‘‘annulus paradoxus,’’ which

describes the paradoxical behavior of the mitral annulus in

CP [16] (Fig. 2). He found that an inverse relationship

exists between E/e0 and LV filling pressure, which can be

explained by the fact that in CP the medial mitral annulus

has an exaggerated longitudinal motion leading to an

increase in e0, despite high filling pressures.

In normal subjects, the mitral lateral annulus e0 velocity

is higher than the medial annulus e0 velocity [17]. Reuss

et al. [18] identified the reversal of the normal relationship

of mitral lateral e0 and medial e0 velocities in CP, where

mitral lateral e0 velocity is lower than medial e0 velocity;

therefore, lateral/medial e0 ratio is inverted, which was

termed ‘‘annulus reversus’’ (Fig. 3). This finding is caused

by the tethering of the adjacent fibrotic and scarred peri-

cardium, which influences the lateral mitral annulus in

patients with CP. In a patient with preserved mitral e0

velocities ([8 cm/s) and a low E/e0 ratio (\8) with high LV

Fig. 1 Tissue Doppler imaging: prominent e0 wave (peak early

diastolic velocity of longitudinal axis expansion) in case of constric-

tive pericarditis (top) and diminutive e0 wave in case of restrictive

cardiomyopathy (bottom)
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filling pressure, the recognition of annulus reversus should

alert to the diagnosis of constrictive pericarditis.

In a recent study by Choi, it was shown that besides the

lateral/medial e0 ratio, the tricuspid lateral e0/septal e0 ratio

is a useful diagnostic parameter for CP, differentiating it

from RCM. Moreover, reduced lateral e0 was inversely

correlated with the pericardial thickness on their respective

side.

In general, TDI offers incremental diagnostic informa-

tion to M-mode, 2D echo and transmitral flow Doppler for

detecting constrictive physiology, with a reported sensi-

tivity and specificity of 88.8 and 94.8 %, respectively [19].

Kim et al. [20] examined the medial annular velocities

in patients with CP after pericardiectomy in 16 patients and

found that e0 decreased significantly after pericardiectomy.

Our group confirmed this finding and showed that all

mitral and tricuspid annular velocities decrease after

pericardiectomy with normalization of the mitral lateral/

medial e0 velocity ratio [21]. In some patients, low annular

velocities unmasked by pericardiectomy may reflect

underlying myocardial damage or atrophy secondary to

long-standing encasement and penetration of the myocar-

dium by calcium spurs, persistent inflammation and, since

the pericardium might be firmly adherent to the myocar-

dium, additional injury at the time of surgery. We have also

found that all mitral and tricuspid annular velocities (e0, a0

and s0) are higher in primary CP than those in secondary CP

group, an observation that can be explained by concomitant

myocardial disease due to radiation or ischemic heart dis-

ease [21].

More recently, Lu and colleagues studied the motion of

pericardium, the out-layer of myocardium and the inner

layer of myocardium using TDI. In normal subjects, the

motions of the outer layer myocardium and the inner layer

myocardium were identical. However, in the CP patients,

the motion of outer layer myocardium was significantly

reduced approaching that of pericardium while the motion

of inner layer myocardium was better preserved than that

of outer layer myocardium. These findings may further

help to establish the diagnosis of CP [22].

Speckle tracking echocardiography (STE)

in pericardial diseases

By utilizing STE, in a study of 26 CP and 19 RCM patients,

Sengupta confirmed the two distinct patterns of diastolic

restoration mechanism in the two different patient pool

[23]. CP patients had markedly abnormal circumferential

deformation, torsion and untwisting velocity along with

relative sparing of the longitudinal mechanics. By contrast,

patients with restriction had abnormal longitudinal

mechanics (reduced longitudinal strain, particularly at the

LV base) with relative sparing of LV rotation, thus spe-

cifically differentiating the abnormal diastolic restoration

mechanics of the left ventricle seen in CP and RCM

(Fig. 4).

Furthermore, a comparison of the LV mechanics with

pericardial thickness, as measured by CT, in patients with

CP has shown a significant correlation between decreased

Fig. 2 Early diastolic mitral inflow (E) and annular velocities in 2

separate patients: on the right: 54-year-old man with CP. PCWP was

18 mm Hg and E/E0 was 17. A: late filling velocity; A0, late diastolic

annular velocity on the left: 56-year-old man with constrictive

pericarditis (CP). Note that E is & 100 cm/s and early diastolic

annulus velocity (E0) is 20 cm/s. Pulmonary capillary wedge pressure

(PCWP) was 31 mm Hg, and E/E0 was 5. From Ha [16]
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Fig. 3 Doppler representation of annulus reversus: The normal

relationship (top panel) between medial mitral early diastolic annulus

velocity (e0) and lateral mitral e0 is reversed in constrictive pericarditis

(middle panel) but not in restrictive cardiomyopathy (bottom panel).
s0: systolic annulus velocity, a0: late diastolic annulus velocity From

Reuss [18]

Fig. 4 Left ventricular (LV) longitudinal velocity and untwisting

velocity in constrictive pericarditis (CP) and restrictive cardiomyop-

athy (RCM): Color M-mode display of apical untwisting velocity

(rotational rate of the LV apex [RotR]) obtained from speckle

tracking of the LV apex in short-axis view shows markedly attenuated

early diastolic rate of untwisting in CP (a, arrows), whereas

longitudinal early diastolic velocities (VL) from the LV base in

apical 4-chamber view (b, arrows) are normal. In contrast, patients

with RCM show a normal early diastolic rate of untwisting (c,

arrows) and reduced longitudinal early diastolic velocities from the

LV base (d, arrows) From Sengupta [23]
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circumferential strain and degree of pericardial thickening

at the apex [24].

Our group has investigated the usefulness of the ratio of

medial/lateral strain measurement in the differential diag-

nosis of CP from RCM by assessing STE longitudinal

strain [25]. We found that the longitudinal strain of the

lateral wall was lower than that of the septal wall in CP

group (Fig. 5), while the reverse was true in control and

cardiac amyloidosis. Therefore, the medial/lateral ratio of

longitudinal strain in CP group was higher than that in

normal group or amyloid group. The differential longitu-

dinal strain assessment by STE can be valuable in differ-

entiating CP from restrictive diseases; however, further

studies with larger population are required to confirm these

findings.

Perimyocarditis is common in clinical practice. Up to

15 % of patients with acute pericarditis have significant

myocardial involvement as assessed by markers of myo-

cardial lesion [26]. Echocardiography is essential for the

diagnosis of LV dysfunction and follow-up [26]. By

assessing three-layers strain and twist angle with speckle

tracking echocardiography, longitudinal and circumferen-

tial strain in three myocardial layers were found to be

decreased in patients with acute perimyocarditis (n = 38)

compared with normals (n = 20), except for the apical

epicardial strain [27]. The LV twist angle was decreased in

perimyocarditis versus normal, mostly due to lower apical

rotation. In perimyocarditis with normal LV systolic

function, the longitudinal strain was decreased in basal and

mid-ventricular segments in 3 myocardial layers. Circum-

ferential strain was not significantly different. Perimyo-

carditis process starts from the epicardial layer, which

contains fibers with oblique orientation that determine

longitudinal shortening. This may explain reduced longi-

tudinal strain and preserved circumferential strain in

patients with perimyocarditis and apparently normal sys-

tolic LV function.

Congenital absence of the pericardium is a rare mal-

formation that hardly manifests clinically and is usually

detected by echocardiography or other cardiac imaging

modalities such CT or cardiac MRI as an incidental finding

or discovered during cardiac surgery or at autopsy [28, 29].

As reported in a case study, strain and torsion measured by

speckle tracking imaging with the use of vector velocity

imaging technique were abnormal, and global longitudinal

strain and torsion were reduced in a patient with congenital

absence of the pericardium [30]. Although it is suggestive

by echocardiography findings, confirmative diagnosis can

be achieved by either cardiac CT or cardiac MRI, which

provide direct visualization of pericardium and the sur-

rounding tissue and pericardial tissue characterization.

3D echocardiography in pericardial diseases

3D transoesophageal echocardiography (TEE) can be use-

ful in demonstrating the extent of pericardial thickening in

CP. 3D real-time echocardiography provides additional

information throughout the diagnosis relative to the extent

of constriction over 2D echocardiography, as it can visu-

alize the parietal and visceral pericardium en face in a

manner not possible with 2D transthoracic echocardiogra-

phy (TTE) [31]. This allows the examination of each layer

separately for the presence of pathology and/or fibrin

deposits and determination of the exact location and the

extent of such pathological findings. Moreover, it allows us

to follow the pericardium not only over the LV, but also the

right ventricle (RV) and both atria. In CP, 3DTTE is typ-

ically able to determine the full extent of the constrictive

process by localizing the calcifications and thus determin-

ing how much each ventricular wall is involved. However,

the pericardial anatomy and calcification are better asses-

sed by computed tomography if they are needed for clinical

decision in patients with CP.

Echocardiography has become the standard imaging

modality for assessing pericardial effusion. By 3D echo,

the full extent of pericardial effusion can be visualized and

its location is determined with a greater detail and accuracy

when compared to 2D TTE (Fig. 6). 3D provides additional

information regarding the size, thickness and the extent of

the strands within the pericardial effusion and the rela-

tionship to cardiac structures [32]. 3D revealed the strands

to be an extensive network of intrapericardial adhesions

extending from the visceral pericardium to the thickened

parietal pericardium. 3D also allows for the full assessment

Fig. 5 Longitudinal strain assessment by speckle tracking echocar-

diography in constrictive pericarditis: The longitudinal lateral strain

values are lower than the medial strain values due to the lateral

constraint of the pericardium. ML mid-lateral segment of the left

ventricle (LV), BL basal lateral segment of the LV, MS mid-septal

segment of the LV, BS basal septal segment of the LV
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of the tethering of ventricular walls by adhesions in

patients with pericarditis besides the detection of pericar-

dial effusion. Superior imaging with 3D TEE over 2D TEE

had been also reported [33].

In addition to echocardiography techniques, cardiac

MRI and cardiac CT play an important role in loculated

pericardial effusion or intrapericardial clot, since there is

no window restriction, which is a big limitation for TTE,

especially for postoperative patient or for COPD or obesity

patient. Furthermore, cardiac MRI with and without Gad-

olinium contrast delay enhancement can evaluate tissue

characterization for pericardium, myocardium, pericardial

fluid and surrounding tissue and organ, which are very

helpful for searching the etiology of pericardial effusion

[34].

3D TTE may be superior to 2D TTE in uncovering mass

lesions involving the pericardium, such as tuberculous

granulomas, metastatic disease, hematomas (Fig. 7) and

pericardial cysts. Evaluation of pericardial hematomas,

their location, size and extent can be assessed more com-

prehensively when compared to 2D TTE, and the charac-

teristics of the interior of the hematoma can be examined to

determine whether it is entirely fluid or contains clot

components.

Effusive CP is a clinical syndrome characterized by both

pericardial effusion and pericardial constriction, where

constrictive hemodynamics persists after PE is removed.

The extent and distribution of pericardial thickening,

both parietal and visceral can be well-demonstrated by 3D

echocardiography. Electronic ‘‘dissection’’ of the 3D echo

image can demonstrate that the visceral pericardium is

stratified into two or more layers, though it appears to be

homogenous on the 2D echo [35] (Fig. 6). However, all

these case reports need to be confirmed in studies with

larger sample size and compare the 3D echo result with

cardiac MRI finding.

Ventricular septal bounce in early diastole, a plethoric

inferior vena cava and exaggerated respiratory fluctuation

in velocities across all valves can be also noted by 3D echo.

Overall, 3D echocardiography has an incremental value

in improving anatomic definition of cardiac structures

allowing a more accurate diagnosis.

Transient constriction

CP is traditionally presumed to be irreversible. However, a

Spanish group of investigators and our center have

described reversible CP, in which constrictive physiology

and hemodynamics resolve without pericardiectomy [36–

40]. Although the reasons for this resolution are not well

established, it has been postulated that inflammation and

edema lead to pericardial thickening, poor compliance and

constriction. If pericardial inflammation gets treated with

an anti-inflammatory agent before it becomes scarred,

constrictive hemodynamics may resolve without recur-

rence. Constriction resolves approximately at an average

time of 3 months. (Fig. 8). Recently, we systemically

studied the clinical, imaging feature and inflammatory

markers of reversible constriction. Compared with the

persistent group, the reversible patients had more idio-

pathic disease and more collagen vascular disease as the

etiology while fewer had prior radiation or cardiac surgery.

However, there were no significant differences regarding

other clinical features, echocardiographic features, Doppler

and tissue Doppler features between the reversible and

Fig. 7 Live/real-time three-dimensional transthoracic echocardiog-

raphy in a 17-year-old male with a bullet injury and subsequent

development of pericardial hematoma; The red dots outline a

loculated component of a very large pericardial hematoma. RV right

ventricle, LV left ventricle from Hernandez [31]Fig. 6 3D echocardiogram showing a pericardial effusion (EFF);

‘‘Virtual’’ electronic dissection reveals the layered or stratified nature

of the visceral pericardium (arrows). LV left ventricle, PP parietal

pericardium From Zagol [35]
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irreversible groups. These patients usually have a small to

moderate amount of pericardial effusion, and as the peri-

cardial effusion resolves, the pericardium remains

inflamed, thickened and non-compliant, resulting in con-

strictive hemodynamics. These patients present with

dyspnea, peripheral edema, increased jugular venous

pressure and occasionally ascites, as in patients with con-

strictive pericarditis. Relatively new onset symptoms

should make clinicians consider the possibility of the

transient form of CP. The TTE findings of transient CP are

similar to those of chronic CP: abnormal ventricular septal

motion, respiratory variation in mitral E velocity and nor-

mal or increased mitral annular early diastolic e0 velocity

measured by TDI.

By using late Gadolinium enhancement (LGE) cardiac

MRI, we found that the maximal pericardial thickness

measured on LGE was significantly greater in the

reversible than in the persistent CP group. Presence or

absence of LGE in pericardium was documented and was

rated qualitatively as none (no apparently visible LGE),

mild (faint LGE in pericardium that has signal intensity

less than the signal of the ventricular blood pool), mod-

erate (obvious enhancement that is visually similar to the

ventricular blood pool) or severe (obvious significant

LGE in pericardium that has signal intensity visually

greater than ventricular blood pool). A LGE pericardial

thickness of 3 mm or moderate–severe pericardial LGE

on qualification had a reasonable sensitivity and speci-

ficity to predict reversible CP. Furthermore, reversible CP

patients had more baseline systemic inflammation as

evidenced by higher baseline C-reactive protein (CRP)

and erythrocyte sedimentation rate (ESR) levels than the

persistent patients. There is also a positive correlation

between white blood cell count or ESR and the pericar-

dial LGE thickness (R = 0.55, P = 0.01 and R = 0.43,

P = 0.08, respectively). In the reversible group, anti-

inflammatory therapy was associated with a significant

reduction in CRP, ESR and white blood cell count, and

pericardial thickness determined by cardiac MRI LGE,

steady-state free precession and fast-spin echo imaging

with clinical and echocardiographic evidence of resolution

of constrictive hemodynamics. We suggest that patients

with CP and evidence of pericardial LGE thickness

detected by cardiac MRI and systemic inflammation as

evidenced by elevated CRP and ESR should be treated

with anti-inflammatory medical therapy or even with

steroids in more severe cases before consideration of

pericardiectomy [36].

Conclusion

TDI, with the assessment of early diastolic annulus velocity

and annulus reversus, improves the differentiation of con-

striction from restrictive myocardial disease. STE as a

complementary tool can further facilitate such differential

diagnosis. 3D echocardiography adds incremental value to

2D echocardiography by detecting anatomic structures

with higher accuracy and may be useful for the more

precise assessment of pericardial diseases, such as peri-

cardial effusion or pericardial masses. 3D can identify the

best site for pericardiocentesis and provides more precise

information regarding pericardial effusion. In challenging

or non-diagnostic cases, cardiac MRI and cardiac CT

Fig. 8 Transient constrictive pericarditis: a Echocardiographic find-

ings in constrictive pericarditis. Parasternal long-axis view of a

39-year-old man who presented 1 month after a motor vehicle

accident with dyspnea, showing markedly increased pericardial

thickness (arrows). b Follow-up echocardiogram performed 1 month

later, showing near-normal pericardial thickness (arrows). Ao aorta,

LA left trium, LV left ventricle, RV right ventricle From Haley [39]
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studies will be helpful. A subset of patients with CP,

namely transient CP patients, can be managed with an

effective medical therapy with a good chance of resolution

before pericardiectomy would be considered.
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