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Abstract It is believed that cardiac remodeling due to

geometric and structural changes is a major mechanism for the

progression of heart failure in different pathologies including

hypertension, hypertrophic cardiomyopathy, dilated cardio-

myopathy, diabetic cardiomyopathy, and myocardial infarc-

tion. Increases in the activities of proteolytic enzymes such as

matrix metalloproteinases, calpains, cathepsins, and caspases

contribute to the process of cardiac remodeling. In addition to

modifying the extracellular matrix, both matrix metallopro-

teinases and cathepsins have been shown to affect the activi-

ties of subcellular organelles in cardiomyocytes. The

activation of calpains and caspases has been identified to

induce subcellular remodeling in failing hearts. Proteolytic

activities associated with different proteins including casp-

ases, calpain, and the ubiquitin–proteasome system have been

shown to be involved in cardiomyocyte apoptosis, which is an

integral part of cardiac remodeling. This article discusses and

compares how the activities of various proteases are involved

in different cardiac abnormalities with respect to alterations in

apoptotic pathways, cardiac remodeling, and cardiac dys-

function. An imbalance appears to occur between the activi-

ties of some proteases and their endogenous inhibitors in

various types of hypertrophied and failing hearts, and this is

likely to further accentuate subcellular remodeling and car-

diac dysfunction. The importance of inhibiting the activities of

both extracellular and intracellular proteases specific to

distinct etiologies, in attenuating cardiac remodeling and

apoptosis as well as biochemical changes of subcellular

organelles, in heart failure has been emphasized. It is sug-

gested that combination therapy to inhibit different proteases

may prove useful for the treatment of heart failure.
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Introduction

Heart failure is a growing epidemic affecting approximately

23 million people worldwide [1]. Cardiac complications

including cardiac hypertrophy, genetic cardiomyopathy,

diabetic cardiomyopathy, dilated cardiomyopathy (DCM),

and myocardial infarction (MI) are all known to eventually

result in heart failure [1, 2]. The development of heart

failure is invariably associated with increased levels of

circulating catecholamines as a consequence of prolonged

stimulation of the sympathetic nervous system [3, 4]. In

addition, there occurs an activation of the renin-angiotensin

system in heart failure which elevates the plasma levels of

angiotensin (Ang) II [3, 4]. These hormonal changes

increase both the preload and afterload on the heart and thus

contribute to the geometric and structural cardiac remod-

eling [4], which is considered to be the underlying cause of

heart failure. It has been suggested that the activation of

different proteases, which are present in both the extracel-

lular and intracellular environment of cardiomyocytes, is

intimately involved in the process of cardiac remodeling

and the occurrence of heart failure due to different etiolo-

gies [4–7]. Several lines of evidence have suggested that

activation of proteases occurs due to oxidative stress and/or
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intracellular Ca2?-overload as a consequence of prolonged

elevation of catecholamines, Ang II, and other vasoactive

hormones in the circulation (Fig. 1) [3, 4]. Although the

proteolytic activity allows the degradation of misfolded

or malfunctioning proteins in cardiomyocytes and the

extracellular matrix (ECM) under normal physiological

conditions [7–9], different proteases, such as matrix

metalloproteinases (MMPs), have become a topic of great

interest regarding their involvement in biochemical

remodeling of subcellular organelles and pathogenesis of

heart disease [6, 7, 10–13]. In addition to MMPs, other

protease families including calpains, cathepsins, and casp-

ases have been considered to play an important role in the

development of both geometric and biochemical remodel-

ing as well as cardiac dysfunction in heart failure (Fig. 2).

The activation and activities of calpains and cathepsins and

their participation in cardiovascular disease have been

extensively reviewed elsewhere [14–22]. It should be

mentioned that the proteolytic activities of enzymes such

as calpains and MMPs are controlled by endogenous

inhibitors, including calpastatin and tissue inhibitors of

metalloproteinases (TIMPs) [11, 12, 18, 19]; however, there

are significant voids in the understanding of their role in the

failing heart. In this article, it is planned to discuss the status

of various extracellular and intracellular proteases in the

failing heart due to hypertension and cardiac hypertrophy,

different cardiomyopathies, and MI. Furthermore, the

involvement of endogenous inhibitors in determining the

extent of proteolytic activity in heart failure due to different

etiologies will be described. Since apoptosis is associated

with heart failure [3, 4], the participation of caspases and

other proteases in the process of cardiac apoptosis will be

highlighted. Although various proteases in the heart are

activated under conditions of ischemia–reperfusion injury

[5, 11, 12], this topic will not be dealt with in this review

which is intended to focus on heart failure.

Proteases in hypertension and cardiac hypertrophy

Hypertension refers to increased arteriole pressure and total

peripheral resistance as a result of vascular disease where

hemodynamic overload on the heart is known to cause

cardiac remodeling, cardiac hypertrophy, and heart failure

[1, 23]. Changes in protease expression and activity have
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Fig. 1 Schematic representation for the involvement of activation of

various proteases and cardiac dysfunction in different types of

cardiovascular disease. Prolonged elevated levels of plasma hormones

including catecholamines and renin-angiotensin are believed to

produce oxidative stress and intracellular Ca2?-overload, which

may then serve as major mechanisms for the activation of different

proteases
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Fig. 2 Schematic representation of different families of proteases

affecting the extracellular and intracellular environment in response

to cardiac pathological stimuli. These various proteases result in

remodeling of ECM and subcellular organelles leading to cardiac

dysfunction. MMPs matrix metalloproteinases
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been shown to occur in hypertension where protein levels

of MMP-9 in the heart were increased, whereas those of

TIMP-4 were reduced in Dahl salt-sensitive rats, a model

of hypertension [24]. Decreases in protein serum concen-

trations of MMP-1 and increases in TIMP-1 were observed

in patients with hypertensive heart disease [25–28]; how-

ever, one study has also shown that these levels remain

unchanged [29]. Reduced turnover of collagen present in

the interstitium [30] correlated with reduced MMP-1 and

increased TIMP-1 protein levels in the serum of hyper-

tensive patients both with and without cardiac hypertrophy

[25]. In Dahl salt-sensitive rats, the mRNA levels and

activities of MMP-2 and MMP-9 increased prior to the

occurrence of left ventricular dilatation, systolic dysfunc-

tion, and pulmonary edema; cardiac remodeling was

attenuated with the administration of ACE inhibitors indi-

cating a correlation between hypertensive hormone stimuli

and proteolytic remodeling [31]. In studies correlating

hypertension with cardiac hypertrophy, the proneness of

Dahl salt-sensitive rats to hypertrophy was attenuated by

congenic transfer of TIMP-4, which restored cardiac

function [24]. These observations in both hypertensive

animal models and hypertensive patients indicate that

various MMPs may be involved in the development of

dilated and/or hypertrophic cardiomyopathy due to hyper-

tension. It is pointed out that hypertension has also been

shown to cause left ventricular hypertrophy and a reduction

in calpain activity in both DOCA-salt hypertensive rat

hearts and spontaneously hypertensive rat hearts [32]. On

the other hand, both hypertensive patients as well as rats

with heart failure showed elevated mRNA and protein

levels of cathepsins S and K [33]. This is interesting

because cathepsins are known to have significant ECM

proteolytic capability by degrading elastin and fibrillar

collagens and activating pro-MMPs [34]. Thus, it appears

that increased activities of both cathepsins and MMPs,

unlike the activity of calpain, may account for the high

level of proteolytic activity for cardiac remodeling due to

hypertensive stimuli.

In cardiac hypertrophy, a known precursor to heart

failure, remodeling of the heart involves alterations in the

ECM, including increased collagen deposition, as well as

enlargement of the cardiomyocyte itself [23, 35, 36].

Although both extracellular and intracellular modifications

by proteases are known to occur for obtaining the hyper-

trophic phenotype, mechanisms of these processes are not

fully understood. Subcellular remodeling such as altera-

tions of various isoforms of the Na?-K?-ATPase has been

shown in both mild and severe hypertrophy with significant

reductions in the protein content and mRNA level for the

a2 isoform of this enzyme [37]. Increased protein levels of

TIMP-1 were evident upon attenuation of cardiac hyper-

trophy caused by MI using the K?-ATP channel opener

KMUP-3; decreased protein levels of MMP-9 and fibrosis

were also observed [38]. Likewise, other studies indicated

that TIMPs prevent the development of cardiac hypertro-

phy. When TIMP-4, the most abundant TIMP present in

the heart, was knocked out in a pressure overload model,

TIMP-2 compensated for the loss of TIMP-4 in maintain-

ing cardiac histology, survival rate, and cardiac function

compared with control [39]. It should be noted that when

comparing eccentric versus concentric left ventricular

hypertrophy, there were no differences in the serum levels

of MMP-9 and TIMP-1, TIMP-2, and TIMP-4 suggesting

that other proteases may be involved in determining these

different phenotypes [40].

There was notable regression in hypertrophy as well as

improved cardiac function in reverse remodeling upon

heterotropic transplantation of hypertrophic hearts [41].

Changes such as decreased heart weight and cardiomyo-

cyte area have been noted as possibly being a result of

increased MMP-2 and MMP-9 expression during unload-

ing, despite the continued increase in collagen deposition

[42]. Increased protein levels of TIMP-1 were observed in

both hypertrophied and unloaded hearts, suggesting the

influence of changes in TIMPs in cardiac remodeling [42].

What is interesting to note is that cardiac hypertrophy in

athletes showed comparable levels of TIMPs; however,

both their MMP-2 and MMP-9 protein levels were lower in

comparison to patients with pathological cardiac hyper-

trophy [43]. These data are consistent with another study

evaluating patients with hypertrophic cardiomyopathy,

which showed an increase in serum levels of both MMP-2

and MMP-9; however, only MMP-9 levels correlated with

fibrosis [44]. It should be mentioned that cardiac hyper-

trophy is associated with increased MMP-2 and MMP-9

levels contributing to a significant imbalance between

MMPs and their endogenous inhibitors, TIMPs. There is

also the implication of an MMP profile change between

hypertension and cardiac hypertrophy where the increased

level of denatured collagen formed by MMP-1 prompts the

increase in the levels of MMP-2 and MMP-9 to further

degrade it without a concomitant increase in the level of

TIMPs. Nonetheless, further studies are needed to clarify

the relationship of MMPs and TIMPs in fibrosis and car-

diac hypertrophy.

In addition to the alterations in the levels of MMPs and

their endogenous inhibitors, there are other proteases that

have been studied with respect to cardiac hypertrophy. In a

feline right ventricular pressure overload model, calpain

activity increased with an inverse relation to calpastatin

level at 24–48 h; however, a week later, these changes

returned to basal levels [45]. When increased levels of

calpastatin were incorporated into the genome of mice, it

was found that the decreased activation of calpain impaired

NFjB activity and prevented Ang II-induced hypertrophy
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[46]. Caspase-3 activation was also increased after induc-

ing pressure overload, although when a caspase-inhibitor

calpeptin was used, the activation of caspase-3 was atten-

uated but calpain activation was unaltered [45]. This

indicates that calpain is a more critical protease in the

development of cardiac hypertrophy, whereas the increase

in caspase-3 activity may be more significant concerning

the progression toward end-stage hypertrophy and the

development of heart failure. The treatment with E64-c, a

cysteine protease inhibitor, reduced the overall extent of

cardiac hypertrophy due to isoproterenol as well as pre-

vented the calpain-like activity [47]. These studies

strengthen the view that calpain is involved in the initial

development of cardiac hypertrophy in addition to changes

in MMP proteolytic activity. Thus, it would be prudent to

ascertain that the increases in both cardiomyocyte and

overall heart size are associated with the increases in the

activities of more than 1 family of proteases, and in fact,

extensive work remains to be carried out to elucidate the

pattern of temporal alterations in the activities of other

proteases at different stages of this malignant phenomenon.

In hypertension, it appears that remodeling occurs in part

as a result of changes in MMP proteolytic activities,

although there still remains to be investigated the cause and

effects of cathepsin activity increase and calpain activity

decrease. With regard to hypertrophy, the extent of

remodeling occurs involving MMP-2 and MMP-9 as indi-

cated in the study comparing athletic and pathological

hypertrophy; however, proteases, such as caspase-3 and

calpain, are emerging as potential players in the remodel-

ing process as well.

Proteases in dilated cardiomyopathy

DCM is a heart-muscle disorder that can lead to heart failure

where a portion of the myocardium is distended, with

increases in interstitial fibrosis, wall thinning, chamber

dilatation, and impaired contractile function [48]. The

activities of different proteases have been shown to change

depending upon the stage of the development of DCM. In

general, MMP activities appear to contribute to the devel-

opment of both MI-induced and idiopathic DCM as a result

of their extensive ECM remodeling capability. MMP-1 and

MMP-13 initially degrade both intact collagen and proteo-

glycans which are further altered by MMP-2/MMP-9 [12].

In a rat model of DCM induced by an injection of cardiac C

protein [49], inflammation peaked at 2 weeks post-injection

with a corresponding increase in the levels of MMP-2,

MMP-9, and TIMP-1 mRNA [50]. During a shift to the

fibrotic phase after 6 weeks, only the level of MMP-2

mRNA remained elevated. This study implies that in DCM,

MMP-9 fosters disease progression during the early

inflammatory phase, whereas MMP-2 remains involved for

the entire development of DCM [50]. Another study found

that MMP-9 protein content was increased, whereas the

increase in MMP-2 activity was normalized at the end of an

8-week period post-aortic banding [51]. Although there are

disparities in changes in MMP activities between these two

experimental models, it is clear that differential activation

of specific MMPs results in the progression of cardiac

remodeling. In addition, increased levels of MMP-2, MMP-

3, and MMP-9 have been observed in patients with DCM

[52–54]. Interestingly, neither the levels of MMP-2 nor the

levels of MMP-9 in DCM patients were indicated as being

sufficient in predicting cardiac events, but the elevation of

MMP-3 was demonstrated as being useful in predicting

poor prognoses [55, 56]. In a genetic population study

investigating idiopathic DCM, the promoter region of

MMP-3 had increased frequency of a -1,171 5A allele

which indicates that remodeling occurring in DCM could be

MMP-3 specific. This study suggested that, due to the

ability of MMP-3 to degrade a wide variety of ECM sub-

strates including proteoglycans, fibronectin, and laminin as

well as activating pro-MMPs, it could play a key role in

both ECM remodeling and the activation of other MMPs

involved in this process [57, 58]. It appears that increased

MMP-3 activity may be an important parameter in deter-

mining whether or not a patient will acquire DCM and thus

may serve as a specific biomarker for differentiating it from

other types of cardiomyopathies. Although the increases in

mRNA levels of TIMPs have been observed in the hearts of

DCM patients [55], these may be increased at the tran-

scriptional level because the protein content of TIMP-1 and

TIMP-3 was decreased in advanced human DCM [54].

Furthermore, increased myocardial MT1–MMP protein

levels have been noted in left ventricular biopsy tissue,

which is intriguing when taking into consideration that the

levels of MT1–MMP mRNA bound to active ribosomes

were actually reduced [59]. This elevation of MT1–MMP

could be explained by its potential to be internalized from

the cell surface as its abundance was increased in the

cytosolic component of myocardial fibroblasts in DCM

patients [59, 60].

Interestingly, not all proteases are detrimental in DCM as

indicated in cathepsin L-deficient mice where interstitial

fibrosis, accumulation of undigested material in enlarged

lysosomes, chamber dilatation, and impaired cardiac con-

traction were observed [61]. When cardiomyocyte-specific

expression of murine cathepsin L was induced in these

cathepsin L-deficient mice, changes in cardiac ultrastructure

and function were recovered, but the fibrosis still persisted

[62]. It is pointed out that when cathepsin L was overex-

pressed, not only are these pathologies reduced but there also

was a significant attenuation in the activities of caspase-3,

caspase-8, and caspase-9 [63]. This experimental model
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illustrates the necessity for cathepsin L for the maintenance

of lysosomes in order to prevent alterations in cardiac

structure and function that can lead to DCM [61]. On the

other hand, increased mRNA and protein levels of cathepsin

L have been observed in DCM patients where the expression

levels of cathepsin L mRNA correlated negatively with

ejection fraction [64]. Cathepsin B mRNA and proteins

levels have also shown to be inversely related with ejection

fraction in patients [65]. Although these data comparing

murine and human DCM appear contradictory, one must

keep in mind that the activities of other proteases may be

altered and the increased activity of cathepsins could be a

result of the remodeling process. In addition, increases in

cathepsin activity appear to be detrimental but the basal

activity of cathepsin L may be protective against the pro-

gression toward DCM in humans. However, more research

needs to be performed to determine the true role of cathep-

sins in the remodeling of ECM and subcellular organelles

during the development of DCM. In DCM, a consistent

distinguishing factor appears to be an increased activity of

MMP-3 which has been shown to serve as a biomarker in

patients. In addition, the importance of cathepsins, specifi-

cally cathepsin L, in maintaining lysosomal function is

highlighted in DCM, so although increased activity of

cathepsins should be avoided, complete attenuation of their

activity could significantly impair cardiac function.

Proteases in diabetic cardiomyopathy

Insulin deficiency and/or insulin insensitivity in diabetes

mellitus is known to cause an increase in circulating glu-

cose, catecholamine levels, activation of the renin-angio-

tensin system, and a metabolic shift, which induce

cardiovascular dysfunction called diabetic cardiomyopathy

[66]. As a result of changes in the extracellular and intra-

cellular environments, cardiac remodeling occurs in asso-

ciation with shortened left ventricular ejection time, longer

pre-ejection period, and elevated end-diastolic pressure in

diabetic mellitus patients [67]. Myocardial hypertrophy and

significant myocytolytic changes are also observed in dia-

betic patients with congestive heart failure [68, 69]. In

addition to cardiac remodeling, varying degrees of sub-

cellular alterations have been shown to occur during dia-

betic cardiomyopathy, emphasizing oxidative stress as a

mechanism of subcellular remodeling and heart dysfunc-

tion [66]. Changes in protease content and activities were

also evident in the diabetic heart and are believed to par-

ticipate in the ECM and subcellular remodeling processes

[70–72]. There were decreased levels of MMP-2 activity

and mRNA expression and increased levels of TIMP-2

mRNA expression in the myocardium of diabetic rats [70];

these alterations are considered to contribute to cardiac

fibrosis [71, 72]. The decrease in MMP-2 could be due to

deregulated ECM degradation as a result of decreased

MT1–MMP protein expression [73]. It should be noted that

MT1–MMP contributes to ECM degradation by creating a

complex with TIMP-2 to activate MMP-2. Although

TIMP-2 expression is increased in diabetic cardiomyopa-

thy, the activity of MMP-2 is reduced because of the

decrease in MT1–MMP expression [74]. Such a change

appears to be specific to diabetic cardiomyopathy as it

differs from what has been observed in both DCM and

cardiac remodeling post-MI [73]. A reduction in MMP-2

activity correlating with decreased collagen turnover was

evident in the Otsaku Long-Evans Tokushima fatty

(OLETF) rat model, which is reminiscent of human Type 2

diabetes due to their spontaneous development [75–77].

The activity of MMP-7, a key regulator of fibrosis in the

heart, and the activities of other MMPs were increased in

the diabetic myocardium [78–80]. The accumulation of

denatured collagen in fibrosis occurred partially as a result

of increased activity of MMP-7, which cleaves ECM pro-

teins resulting in denatured collagen, in diabetic patients

with diastolic dysfunction, although an increase in the

activity of MMP-9 was also found in these patients [81]. It

is possible that the increase in MMP-9 activity is insuffi-

cient to cleave the accumulating collagen and preventing

fibrosis in diabetic cardiomyopathy. Thus, the importance

of differentiating MMP activities between diabetic car-

diomyopathy and other cardiomyopathies is critical in

targeting specific changes in order to potentially minimize

the remodeling process in diabetic cardiomyopathy.

In addition to MMPs, changes in calpains, caspases, and

cathepsins may also be involved in diabetic cardiomyopa-

thy. Calpain-1 was found to decrease the Na?-K?-ATPase

activity contributing to apoptosis in cardiomyocytes stim-

ulated by high glucose concentrations [82]. In addition, it

was observed that L-type Ca2? channels and ryanodine

receptors, when altered by reactive oxygen species, were

involved in the activation of calpain-1; over-expression of

calpastatin attenuated these effects [82]. There has also

been observed increased caspase activation, specifically

caspase-9, in diabetic cardiomyopathy [83–86]. There was

a decrease in cathepsin D protein levels in young diabetic

mice which rebounded by 24 weeks; this increase in

lysosomal cathepsin D has been suggested to accelerate

cardiac muscle degradation, which is common in the late

stage of diabetic cardiomyopathy [87]. When evaluating

how neovascularization is impaired in diabetes, it was

found that the protein expression and activity of cathepsin

L were reduced, significantly impairing ECM degradation

and preventing endothelial progenitor cell-mediated neo-

vascularization to occur, thereby contributing to the

increased risk of ischemic heart disease [20, 88]. These

studies indicate that the activities of different cathepsins
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are altered to increase both the damage done directly unto

the myocardium as well as the risk for further cell damage.

Decreasing cathepsin D may protect the diabetic heart from

significant injury [66]. As a result of the increased level of

oxidative stress endured by the diabetic myocardium, the

activation and action of proteases differs slightly from

other cardiomyopathies; however, a significant amount of

information remains to be acquired, especially pertaining

to alterations in calpain activities and their possible role in

subcellular remodeling and cardiac dysfunction.

Proteases in myocardial infarction and heart failure

Heart failure is the eventual endpoint of a number of car-

diac pathologies where significant remodeling of both the

ECM and subcellular organelles in the heart occurs in part

by the activation of proteases and increased proteolytic

activities. Proteases play an integral part in the remodeling

process and have shown to be active by as early as 3 h

post-MI concomitantly with decreased collagen integrity

[89]. As a result of the decreased stability of the infarct

zone due to these remodeling processes, heart failure as a

result of rupture can occur [90]. These alterations are

accentuated by the infiltration of inflammatory cells which

further degrade both the ECM and intracellular proteins

resulting in injury that involves changes in the infarct zone

as well as throughout the viable ventricular myocardium

[12]. Intracellularly, MI increases the level of b-myosin

heavy chain (MHC) protein and decreases the level of a-

MHC protein content [91]. This shift in the pattern of MHC

proteins has also been observed in the hypertrophied heart

due to MI at the mRNA level [92–94]. In addition to MHC,

titin, a protein that provides elasticity to the sarcomeric

contractile unit of the cardiomyocyte, is degraded in the

failing heart resulting in impaired sarcomere contractility

[95, 96]. Changes in Na?-K?-ATPase have also been noted

as early as 6 weeks post-MI, with reductions in the a2

isoform mRNA and protein levels, which mirrors what is

occurring in both mild and severe hypertrophy [97].

Depression in Na?-K?-ATPase activity was also observed

at 8 and 16 weeks post-MI [98], and it has been suggested

that depressed Na?-K?-ATPase activity in cardiac hyper-

trophy due to MI could be a significant factor leading to

heart failure. Levels of both SERCA mRNA and protein, as

well as Na?-Ca2?-exchanger, were found to be decreased

in the transition stage of MI-induced heart failure [99–105].

This suggests a flurry of proteolytic activity may be

occurring inside the myocardium at the initial stages of

heart failure which may provide a keystone target for

attenuating the development of cardiac dysfunction.

The predominant amount of ECM remodeling in the

progression to heart failure occurs as a result of increased

MMP proteolytic activity and/or decreased levels of TIMPs

[12]. In mice, a decrease in protein levels of protective

TIMP-2 and TIMP-4 was noted in decompensatory heart

failure along with an increase in MMP-2 protein content

[51]. TIMP-4 has been shown to be significant in protecting

the heart post-MI as demonstrated by a TIMP-4 knock-out

model where MI increased the incidence of mortality pre-

dominantly as a result of left ventricular rupture [39]. In

heart failure induced by pacing in a porcine model,

increases in MMP-1, MMP-2, and MMP-3 protein content

were 319, 194, and 493%, respectively, whereas gelatin

and collagen III degradations were increased by 119 and

153%, respectively [106]. Interestingly, it was observed

that post-MI, collagen accumulation was prevented and left

ventricle enlargement was attenuated in an MMP-9 knock-

out mouse [107]. Also, there was an increase in MMP-13

protein content and MMP-2 and MMP-9 proteolytic

activities post-MI, with no significant change in mRNA. It

was suggested that the remodeling environment may con-

tribute to modification of these MMPs causing increased

activation which was not attenuated by TIMPs, because

TIMP-1 mRNA levels were initially elevated but slowly

decreased at 5 weeks post-MI [108]. Increased promoter

activity of MT1–MMP occurred in both infarct and remote

myocardial regions at a rate of 209 at 3 days and 509 at

14 days post-MI [109]. This myocardial overexpression of

MT–MMP has been shown to accentuate remodeling of the

interstitium by triggering a pro-fibrotic response [109].

With regard to extracellular alterations, MMPs were of

particular interest because several clinical trials measured

MMP serum levels in heart failure patients. Increased left-

sided filling pressures and collagen synthesis predominated

due to excess TIMP-1 protein levels, despite increases

in MMP-1, suggesting impaired collagen turnover [43].

Elevated levels of MMP-9 have also been linked to

decreased left ventricular function and, specifically a con-

centration of 89.9 ng/ml in serum, indicated a decreased

likelihood of survival in patients [110, 111]. In a recent

study evaluating MMP levels in congestive heart failure

patients, increased amounts of MMP-2, MMP-3, and

MMP-9 were noted in the plasma, whereas plasma TIMP-1

was significantly less; lower fibronectin levels were also

observed in these patients [112]. It is important to note that

an imbalance between MMP activity and the rate of col-

lagen deposition could lead to myocardial rupture, whereas

necrosis present in the myocardium has been linked to

increased chances of rupturing due to higher levels of

MMP activity [113, 114]. Unfortunately, the majority of

information available in the literature focuses on the pro-

teolytic activities of a small subset of MMPs, particularly

the gelatinases MMP-2 and MMP-9; however, these pro-

teases are primarily responsible for the degradation of

denatured collagen in the interstitium and are not
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necessarily the MMPs responsible for causing its accu-

mulation. Future studies must be performed in order to

investigate how accumulation of denatured collagen occurs

and elucidate whether other members of the MMP family

are involved.

Other proteases also contribute in cardiac remodeling

post-MI and heart failure. Increased level of calpain has

been observed in patients with congestive heart failure with

Ang II-induced cardiac remodeling [115]. Upon treatment

of MI in a rat model with a combination of caspase-3 and

calpain inhibitors, both the treated and control groups

showed changes in the systolic blood pressure and heart

rate, although these alterations returned to baseline [116].

This indicates that the initial changes occurring post-MI are

not due to calpain or caspase-3 but their roles may be more

pertinent to the progression of heart failure as their inhi-

bition attenuated cardiac dysfunction. The level of the

endogenous inhibitor of calpain, calpastatin, was unchan-

ged in MI; however, the protein level of calpain was

increased [117]. This suggests a common theme pertaining

to the progression of heart failure indicating that an

imbalance between proteases and their endogenous inhib-

itors is significant. In addition, both chymase and cathepsin

G have been shown to increase Ang II formation in the

failing human heart [118, 119], which further exacerbates

the disease by increasing the level of oxidative stress and

Ca2?-overload. These alternative Ang-forming pathways

provide insight as to why ACE-inhibitor therapy is not

entirely preventative in reducing Ang II levels and sub-

sequent remodeling leading to heart failure. In addition, the

level of serine protease, proteinase 3, in the plasma of

patients has been demonstrated as being important in

determining the mortality and incidence of heart failure

post-MI [120]. The alterations in proteolytic activity

highlight how proteases are activated at varying times

during cardiac remodeling, as evident by a study evaluating

the inhibition of calpain and caspase-3. Preventing the

formation of Ang II by inhibiting chymase and cathepsin G

could prove as additional therapy in reducing the pro-

gression of heart failure. It should be noted that the

development of heart failure is a complex process that

involves numerous proteases; however, there is still much

more research needed to be done in order to discover how

and when these protease activities are altered and if there

are other proteolytic enzymes contributing to cardiac dys-

function at this final stage. As the heart progresses toward

heart failure due to MI, there is a significant increase in

proteolytic activity, especially by the MMP family. In

addition, an imbalance between the increased proteolytic

activity of calpain and the unchanging level of its endog-

enous inhibitor, calpastatin, also contributes to cardiac

dysfunction in the progression toward heart failure. Prote-

ases, such as chymase and cathepsin G, are also responsible

for the formation of Ang II so their inhibition could prevent

the increase in Ang II and reduce its effects.

Proteases in apoptosis and cardiac remodeling

A common element in the progression of heart failure due

to different cardiovascular etiologies, including cardiac

hypertrophy and cardiomyopathies, is apoptosis. Apoptosis

is a cell death mechanism primarily regulated by caspases,

a family of 14 cysteine proteases that cleave their sub-

strates specifically at an Asp residue [121]. The caspases

are initially expressed as zymogens in the cytosol of the

cell that become active after proteolytic cleavage at their

Asp residues by a variety other proteases [121]. Both

extrinsic (death receptor-mediated) and intrinsic (mito-

chondrial-mediated) apoptotic pathways activate caspases

which subsequently degrade numerous polypeptides in the

cell including major structural elements, DNA repair

machinery, and protein kinases [121]. Another protease

system, which may also be involved in the progression of

apoptosis, is the ubiquitin–proteasome system (UPS). The

proteasome is activated by a 700 kDa ATP-dependent

complex known as the 19S regulatory particle with a

subunit composition that varies with the physiological state

of the cell and attaches to either one or both ends of the 20S

proteasome regulatory unit [122–124]. In addition, the

quantity of proteasome components is regulated by the

gene expression, which has been observed to be upregu-

lated during proteotoxic stress [124] that occurs during

oxidative stress induced by cardiac pathologies including

diabetic cardiomyopathy and MI [3, 66]. It is important to

note that apoptosis has also been shown to occur inde-

pendently of the caspase-mediated pathway via the apop-

tosis-inducing factor (AIF) [125]. In heart failure after MI

in monkeys and patients, it has been observed that apop-

tosis in non-cardiomyocytes was nearly 99 greater than in

cardiomyocytes, with most of apoptosis occurring in

macrophages (41%) followed by neutrophils (18%), fibro-

blasts (16%), and then the remaining other cell types (25%)

[126]. This opens a new avenue for studying the differ-

ences in apoptosis, primarily mediated by proteolytic

activity, between various cell types and how oxidative

stress causes differential apoptosis to occur within the

medley of cells present in the heart. Nonetheless, it is

becoming apparent that proteases other than caspases may

also be involved in the development of cardiac apoptosis.

The extent of damage caused by cardiac injury is a

factor of the extent of caspase-mediated apoptosis that

occurs in different cell types within the heart. Furthermore,

it is interesting that apoptosis occurs to a larger extent once

blood flow is restored post-MI [127–130]; the extent of

cardiomyocyte apoptosis is proportional to the extent of

Heart Fail Rev (2012) 17:395–409 401

123



cardiac injury. In MI patients, apoptosis appeared on the

border lines of the infarct zone compared with the minimal

amount in remote areas of the heart [131–134]. However,

apoptotic diagnoses performed by using the TUNEL

method, which employs immunohistochemistry for cleaved

caspase-3, showed a lower apoptotic rate in human MI than

previously reported [135]. It should be mentioned that

caspases contribute to intracellular damage by cleaving

contractile proteins including actin, myosin, and troponin

in addition to pro-apoptotic factors that cause the release

of cytochrome c from the mitochondria [136, 137]. In

cardiomyocytes, the predominant apoptotic pathway

appears to be intrinsic [138, 139], primarily through

intermembrane space protein release, Bcl-2 protein

involvement, and procaspase activation [140–142]. Cas-

pase-3 has also been found to be associated with decreased

left ventricular function due to its destructive nature of

destabilizing sarcomeric structure [143] which is prevented

by caspase inhibition that additionally attenuates ventric-

ular remodeling [144–146]. When caspase-8 is inhibited by

Z-IEDT.fmk, the effects of both caspase-8 and caspase-9

are affected, resulting in overall reduced BID cleavage and

decreased cardiomyocyte apoptosis [147]. In patients with

MI, there has been positive immunohistochemical staining

observed for caspase-8 and caspase-9 in the border zone of

MI; however, no significant change was observed when

comparing patients with or without reperfusion treatment

[121]. Positive staining of caspase-9 lining fibrotic scars

post-MI in the human heart implies continuous apoptosis

may contribute to ventricular remodeling after MI [121].

The reduction in cardiomyocyte apoptosis, size of MI, and

improved heart function have been observed following

inhibition with broad-spectrum caspase inhibitors, whereas

selective caspase inhibitors depressed apoptosis without

affecting the infarct size [148–152]. In addition to their

pro-apoptotic activity, caspases have also been shown to

activate MMPs, and their inhibition attenuated both

regional and global LV remodeling in a porcine MI model

[153]. When studying the transition from compensated

hypertrophy to decompensated heart failure in a guinea pig

model, there was a significant increase in the expression of

the p17 subunit of caspase-3 [154]. In patients with DCM,

both caspase-3 and caspase-9 were active [155]. In

hypertrophied hearts due to AV shunt, the levels of both

caspase-3 and caspase-9 were elevated in male rats with a

corresponding increase in apoptosis; however, females

had reduced cardiomyocyte apoptosis and did not exhibit

heart failure [156, 157] although not all cardiomyopathies

undergo caspase-regulated apoptosis. For example, hyper-

trophied cardiomyocytes from Dahl salt-sensitive rats were

found to have a higher proportion of apoptosis initiated by

AIF as opposed to caspase-mediated apoptosis [125];

inhibition of caspases by zVAD.fmk had no effect on

AIF-induced apoptosis in these cardiomyocytes. On the

other hand, inhibition of caspase activity may be a key in

attenuating the extent of cardiomyocyte apoptosis during

the progression of cardiac hypertrophy toward heart fail-

ure; thus, it is important to focus on preventing the extent

of remodeling under situations showing increased caspase

activity [121].

In addition to protein degradation via caspases, further

downstream in the apoptotic pathway resides the destruc-

tive power of the UPS that is a primary non-lysosomal

protein degradation pathway and is composed of the 26S-

proteasome and ubiquitin [158]. The role of ubiquitin in the

UPS is to act as a tag for the proteasome to identify how the

protein targeted for proteolytic degradation is destroyed.

The proteasome itself has three proteolytic activities

(‘‘trypsin-like,’’ ‘‘chymotrypsin-like,’’ and ‘‘caspase-like’’)

that are assigned to one or more of the 7 b-type subunits

[158]. The proteasome is made up of subunits that include

the core 20S subunit and a regulatory 19S subunit made up

of an additional 18 subunits arranged in a ‘‘base’’ and ‘‘lid’’

conformation [158]. The UPS system is responsible for

regulating apoptosis by degrading caspases [159]. There is

also an additional 11S activated proteasome that consists of

a 20S proteasome docked with 1 or 2 11S activator rings or

one 19S regulatory ring on one end and an 11S activator

ring on the other [158, 160, 161]. Its 20S proteasome sub-

unit specifically recognizes oxidized proteins that are of

interest regarding cardiac pathologies where the heart

endures oxidative damage as the 11S proteasome appears to

focus on the degradation of damaged or senescent proteins

and may be upregulated during periods of oxidative stress

[162–164]. The proteolytic nature of the UPS system

changes the molecular composition of the cell and has been

indicated to alter its protein balances as a result of MI.

Specifically, this has been demonstrated with the altered

ratio of PKCe and PKCd, which is important as PKCe
appears cardioprotective and PKCd may have both pro-

apoptotic and pro-necrotic effects [165]. In addition,

ischemic preconditioning prevented the decline of 26S

ATP-dependent proteasome activity, thereby decreasing an

accumulation of misfolded proteins as well as reducing the

degradation of PKCe [165]. An accumulation of oxidized

and ubiquitinated proteins appears to parallel with

decreased 20 and 26S activities due to oxidative stress

inactivation [166–168]. A possible hypothesis for the

decreased core subunit activity could be a result of lack of

ATP in ischemic cardiomyocytes which impairs the ATP-

dependent activity of the UPS [167]. In addition, the pro-

teasome subunit expression and activities are increased in

cardiac hypertrophy [169, 170]. In the transition of hyper-

trophy to heart failure in patients, there was an increased

level of ubiquitination during compensated hypertrophy

followed by a 129 increase upon the onset of heart failure
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[171]. The level of poly-ubiquitinated proteins was

increased, and the enhancement of proteasome chymo-

trypsin-like activity was enhanced in DCM [155].

Inhibition of the proteasome has been shown to impair

the heart function, as indicated by the use of bortezomib,

an FDA-approved chemotherapeutic anti-cancer medica-

tion, which increases the occurrences of arrhythmias and

heart failure [167, 172, 173]. However, other studies in

rat, murine, and porcine models indicate that proteasome

inhibition could be cardioprotective [174–179]. The pre-

treatment of isolated rat hearts with semi-selective pro-

teasome inhibitor, lactacystin, increased the number of

oxidized proteins; however, it was not found to signifi-

cantly affect post-ischemic function [167, 180]. Sustained

proteasome inhibition has been shown to attenuate cardiac

hypertrophy, specifically by inhibiting the down-regula-

tion of pro-hypertrophic signaling pathways including

Akt, ERK1/2, calcineurin, and cyclones [181, 182].

Blocking proteasome degradation using antibacterial

peptide, PR39, was observed to reduce ECM deposition

by preventing downstream activation of NFjB, a factor

involved in increasing cardiac fibrosis [183]. Proteasome

inhibition has also been found to attenuate left ventricular

remodeling in a pressure overload model by preventing

further progression of hypertrophy, lessening the degree

of collagen accumulation, decreasing cardiomyocyte

apoptosis, and the overall stabilization of cardiac function

[184]. However, it is interesting to note that upon the

onset of heart failure, the proteasome itself is significantly

down-regulated [113]. There has also been impaired

ubiquitination and proteasomal degradation of proteins

during chronic hypertrophy that could further accentuate

damage caused by prior cardiac events [185]. In a long-

term study evaluating pressure overload in dogs over

2 years, it was found that the upregulation of transcripts

encoding various ubiquitin–proteasome proteins including

poly-ubiquitin, processing proteins, and subunits occurred

[169]. An upregulation of the proteasome noted in the

middle stage of disease suggested a link between early-

stage compensatory hypertrophy and mid-stage dilation;

however, there is still debate as to whether the protea-

some is up- or down-regulated in cardiac dysfunction

[170, 171]. What has been observed in patients is an

increase in poly-ubiquitinated proteins which could be a

result of the UPS being overcome with superfluous poly-

ubiquitinated proteins exceeding the degradative capacity

of the proteasome and/or the possibility that there could

be increased production of UPS substrates as a result

of increased metabolic activity or misfolded proteins

[155, 181–183]. The activity of the proteasome appears to

vary among the distinct cardiomyopathies; therefore,

when ruminating proteasome inhibition in an attempt to

reduce excess protein degradation to impede remodeling,

it is important to point out that its actions vary and

inhibiting it in some cases, such as in hypertrophy, may

accentuate damage to the myocardium instead of attenu-

ating it. It is needed to further investigate the possibility

of alternative proteasome subunit activity to determine its

role in the pathogenesis of multiple diseases where the

body is exposed to oxidative stress.

Although traditionally perceived as a degradative pro-

tease, calpain is also involved in cell apoptosis. It can act by

cleaving BID which subsequently aids in releasing cyto-

chrome c from the mitochondria to trigger intracellular

apoptosis. Interestingly, this action has been demonstrated

to be independent of the apoptotic caspase family [14].

Although predominantly a cytosolic protein, calpain has

also been located in the mitochondria where it further

contributes to cellular apoptosis. The increase in Ca2? in the

cell causes mitochondrial Ca2?-overload which subse-

quently activates mitochondrial calpains to trigger apopto-

sis via cleavage of AIF [186–188]. AIF translocates to the

nucleus to cause cell death independent of caspase activa-

tion and has been implied to occur in oxidative stress,

hypoxia, and/or ischemia [187]. In addition to caspase-

independent cell apoptosis, calpain has also been demon-

strated to activate caspases, both directly and indirectly.

Specifically, it can cleave apoptosis protease-activating

factor-1 which, when combined with cytochrome c, acti-

vates caspase-9 in addition to directly converting procas-

pase-7 to its active form [188]. Calpain is closely correlated

with MI as its ultrastructural degradative and pro-apoptotic

nature is a primary culprit in the damage done to the heart as

a result of oxidative stress and Ca2?-overload. It is

emphasized that the role of calpain in apoptosis in cardio-

myopathies is yet to be determined, although its inhibition

in cardiomyocytes subject to Ca2?-overload could prevent

both its proteolytic and apoptotic activities. Thus, it is

evident that caspases are instrumental in both apoptosis and

cardiac remodeling, and their inhibition may be pivotal in

preventing both phenomena associated with cardiac dys-

function. In addition, degradation of proteins via the pro-

teasome is another factor to consider regarding different

cardiomyopathies as its activity appears to be up-regulated

in cardiomyopathies leading to heart failure, but is then

down-regulated as the disease processes. Finally, calpain is

also associated with apoptosis as it activates AIF further

contributing to cardiac dysfunction.

Concluding remarks

From the foregoing discussion, it is evident that different

families of proteases are activated in the development of

heart failure as a consequence of hypertension, cardiac

hypertrophy, DCM, diabetic cardiomyopathy, and MI. The
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activation of various proteases, including MMPs, calpains,

cathepsins, and caspases, alters both the ECM and sub-

cellular organelles and thus causes cardiac dysfunction.

The mechanisms of protease activation involve oxidative

stress and/or intracellular Ca2?-overload as a consequence

of elevated levels of some vasoactive hormones including

catecholamines and the renin-angiotensin system in heart

disease. The increase in proteolytic activity is also due to

an imbalance in the activities of some proteases and their

endogenous inhibitors such as TIMPs and calpastatin in the

diseased myocardium. It has been observed that there occur

differential changes in proteolytic activities where different

proteases are activated at different stages of cardiovascular

disease during the progression to heart failure. There are

still large chasms in the knowledge regarding extracellular

and intracellular proteolyic activities in both the ECM and

subcellular remodeling processes for various cardiac

pathologies and their collective progression toward heart

failure. Finding common links would provide an ideal

target and is a required step in developing therapies for the

treatment of these distinct cardiovascular etiologies and

prevent the progression to heart failure. Since different

proteases are activated at a given stage of disease, it would

be prudent to use combination therapy to inhibit more than

one protease for the achievement of improved therapy of

heart disease.
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