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Abstract Resveratrol is a well-known antioxidant that

exists in grape skin/seed, red wine, and the root of

Polygonum cuspidatum, a traditional Chinese and Japanese

medicinal material. Studies have found that resveratrol has

many interesting properties, including anti-carcinogenic

properties, anti-microbial and antiviral effects, the ability

to reverse dyslipidemia and obesity, the ability to attenuate

hyperglycemia and hyperinsulinemia, and the ability to

protect endothelial function. Heart failure is the final con-

sequence of the majority of cardiovascular diseases, and

resveratrol has been shown to directly attenuate heart

contraction. The cardiovascular protective capacities of

resveratrol are associated with multiple molecular targets

and may lead to the development of novel therapeutic

strategies for atherosclerosis, ischemia/reperfusion, meta-

bolic syndrome, and heart failure. This article will mainly

review recently published basic researches about the pro-

tective cardiovascular effects of resveratrol because these

results may lead to the development of new clinical ther-

apeutics in patients.
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Introduction

Cardiovascular disease is one of the leading causes of death

throughout the world. A common feature of cardiovascular

risk factors, including hypertension, obesity, dyslipidemia,

insulin resistance, and glucose intolerance, is the increase

in oxidative stress [1, 2]. Many studies show that antioxi-

dants such as tempol and apocynin significantly prevent

organ damage induced by a variety of factors, including

cuff injury, hypoxia, ischemia/reperfusion (I/R) injury,

angiotensin II/high salt loading, and metabolic disorder

[3–8]. However, the toxicity of tempol and apocynin limits

their application in humans. Numerous clinical trials have

evaluated the effects of vitamin C and vitamin E, effective

antioxidants in animal experiments, on the prevention of

coronary heart disease and stroke, but most of which have

reached disappointing conclusions [2, 9]. Typically, HOPE

and GISSI studies with antioxidative vitamin E supplement

failed to improve the outcomes of cardiovascular disease

patients [10–12]. The use of angiotensin-converting

enzyme inhibitors, angiotensin II type 1 receptor blockers,

calcium channel blockers, 3-hydroxy-3-methylglutaryl-

coenzyme A (HMG-CoA) reductase inhibitors, and per-

oxisome-proliferator-activated receptor (PPAR)-c agonists

has been reported to decrease oxidative stress in many

clinical treatments [13–18], but there is not a specific,

effective, and safe antioxidant that is currently used for the

treatment of patients with cardiovascular disease.

On the other hand, it seems that a drug targeting mul-

tiple points may exhibit better therapeutic efficacy than that

blocking or activating one target in complex conditions

[19]. A possible reason is that common disorders such as

cardiovascular diseases tend to result from multiple

molecular abnormalities. One drug to one target and taking

various tablets will cause higher cost, more interactions
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between drugs and lower compliance. Resveratrol (3,5,40-
trihydroxystilbene), one of the main polyphenol extracts in

grape skin/seed, red wine, and the root of Polygonum

cuspidatum, is found to have protective potentials to

multi-targets related to cardiovascular diseases [20, 21].

Especially, resveratrol is best known for its antioxidant

properties in vivo, and several protective intracellular path-

ways of resveratrol are associated with oxidative stress.

Antioxidant properties of resveratrol

Resveratrol acts as a radical-scavenging antioxidant via the

following reaction: Res-(OH)3 ? R� ? Res-(OH)2O� ?

RH, in which Res-(OH)3 represents resveratrol and R�
represents free radical [22]. The unpaired electron of Res-

(OH)2O� is expected to be delocalized over aromatic rings

of resveratrol, resulting in poor reactivity or nocuity [22].

However, the direct antioxidant effects of resveratrol are

weak. The protective effects of resveratrol against oxida-

tive injury both in vivo and in vitro are likely to be

attributed to the upregulation of endogenous cellular anti-

oxidant systems rather than the direct scavenging activity

of reactive oxygen species (ROS) [23].

The free radical reactions are shown in Fig. 1. Resve-

ratrol has been shown to inhibit oxygen free radical for-

mation by suppressing pro-oxidative genes (such as

nicotinamide adenine dinucleotide phosphate oxidase and

myeloperoxidase) [20, 23–25] and inducing antioxidative

enzymes or substrates of these enzymes including super-

oxide dismutase (SOD), catalase, thioredoxin, and gluta-

thione peroxidase (GSH-Px) [23, 26–28]. Superoxide

dismutase and GSH-Px are the major enzymes responsible

for the inactivation of O2
- and hydrogen peroxide,

respectively, and they can restore the activity of other

endogenous antioxidants. The major SOD regulated by

resveratrol is manganese SOD. Manganese SOD locates

mainly in mitochondria and counteracts ROS production

from mitochondrial electron transport chain [27]. Studies

have reported that resveratrol chelates transition metallic

copper, which is able to generate free radicals and cause

lipid peroxidation [29, 30]. Moreover, heme oxygenase-1

(HO-1) is a stress-response protein, which may play an

important role in mediating protection against oxidative

injury, and resveratrol can upregulate HO-1 [26, 28].

Resveratrol has been shown to enhance the expression

of endothelial nitric oxide synthase (eNOS), modulate the

deacetylation of eNOS, and increase plasma nitric oxide

(NO) levels [31–34]. Nitric oxide [also catalyzed by

inducible NO synthase (iNOS); see preconditioning]

behaves as a potent antioxidant, which reacts with O2
- and

generates peroxynitrate radicals (ONOO-) in vivo [35, 36].

In physiological systems such as the heart where adequate

amounts of thiol and ascorbate are present, the ONOO-

preferentially react with the –SH groups of thiol and

ascorbate, thus losing nocuity [35]. Most importantly, the

affinity of NO for O2
- is far greater than the affinity of

SOD for O2
-, thus the resveratrol/NO pathway plays an

important role in O2
- elimination [35].

Anti-inflammation and anti-coagulation activities

Resveratrol and inflammation

Atherosclerosis is now considered as an inflammatory

disease. Inflammatory processes occur during atherogene-

sis, and the major events in the inflammatory process

include the activated inflammatory cells with subsequent

enhanced infiltration, the amplified release of chemoat-

tractants/inflammatory cytokines, and the increased leu-

kocyte–endothelial cell interactions. These processes can

lead to a weakening of the fibrous cap that overlies the lipid

core of plaque and promote the susceptibility of plaque to

rupture and subsequent thrombosis. Reactive oxygen spe-

cies play an important role in the development of inflam-

mation and lead to development in metabolic dyslipidemia,

impaired glucose metabolism and hypertension [37]. On

the other hand, the upregulation of proinflammatory adi-

pokines is observed to promote oxidative stress in obesity

and inflammation situation. The interplay of oxidative

Fig. 1 Main endogenous oxygen radical reactions. Oxidases convert

oxygen to superoxide, which is then converted to hydrogen peroxide

by SOD [1]. Hydrogen peroxide can either be converted to H2O by

catalase, peroxiredoxin or GSH-Px, or to a hydroxyl radical after

reacting with metal ions. The substrate of GSH-Px and the substrate

of peroxiredoxin are reduced glutathione and thioredoxin, which are

endogenous antioxidants that play a central role in the antioxidant

system of most aerobic cells. Resveratrol is also the direct scavenger

of hydroxyl radical and superoxide. In addition, superoxide reacts

rapidly with nitric oxide to form peroxynitrite. Peroxynitrite either is

oxidized to the inactive nitrate or reacts with the –SH group of

thiol and ascorbate [35, 36]. NADPH nicotinamide adenine dinucle-

otide phosphate, SOD superoxide dismutase, GSH-Px glutathione

peroxidase
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stress, inflammation, obesity, insulin resistance, and

hypertension ultimately increases atherogenic risk [37, 38].

Another characteristic of resveratrol is anti-inflammation.

Resveratrol not only modulates biochemical responses of

polymorphonuclear leukocytes by interfering with the

release of inflammatory mediators (e.g., platelet endothe-

lial cell adhesion molecule-1) [24, 39], but also suppresses

the activity of T cells, B cells, and macrophages, which

was shown by significant inhibition of their proliferation,

antibody production, and lymphokine secretion [40].

Resveratrol has also been shown to mediate anti-

inflammatory processes by inhibiting cyclooxygenase

(COX), which catalyzes the conversion of arachidonic acid

into prostanoids and thromboxane A2 (TxA2). There are

two distinct membrane-anchored isoenzymes of COX:

COX-1 and COX-2. Resveratrol may act similarly to aspi-

rin, which is an effective cardioprotective agent that targets

platelet-specific COX-1; however, the inhibitory efficacy of

resveratrol on COX-1 may be weaker than that of other

polyphenols in red wine [39, 41, 42]. Cyclooxygenase-2 is

induced by proinflammatory mediators during inflamma-

tion. Resveratrol suppresses the expression and activity of

COX-2 and the downstream signals like prostaglandin

[43–45]. Proinflammatory mediator, particularly interleukin-

1b, stimulates the production of leukotriene B4 (LTB4),

which is a risk factor of atherosclerosis and produced through

the lipoxidase pathway of arachidonic acid metabolism.

Resveratrol has been shown to decrease LTB4. At the same

time, resveratrol reduces the production of matrix metallo-

proteinases (MMPs) [45]. Matrix metalloproteinases not only

accelerate formation and progression of plaque, but also

facilitate to weaken fibrous cap. Therefore, resveratrol is a

hopeful medication for plaque stabilization.

Resveratrol has also been shown to elevate proteoglycan

synthesis and may be involved in the prevention and

treatment of autoimmune inflammation [45]. Moreover,

resveratrol inhibits nuclear factor-jB (NF-jB) and modu-

lates the plasma concentration of NF-jB-related inflam-

matory and autoimmune markers in the subjects with

increased risks of cardiovascular disease [46–48].

Resveratrol and platelet

As described above, resveratrol inhibits TxA2 formation

via blocking COX [39, 49]. In addition, resveratrol pre-

vents platelet activation through reducing intracellular

calcium concentration ([Ca2?]i) of platelet, which plays a

key role in platelet aggregation. The mechanisms are

involved in the inhibition of the p38 mitogen-activated

protein kinase–cytosolic phospholipase A2–arachidonic

acid–TxA2–[Ca2?]i cascade and activation of NO/cyclic

GMP, thus resulting in the inhibition of phospholipase

C/protein kinase C and decrease in [Ca2?]i level [49, 50].

Resveratrol has also been shown to induce platelet

apoptosis. Resveratrol stimulates mitochondrial membrane

potential dissipation, caspase-9, caspase-3, and caspase-8

activation, human BH3 interacting domain death agonist

cleavage, cytochrome C release, and phosphatidylserine

exposure in washed human platelets, which promote

platelet destruction and prevent pathological clotting [51].

There has been report that resveratrol prevents cigarette-

smoking-induced eNOS acetylation and endothelial dys-

function via sirtuin type 1 (SIRT1), which is one of seven

mammalian homologs of silent information regulator 2

(Sir2, sirtuin family of proteins in yeast), and catalyzes

nicotinamide adenine dinucleotide (NAD?)-dependent

protein deacetylation [34, 52]. Sirtuin type 1 is highly

expressed in vascular endothelial cells. The normalization

of injured endothelium will improve vascular tone, blood

flow, cell adhesion, and leukocyte–endothelial cell inter-

actions [31, 32, 53–56], which are very important con-

tributors to platelet aggregation [57].

Anti-aging characteristics

Aging is a risk factor of cardiovascular diseases. To slower

the speed of aging and prevent the occurrence of age-

associated chronic diseases is a key issue in modern soci-

ety. Resveratrol can activate anti-aging genes and facilitate

extending lifespan in lower organisms like yeasts and

worms [20, 58]. Resveratrol also increase survival of the

high-calorie-diet-fed mice. However, adding resveratrol to

mice fed with a normal diet did not affect the overall

survival or maximum lifespan, suggesting that resveratrol

might be counteracting the negative consequences of

obesity and insulin resistance, thus slowing aging [58, 59].

The positive effects of resveratrol on several age-related

disorders are mediated by sirtuins [21, 52, 59]. Sirtuin

proteins are essential for NF-jB, p53, eNOS, and peroxi-

some-proliferator-activated receptor co-activator (PGC-1a)

deacetylation [60–62], which shortens NF-jB response and

inhibits p53 activity. A part of the response caused by

resveratrol may be related to the suppression of p53, which

is expressed in response to various types of stress involving

DNA damage and leads to cell apoptosis. A delay in

apoptosis gives the cells additional time to repair damage

and prevent unnecessary cell death [60, 61]. On the other

hand, the anti-proliferative effect of resveratrol on cancer

cells has been extensively documented and supported by

the downregulation of cell cycle proteins and an induction

of apoptosis in tumorigenic cells [63].

Resveratrol activates SIRT1 and PGC-1a and contrib-

utes to mitochondrial function [59, 64], which can influ-

ence whole body metabolism. Resveratrol has also been

shown to activate adenosine monophosphate-activated

Heart Fail Rev (2012) 17:437–448 439

123



protein kinase (AMPK) and the phosphorylation of its

downstream indicator, acetyl-CoA carboxylase. AMPK

activation can downregulate fatty acid synthase and pre-

vent organ (liver, pancreas, heart, and aorta) damage in

mice fed with high-calorie diets [59]. The changes in

SIRT1, AMPK, and PGC-1a were similar to changes

observed in cellular starvation, which plays an important

role in the induction of a number of genes involved in anti-

oxidation and cell survival.

Roles on lipid metabolism

Besides inhibiting the synthesis of fatty acid, resveratrol

prevents the proliferation and differentiation of preadipo-

cytes, promotes fat mobilization in white adipocytes, trig-

gers lipolysis/loss of fat in differentiated fat cells, and

protects mice against diet-induced-obesity by activating

SIRT1 [52, 65, 66].

Resveratrol can also cause SIRT1-independent TRAIL

(tumor necrosis factor-related apoptosis-inducing ligand)-

mediated apoptosis in fat cells [67]. In vivo studies indicate

that resveratrol lowers serum triglyceride, very-low-density

lipoprotein (VLDL), and low-density lipoprotein (LDL)

cholesterol [68]. These effects, along with the reduction in

LDL oxidation [69], the prevention of smooth muscle cells

(SMCs) proliferation (this will be discussed in the fol-

lowing section) [70], the inhibition of inflammatory path-

ways in macrophages, and the promotion of endothelial

function, contribute to the anti-atherosclerotic effect of

resveratrol.

In addition, a recent study demonstrated that resveratrol

exerted statin-like effects by downregulating HMG-CoA

reductase in a hyperlipidemia model and increased the ratio

of apolipoprotein (Apo) A1 to Apo B, which is negatively

related to metabolic syndrome and cardiovascular risks

[71]. High-density lipoprotein (HDL) is a continuously

inverse cardiovascular risk factor and the major mechanism

by which HDL protects against atherosclerosis is due to

reverse cholesterol transport (RCT). Reverse cholesterol

transport is the process through which excess cellular cho-

lesterol is exported from peripheral tissues and returned to

the liver for excretion in the bile. Cholesteryl ester transfer

protein (CETP) is a crucial enzyme of RCT. Raised CETP

activity induces high LDL level, thus contributing to ath-

erosclerosis [72, 73]. Decreased CETP activity, elevated

HDL level, and a promotion in the capacity of HDL to

mediate cholesterol efflux have been observed with resve-

ratrol treatment recently [29, 71, 73, 74]. These suggest that

resveratrol can reduce the transfer of cholesteryl esters from

HDL to VLDL/LDL and enhance RCT (Fig. 2).

Peroxisome-proliferator-activated receptors are able to

provide protection against cardiovascular diseases by

modifying lipid metabolism and inflammation. Resveratrol

has a dual effect on PPARa activity in diethylmaleate (a

glutathione-depleting agent)-treated RH7777 hepatoma

cells [75]. After diethylmaleate administration, an increased

PPARa activity at earlier time points and a depressed

PPARa activity at later time points were observed. Resve-

ratrol-induced SIRT1 activation may repress PPAR-c and

suppress adipogenesis or white adipocyte differentiation

[65], whereas resveratrol prevented the cholesterol accu-

mulation caused by advanced glycosylation end products

(important pathogenetic mediators of almost all diabetes

complications) in macrophages via PPAR-c but not PPARa
activation [76]. The relationships between resveratrol and

various PPAR isoforms are still unclear. Current reports

imply the difference in tissues/cells and the time course may

affect the targets of resveratrol.

Values on glucose metabolism and insulin sensitivity

Insulin regulates glucose homeostasis by reducing hepatic

glucose production and increasing glucose transport into

the skeletal muscle. Insulin resistance happens in most of

the type 2 diabetic patients. Insulin resistance is always

accompanied with increased levels of the injury-inducible

molecules, such as insulin-like growth factors (IGFs).

People with higher blood glucose, impaired glucose

Fig. 2 Resveratrol and cholesterol metabolism. Resveratrol reduces

cholesterol synthesis by downregulating HMG-CoA reductase. Res-

veratrol also enhances reverse cholesterol transport/cholesterol

excretion through increasing HDL levels and the capacity of HDL

to mediate cholesterol efflux from macrophages in arterial walls.

CETP is a plasma glycoprotein that facilitates the transfer of

cholesteryl esters from the atheroprotective HDL to the proathero-

genic LDL and VLDL [72] and resveratrol has been shown to inhibit

the activity of CETP. Furthermore, adipocytes store cholesterol and

have proatherogenic effects. Resveratrol can prevent adipogenesis

and plays a role in dyslipidemia and obesity. LDL low-density

lipoprotein, CE cholesteryl ester, CETP cholesteryl ester transfer

protein, HDL high-density lipoprotein, VLDL very-low-density

lipoprotein
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tolerance, and insulin resistance are susceptible to cardio-

vascular disorders [59].

Resveratrol is observed to improve the changes in glu-

cose, insulin, and IGFs through AMPK, which modulates

gluconeogenesis, glucose transport, and insulin sensitivity

[59, 77]. Resveratrol is first identified as an activator of

SIRT1 from cell-free assays, in which AMPK was not

present. Recently, chronic treatments with resveratrol have

suggested that SIRT1 and AMPK are related to each other.

On one hand, SIRT1 may be the upstream of AMPK. This

hypothesis is supported by the findings that SIRT1 gain of

function increases AMPK activity, an effect which may

be mediated by deacetylation/activation of the AMPK

upstream kinase, serine/threonine protein kinase 11

(STK11; also known as LKB1) [78]. On the other hand,

AMPK may be the upstream of SIRT1 because AMPK

activation increases NAD?/NADH ratio and SIRT1 is

NAD?-dependent [79]. In AMPKa-null mice, resveratrol

failed to increase the NAD?/NADH ratio or to reduce

PGC1a acetylation in skeletal muscle [78].

Insulin resistance has been reported to be associated

with mitochondrial dysfunction. Decrease in the expression

of PGC-1a, which is post-translationally modulated by

AMPK (phosphorylation) [80] and by SIRT1 (deacetyla-

tion) [62], and in mitochondrial DNA content was observed

in type 2 diabetic patients [64] and individuals with an

increased risk of developing diabetes [79, 81]. Resveratrol

may attenuate the alterations of AMPK, SIRT1, PGC-1a,

and mitochondrial dysfunction under insulin resistance

[59].

In addition, estrogen receptor (ER) activation, which

attenuates insulin resistance, impaired glucose tolerance

and adipocyte hyperplasia in both male and female

rodents, mediates resveratrol-stimulated glucose uptake in

skeletal muscle [82–86]. The increased glucose uptake/

metabolism normalizes serum glucose and the second-

ary hypertension or other histopathological changes in

diabetes.

Effects on endothelial protection

Estrogenic activities

In addition to the effects on glucose metabolism and insulin

sensitivity through ER, resveratrol also inhibits lipopoly-

saccharide-stimulated induction of iNOS in macrophages

and improves endothelial function, which is similar to

estradiol [34, 87]. Moreover, resveratrol enhances the

interaction between ER, caveolin-1 (Cav-1), and c-Src

(a tyrosine kinase), increases the phosphorylation of Cav-1,

c-Src, extracellular signal–regulated kinase 1/2, and eNOS

through non-genomic effect of ER, and stimulates NO

production [88]. These effects are important in vasodila-

tation and endothelial protection.

Effects on endothelial progenitor cells

The integrity of the endothelium is very important to keep

the normal function of the blood vessel and to avoid

platelet aggregation. Circulating or resident endothelial

progenitor cells (EPCs), which can differentiate into

endothelial cells, exert an important impact as endoge-

nously reparative mechanism to maintain the integrity of

the blood vessel. Increasing evidence suggests that post-

natal neovascularization relies not exclusively on resident

cells but also involves the contribution of circulating EPCs

[89, 90].

Bone marrow-derived mononuclear cells (BMMCs) are

one of the sources of circulating stem cells. The con-

sumption of resveratrol is associated with a significant

increase in the number of bone marrow EPCs, which enter

into circulating blood after hindlimb ischemia in hyper-

cholesterolemic Apo E knockout mice [91]. In addition,

resveratrol is able to enhance the EPCs migration and

capillary-like tube formation through the angiogenic Akt

(a serine/threonine protein kinase)/eNOS/NO/vascular endo-

thelial growth factor (VEGF) pathway in endothelial cells

exposed to oxidized LDL [90]. Similarly, the neovascu-

larization capacity of BMMCs from diabetic mice is

improved with resveratrol, resulting in a reduction in oxi-

dative stress and an induction of angiogenic factors [91].

Resveratrol consistently augments the activation of telo-

merase through the phosphatidylinositol-3 kinase/Akt sig-

naling pathway and attenuates EPCs reduction or

senescence [92]. In general, resveratrol is important to the

functions of EPCs, including proliferation, adhesion,

migration, and tube formation [90, 92–95].

Effects on atherosusceptible sites of the endothelium

Atherosclerosis primarily occurs at a specific site where

endothelial shear stress created by high-speed rotating

blood flow contributes to the focal geometric progression

of atherogenesis [96]. Resveratrol activates Kruppel-like

factor (KLF) 2, KLF4, and nuclear factor erythroid

2-related factor 2 (Nrf2), which protect endothelial

cells from oxidant injury and shear stress. Furthermore,

Kruppel-like factors have been reported to be critical reg-

ulators of endothelial homeostasis [53–55, 97, 98]. There-

fore, the targeting to KLFs or Nrf2 by resveratrol may be a

promising therapeutic for an impaired endothelium at

atherosusceptible sites.

Heart Fail Rev (2012) 17:437–448 441

123



Influence on preconditioning

Preconditioning has previously been shown to attenuate

I/R-induced injuries due to the reduction in oxidative

stress. Resveratrol-stimulated NO is able to protect against

oxidative damage produced by oxoferryl-myoglobin,

which is a potent oxidant found in I/R injury [35].

Although eNOS plays a role in the effects of resveratrol,

iNOS, which is usually related to tissue injury, also

mediates preconditioning because resveratrol fails to pre-

condition hearts in iNOS knockout mice [35, 99, 100].

Controversial research showed that resveratrol was effi-

cient and promising to prevent cardiac dysfunction after

I/R injury, but the beneficial effect of resveratrol was not

mediated by NO [101]. Besides the different experiment

conditions, SIRT1 and PPARs may be involved in the

preconditioning, since SIRT1 and PPARa have been shown

to participate in brain protection achieved by resveratrol

administration [102, 103].

In addition, autophage is a process that cells ‘‘eat/

digest’’ autologous macromolecules or organelles, which

are damaged under starvation, I/R injury, and other kinds

of stress. Autophagy may be a homeostatic mechanism or

a catabolic energy source by which apoptosis is inhibited

and the deleterious effects of ischemia are limited. Res-

veratrol treatment induces autophage both in vivo and in

vitro via mammalian target of rapamycin (mTOR) path-

way [104, 105]. This helps cardiomyocytes to live and

reduces the secondary impairment of cardiac function

after I/R.

Resveratrol in cardiovascular remodeling

and heart failure

To cardiac hypertrophy

Resveratrol did not lower high blood pressure directly in

the spontaneously hypertensive rat, but it attenuated com-

pliance and remodeling of small artery [106, 107].

Regression of pressure overload-induced cardiac hyper-

trophy and dysfunction has been reported in resveratrol-

treated abdominal aortic-banded rats [108]. One of the

determined anti-hypertrophic mechanisms of resveratrol is

the upregulation of eNOS/NO [108].

Another anti-hypertrophic mechanism of resveratrol is

via LKB1, which is an upstream signal of AMPK. Resve-

ratrol prevents the inhibitory effect of oxidative stress on

LKB1 and favors the activation of AMPK. Activation of

AMPK and subsequent inactivation of mTOR/70-kDa

ribosomal protein S6 kinase signaling pathway inhibit

unnecessary protein synthesis and prevent remodeling in

the heart [25, 109–111].

To heart failure

In failing heart, decompensation and cardiomyocyte defi-

ciency turned to be the predominant problem. Under such a

condition, an active DNA repair process instead of an

inhibited protein synthesis process was potentiated by res-

veratrol, which preserved the genomic stability of cardio-

myocytes [108]. Activation of SIRT1 limits premature

cellular senescence, prolongs the life of myocytes from

failing hearts, and decreases cardiac fibrosis [27, 112, 113].

Because catecholamines re-uptake is reduced, nor-

adrenaline concentration increases in left ventricle of

objects with chronic heart failure, resulting in a reduced

sensitivity of myocardium to catecholamine [114]. Resve-

ratrol administration normalizes b-adrenoceptors density,

restores the sensitivity of myocardium to catecholamine,

reduces infarct size, and improves heart function after

myocardial infarction [115]. Moreover, resveratrol can

improve sympathetic neural remodeling, thus causing less

ventricular arrhythmias [116]. Significant reduction in

norepinephrine is detected in resveratrol-loaded rats with

myocardial infarction. In the hearts of these rats, a signif-

icant reduction in nerve sprouting and sympathetic hyper-

innervation are observed [116], thus contributing to less

secondary effects of renin-angiotensin system, better car-

diac compliance and cardiac output. After receiving res-

veratrol treatment, the level of atrial natriuretic factor

(ANF) is also attenuated in rats with myocardial infarction

[115].

Cardiac sarcoplasmic reticulum Ca2?-ATPase 2

(SERCA2) is a direct regulator for cardiac systolic and

diastolic functions through controlling sarcoplasmic

reticulum Ca2? uptake [117]. Sarcoplasmic reticulum

Ca2?-ATPase 2 levels are decreased in mice with diabetic

cardiomyopathy and rats with myocardial infarction, but

they turned to be similar to normal control after resveratrol

treatment, respectively [116, 118]. Intriguingly, overex-

pression of SIRT1 is sufficient to activate the SERCA2

promoter in cardiomyocytes [118], which means resvera-

trol may regulate SERCA2 level and subsequently improve

heart function via activating SIRT1. All of these studies

suggest that resveratrol not only delays the process of

cardiac remodeling, but also directly improves cardiac

function of failing heart.

To cardiomyocytes regeneration

Transplantation of stem cells into injured or failing heart is

a hopeful procedure for cardiomyocytes regeneration.

Endogenous ROS functions as signaling molecules for

myogenic differentiation [119–121]. A recent report

showed that resveratrol maintained a reduced cardiac

environment by overexpressing Nrf2 and redox effector
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factor-1 in rats, resulting in an enhancement of the regen-

eration of the adult cardiac stem cells and leading to the

improvement in cardiac function [122]. Cardiac stem cells

pretreated with resveratrol were also showed better sur-

vival, proliferation, and differentiation toward cardiomyo-

cyte in vivo. Transplantation of these resveratrol-modified

cardiac stem cells improved cardiac function even at the end

of 4 months [123].

To vascular remodeling

Resveratrol treatment can improve the morphology of the

aortic elastic lamina via SIRT1 and AMPK in mice fed with

a high-calorie diet [59]. Resveratrol also effectively inhib-

ited proliferation and migration of aortic vascular SMCs by

increasing ER-dependent NO production or decreasing the

cross-talk between interleukin-18 and an inducer of MMPs

[124, 125]. Vascular SMCs proliferation and migration, as

well as excess deposition of extracellular matrix, are major

factors contributing to vascular remodeling and luminal

narrowing. The anti-proliferative properties of resveratrol

have also been attributed to its inhibition of DNA synthesis

and induction of p53 in SMCs [126, 127]. Moreover, res-

veratrol inhibits proliferation of cultured pulmonary arterial

SMCs, which arrested the cell cycle in the S phase and

prevented pulmonary hypertension [33].

Resveratrol behaving as a hormetin

Resveratrol, termed as hormetin, can bring about biologi-

cally/physiologically beneficial effects by activating path-

ways of stress response. Resveratrol interrupts different

stress-induced hormesis, leading to a significant improve-

ment of the living system [128]. Resveratrol possesses both

angiogenic and anti-angiogenic properties. Resveratrol can

both prevent cardiac remodeling and enhance cardiac

regeneration. However, it is still elusive why resveratrol

could be a bidirectional modulator. Numerous researches

provided another possible interpretation that resveratrol

enhanced proliferation and survival of cardiomyocytes at

lower dose and depressesed cardiac function as well as

inhibited proliferation at higher dose [25, 90, 92, 104, 111,

127, 129], like a J-curve. Higher dose of resveratrol not

only inhibits endothelial cell growth and VEGF, but also

hinders the synthesis of RNA, DNA, and protein, thus

preventing tumor growth [63, 129–131].

Clinical implications

Resveratrol is a food supplement for eliminating free rad-

ical and keeping healthy, but it is not into a clinical stage

yet currently. Resveratrol has a short initial half-life

(*8–14 min for the primary molecule) and is extensively

metabolized in the body. Blocking the metabolism of res-

veratrol, developing analogs with improved bioavailability,

or searching for new and more potent compounds that

mimic its effects will become increasingly important [20].

Fortunately, research on the structure of resveratrol is

ongoing [52]. Screening the effective elements of resve-

ratrol in vivo and determining the differences between in

vivo and in vitro results are challenge for researchers [20].

Moreover, the effective dose in animals cannot be extrap-

olated to a human equivalent dose by a simple conversion

based on body weight [132].

To investigate the dose, effect, and safety of resveratrol,

numerous clinical trials are on going (see Clinical-

Trails.gov), and some results are being published. In one

phase I study, resveratrol intake for 4 weeks by healthy

volunteers caused a small but significant decrease in cir-

culating IGF-1 and IGF-binding protein 3 compared with

pre-dosing values [133]. Reduction in ROS and tumor

necrosis factor-a as well as inflammation markers inter-

leukin-6 and C-reactive protein is achieved in participants

who received resveratrol [134]. Serious side-effects are not

observed [133–136] in the known human experiments. In

phase I dose escalation pharmacokinetic study in healthy

volunteers, the increase in blood bilirubin and alanine

aminotransferase is observed, which are potentially related

to resveratrol administration [135]. In a rising multiple-dose

Fig. 3 Multiple targets of resveratrol in cardiovascular disease.

Resveratrol plays an import role in maintaining stationarity of the

cardiovascular system. The risk factors colored gray make coronary

atherosclerosis, myocardial ischemia, and end-stage heart failure

happen. Resveratrol, by interrupting these factors and events, may be

possible to prevent or slow the development of cardiovascular

disease. In addition, resveratrol at lower dose prolongs cardiomyo-

cytes survival in failing hearts, enhances angiogenesis under post-

ischemic conditions, and improves cardiac stem cells homing,

proliferation, and differentiation [122, 123], thus may be possible to

reverse heart dysfunction
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study in healthy volunteers, adverse events including frontal

headache, myalgia, epididymitis, dizziness, and occipital

headache are found. However, these symptoms are mild in

severity and similar between groups of different does.

Repeated administration is also well tolerated [137].

Through correction of oxidative stress, inflammation,

hypercoagulative state, dyslipidemia, obesity, hyperglyce-

mia, hyperinsulinemia, I/R injury, sympathetic tone,

unnecessary cell loss/proliferation, and endothelial/cardiac

dysfunction, resveratrol shows a surprising potential to

treat atherosclerosis and heart failure (Fig. 3). We hope

that we will be able to use resveratrol to prevent and treat

cardiovascular disease in the future.
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