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Abstract Increased circulating and intracardiac levels

of proinflammatory cytokines have been associated with

chronic heart failure. Following an initial insult, the

increased production of proinflammatory cytokines,

including TNF-a, IL-6, IL-1, and IL-18, jeopardizes the

surrounding tissue through propagation of the inflamma-

tory response and direct effects on the cardiac myocyte

structure and function. Cardiac myocyte hypertrophy,

contractile dysfunction, cardiac myocyte apoptosis, and

extracellular matrix remodeling contribute enormously to

the development and progression of chronic heart failure.

Despite the identification of efficacious pharmacological

regimens and introduction of mechanical interventions,

chronic heart failure remains among the leading causes

of mortality worldwide. To introduce novel therapeutic

strategies that modulate the inflammatory response in the

context of the failing heart, it is of prime importance to

determine the contributions of TNF-a, IL-6, IL-1, and

IL-18 in mediating cardiac adaptive and maladaptive

responses, as well as delineating their downstream intra-

cellular signaling pathways and their potential therapeutic

implications.
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Introduction

Cytokines are low molecular weight proteins, which func-

tion as mediators of immune and inflammatory reactions.

These mediators are involved in, but not limited to, recruiting

cells to inflammatory sites and stimulating cell division,

proliferation, and differentiation [1]. Increased circulating

and intracardiac levels of proinflammatory cytokines have

been associated with chronic heart failure [2–5]. In addition,

coronary artery disease (CAD) and dilated cardiomyopathy

(DCM), the most common causes of chronic heart failure, are

believed to be of an inflammatory origin.

Viral infection, the leading cause of myocarditis, has

been implicated in the pathogenesis of DCM [6]. In animal

models, acute viral myocarditis might progress to chronic

persistent myocarditis, with the resultant induction of

autoimmune processes in genetically susceptible strains

[7]. Endogenous ligands that are released from damaged or

stressed tissues provoke inappropriate Toll-like receptor
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(TLR) signaling, causing sterile inflammation and con-

tributing to the activation of auto reactive B and T cells.

Elevated levels of proinflammatory cytokines play a

prominent role in immediate host defense against microbial

pathogens; however, sustained overexpression of tumor

necrosis factor (TNF)-a, interleukin (IL)-1, and IL-18

correlates with disease severity and chronicity, induction of

autoimmune myocarditis, and progression to DCM [8–10].

Atherosclerosis is now considered to be an inflammatory

disease characterized by activation of the innate and

adaptive immune responses [11, 12]. Proinflammatory

cytokines contribute to the formation of atherosclerotic

plaque and progression of plaque instability [13].

Following an initial insult, i.e. infectious or noninfectious

myocarditis or acute myocardial infarction, the increased

production of proinflammatory cytokines endangers nearby

cells altering cardiac myocyte structure and function. In

response to injurious insults, cardiac structural cells con-

tribute further to production of proinflammatory cytokines

[5]. When various cytokines are expressed in sufficiently

high levels, they are capable of modulating cardiovascular

performance in an autocrine, paracrine, juxtacrine, or

endocrine fashion.

In attempt to determine the biological activities of indi-

vidual cytokines, extensive experimental studies have been

described in the medical literature. However, in the context

of the failing heart, the complex interaction among various

cytokines and neurohormonal mediators determine the net

outcome [3, 14]. Thus, the reductionist findings in experi-

mental studies do not directly apply to clinical observations.

Increased levels of TNF-a, IL-6, IL-1, and IL-18 have

been described repeatedly in patients with chronic heart

failure, showing a positive correlation with disease severity

[2–5]. Their association in the development and progres-

sion of the underlying diseases, i.e. CAD [8–10] and DCM

[11–13], is also well established. With respect to the

development and progression of heart failure, cardiac

myocyte hypertrophy, contractile dysfunction, cardiac

myocyte apoptosis, and extracellular matrix remodeling

play prominent roles. It is, therefore, of great significance

to determine the precise contribution of TNF-a, IL-6, IL-1,

and IL-18 to the cardiac adaptive and maladaptive

responses. The present review addresses the current

knowledge of the immunopathogenic roles of the afore-

mentioned cytokines in the context of the failing heart, as

well as their downstream intracellular signaling pathways

and their potential therapeutic implications.

TNF-a

TNF-a is a 157-amino acid cytokine, which is produced by

a wide variety of the immune and nonimmune cells in

response to inflammatory and infectious stimuli [15].

Cardiac structural cells are capable of producing TNF-a,

while mechanical stresses including pressure and volume

overload [16, 17], ischemia–reperfusion injury [18, 19],

and endotoxemia [20, 21] serve as the initial stimulus.

Based on experimental models, there is a wide variety in

biological activities of TNF-a, which has both physiolog-

ical and pathological effects. In order to understand its

seemingly paradoxical effects, one must pay attention to

the time of exposure, concentration, and micro-environ-

mental milieu [22–24].

At one end of the spectrum, the favorable outcomes are

dominant, and the physiological concentration of TNF-a
regulates local defense mechanisms and provokes regional

tissue homeostasis [25–27]. TNF-a gene is expressed rap-

idly and temporally in response to environmental stresses.

Subsequently, TNF-a exerts its protective effects as an

autocrine and/or paracrine mediator [23]. At the other end

of the spectrum, devastating maladaptive effects become

prominent. At higher concentrations, TNF-a acts primarily

in an endocrine manner which results in cachexia [28] and

contributes to the pathogenesis of multiple organ failure

[29], intravascular coagulation and thrombosis [30], and

severe sepsis/septic shock [31]. The deleterious effects

of prolonged exposure to high concentration of TNF-a
on myocardial structure and function have been well

established.

TNF-a exerts its biological activities through two spe-

cific cell membrane receptors, tumor necrosis factor

receptor type 1 (TNFR1), and type 2 (TNFR2) [32].

TNFR1 (p55), which is expressed dominantly, mediates the

majority of cytotoxic and deleterious effects, whereas

TNFR2 (p75) appears to be responsible for mediating the

cytoprotective effects in the heart [33–35]. Following

insertion into the cell membrane, both receptors are pro-

teolytically cleaved and form circulating soluble receptors

(sTNFR) [36]. The biological role of the sTNFR is not

well-defined. It has been suggested, however, that sTNFR

at low concentration may bind to, stabilize, and prolong the

biological activities of circulating TNF-a, whereas high

concentrations of sTNFR may have a buffering action

antagonizing excessive TNF-a in the circulation [37, 38].

Cytoprotective effects

TNF-a-treated hearts prior to induction of ischemia–

reperfusion injury release lesser amounts of LDH, which

has a linear correlation with cell membrane disruption [22,

39]. The cytoprotective effects of TNF-a might be due to

induction of manganous superoxide dismutase (MnSOD),

which neutralizes and detoxifies the cytotoxic oxygen free

radicals [40, 41], and upregulation of heat-shock proteins
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(HSP), including HSP-27, HSP-30, HSP-70, and HSP-72

[42–44]. It is suggested that preinduction of heat-shock

proteins inhibits excessive myocardial TNF-a production

and attenuates myocardial dysfunction following ischemia–

reperfusion injury [45–47]. The aforementioned mecha-

nisms have an early and rapid onset and protect the cardiac

myocytes by attenuating the extent of the injurious insults.

Maladaptive responses

Cardiac myocyte hypertrophy

TNF-a signaling has a more delayed onset of actions,

which assists in cardiac myocyte growth and adverse

ventricular remodeling following injurious insults [48].

Cardiac-restricted overexpression of secreted [49] and

transmembrane [50] form of TNF-a induce cardiac myo-

cyte hypertrophy and reexpression of the fetal gene pro-

gram. Looking at all the relevant facts, TNF-a can

influence the expression of both IL-1 and IL-6 [51], and

these proinflammatory cytokines also stimulate hypertro-

phic growth response [52, 53]. Although TNF-a expression

has an excessively rapid onset and offset [22], the

sequential activation of IL-1 and IL-6 continue and prop-

agate its effects.

It has been demonstrated that cardiac-restricted over-

expression of TNF-a increases the myocardial rennin

angiotensin system activity, as demonstrated by increased

angiotensin-converting enzyme (ACE) mRNA expression,

increased angiotensin II protein level, and decreased

angiotensin receptor mRNA and protein levels consistent

with its desensitization and receptor down-regulation [54].

Following administration of losartan, an angiotensin type I

receptor antagonist, TNF-a-induced hypertrophic growth

response is significantly attenuated [54]. TNF-a, similar to

angiotensin II, induces the generation of reactive oxygen

intermediates (ROIs) in a dose-dependent manner. The

addition of antioxidants to the culture medium inhibits

TNF-a-induced hypertrophic growth response [55]. These

results indicate that the functional cross-talk between TNF-

a and rennin angiotensin system results in hypertrophic

growth response in part via the generation of ROIs in

cardiac myocytes.

Contractile dysfunction

TNF-a plays a central role in depression of myocardial

contractility through discrete time-dependent mechanisms

(Fig. 1). Early cardiodepressant effect, which is manifested

within minutes, is the consequences of nitric oxide (NO)-

dependent and sphingomyelinase-dependent signaling. The

former leads to NO and subsequent cGMP generation via

Ca2?-dependent nitric oxide synthase (NOS) activation. In

the presence of N-methyl-L-arginine (L-NMA), an NOS

inhibitor, the myocardial function is improved [56]. The

latter leads to rapid increase in free sphingosine level

which, similar to its exogenous analog D-sphingosine, has

negative inotropic effect on isolated cardiac myocytes.

Furthermore, enzymatic blockage of sphingosine produc-

tion reverses TNF-a-mediated myocardial depression [57].

It is postulated that NO-independent defect of b-adreno-

receptor signal transduction is partially responsible for the

early depressant effects of TNF-a [58]. This proposition is

supported by decreased production of cAMP in response to

isoproterenol in the presence of TNF-a, which is not

improved following L-NMA administration [58].

Delayed cardiodepressant effect of either basal [59–61]

or stimulated [62, 63] myocardial function, which is

developed in several hours to days, is the direct result of

NO production by activation of Ca2?-independent, induc-

ible isoform of nitric oxide synthase (iNOS). From a

physiological standpoint, low concentration of NO controls

coronary vascular tone [64], regulates basal myocardial

function through its positive inotropic and chronotropic

properties [59], and prevents platelet aggregation [65],

Fig. 1 Cytokine-mediated contractile dysfunction through discrete

time-dependent mechanisms. TNF-a and IL-6 cause immediate

transient contractile depression through induction of Ca2?-dependent

NOS. All four proinflammatory cytokines, i.e. TNF-a, IL-6, IL-1, and

IL-18, contribute to the late phase of sustained contractile impairment

through induction of Ca2?-independent NOS. Increased NO produc-

tion, as the final common pathway, alters intracellular Ca2?

homeostasis, resulting in profound systolic and diastolic impairment.

NOS, nitric oxide synthase; NO, nitric oxide
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whereas pathologically high concentration of NO results in

profound systolic and diastolic dysfunction [66].

Reduced calcium availability or sensitivity, as the final

common pathway, contributes to both basal and catechol-

amine-stimulated contractility deficits [58]. Sphingosine

blocks the ryanodine receptor which in turn disrupts L-type

channel-induced calcium release by the sarcoplasmic

reticulum [67]. TNF-a-induced sphingosine production

decreases calcium transients causing both immediate and

temporary contractile dysfunction [57] (Fig. 2). High levels

of NO mediate myofilament desensitization to intracellular

calcium, which results in sustained contractile dysfunction

[68].

Cardiac myocyte apoptosis

TNF-a induces apoptosis in cardiac myocytes [69], which

contributes to the progressive left ventricular (LV) wall

thinning and adverse cardiac remodeling [24, 70, 71]. At

the molecular level, sustained overexpression of TNF-a
activates both intrinsic and extrinsic apoptotic pathways

and leads to progressive loss of anti-apoptotic proteins [69]

(Fig. 3). Engagement of TNFR1 initiates cardiac myocyte

apoptosis [34]. TNF-a-induced extrinsic apoptotic pathway

is mediated through complex I and complex II formation.

The intracytoplasmic portion of TNFR1 recruits cytoplasmic

proteins TNFR1-associated via death domain (TRADD)

and TNFR-interacting serine-threonine kinase 1 (RIP1).

Complex I is composed of TNFR-associated factor 2

(TRAF2) plus TRADD-RIP1 compound. Complex II is

composed of Fas-associated death domain (FADD) and

caspase-8 plus cytosolic TRADD-RIP1 compound, not in

association with the death domain of TNFR1. Complex I

formation provokes NF-jB and JNK activation which have

quite the opposite effects. NF-jB activation has an anti-

apoptotic property and inhibits enzymatic activity of

caspase-8 by caspase-8 inhibitor c-FLIPL. While JNK

activation accelerates c-FLIPL degradation and promotes

apoptotic cell death. In other words, the balance between

NF-jB and JNK activation determines whether cell

survives or dies [69].

Bid, a direct substrate of caspase-8, connects the extrinsic

and intrinsic signaling pathways. Cleaved Bid translocates to

the mitochondria, where it triggers the release of proapoptotic

mediators, most important cytochrome c. Upon cytochrome c

release, caspase-9 and caspase-3 are proteolytically activated

in a sequential manner. Upon activation, caspase-3 triggers

downstream proapoptotic signaling pathways, which result in

Fig. 2 Cellular mechanisms underlying NO-independent contractile

dysfunction. TNF-a-induced sphingosine production inhibits calcium-

induced calcium release from the RyRs located in the sarcoplasmic

reticulum (SR), causing immediate contractile dysfunction. Chronic

exposure to increased level of IL-1 decreases the expression of

SERCA and PLB at both the transcript and protein levels. Decreased

level of SERCA is responsible for impaired removal of cytosolic

Ca2? and a subsequent decrease in sarcoplasmic reticulum

Ca2? release. Alterations in Ca2? homeostasis, as demonstrated by

decreased Ca2? transient and impaired systolic Ca2? release and

diastolic Ca2? removal, alter sarcomere dynamics and function

leading to profound systolic and diastolic dysfunction. FAN, factor

associated with neutral sphingomyelinase; NSMase, neutral sphingo-

myelinase; RyR, ryanodine receptor; SERCA, sarcoplasmic reticulum

Ca2?-ATPase; PLB, phospholamban; ICa,L, inward Ca2? current;

TNFR1, tumor necrosis factor receptor type 1; IL-1R1, interleukin-1

type I receptor
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DNA fragmentation and protein cleavage. Sustained TNF-a
signaling empowers the pro-apoptotic forces, while weakens

the cellular defense mechanisms by progressive depletion of

cytoprotective proteins (e.g. Bcl-2, c-FLIP, C-IAP-1). Bcl-2

resides in the outer mitochondrial membrane and its pro-

gressive loss leads to mitochondrial release of pro-apoptotic

mediators. c-FLIP and c-IAPs inhibit caspase-8 and caspase-3

activation, respectively. In their absence, intrinsic and

extrinsic apoptotic pathways can be activated without hin-

drance. Accordingly, overexpression of cytoprotective Bcl-2

in the context of sustained TNF-a signaling (bitransgenic

mice), either normalizes or significantly reduces the cytosolic

levels of intrinsic apoptotic pathway components. However,

Bcl-2 overexpression does not fully compensate for progres-

sive cardiac myocytes apoptosis, since it has no effect on the

extrinsic apoptotic pathway [69].

In addition, the prominent role of sphingolipid-signaling

pathway in apoptotic cell death has recently become evi-

dent. TNF-a activates neutral sphingomyelinase (NSMase)

through factor associated with neutral sphingomyelinase

(FAN), which results in proapoptotic ceramide and sphin-

gosine production [72]. Expression of a dominant-negative

FAN attenuates, whereas overexpression of wild-type FAN

aggravates ischemia–reperfusion-induced cardiac myocyte

death. Exogenous ceramide administration induces con-

siderable cell death in dominant-negative FAN-expressing

cells indicating the importance of sphingolipid cascade

activation in induction of cardiac myocyte apoptosis [72].

Apparently, TNF-a-induced cardiac myocyte apoptosis

is mediated through multiple complex intracellular

mechanisms.

Extracellular matrix remodeling

Myocardial extracellular matrix (ECM) is mainly com-

posed of a complex network of fibrillar collagen [73],

which provides the physical scaffolding for the spatial

organization of cells into functional tissues as well as a

dynamic microenvironment for cell signaling [74]. Alter-

ations in the collagen abundance, isoforms, cross-links,

architecture, and turnover have been demonstrated to play

a central role in cardiac remodeling and progressive LV

dysfunction [74, 75]. Cardiac fibroblasts are the main

source of fibrillar collagen in the heart [76, 77]. TNF-a
decreases collagen synthesis and procollagen mRNA

expression in neonatal and adult rat cardiac fibroblasts in

vitro [78]. TNF-a causes imbalance between extracellular

matrix synthesis and degradation through dysregulation of

degradative enzymes, matrix metalloproteinases (MMPs),

and the multifunctional endogenous inhibitors, tissue

inhibitors of MMPs (TIMPs), which is a major determinant

of pathological ECM remodeling [79]. These effects are

largely influenced by the duration of exposure, which

ranges from increased fibrillar collagen degradation to

excessive fibrillar collagen deposition. In short term,

TNF-a-induced activation of MMPs leads to enhanced

degradation of ECM components which promotes pro-

gressive LV dilation [80, 81]. In long term, increased TIMP

expression and the resultant decrease in MMP activity [80]

as well as the indirect effects of sustained TNF-a expres-

sion, including increased angiotensin type I receptor (AT1)

density on cardiac fibroblasts [82], increased cardiac

fibroblast sensitivity to profibrotic effects of angiotensin II

[83], and increased TGF-b expression [80], result in

excessive collagen deposition and increased LV stiffness.

Both TNF-a and MMPs serve as potential therapeutic

targets to prevent ventricular remodeling and heart failure;

treatment with adenoviral vector expressing soluble

TNFR1 [81], soluble TNFR2 fusion protein [84], and

Fig. 3 TNF-a-induced apoptotic cell death through both extrinsic

and intrinsic apoptotic pathways. Engagement of TNFR1 initiates

TNF-a-induced extrinsic apoptotic pathway. The formation of

TRADD/RIP1/TRAF2 complex in direct association with TNFR1

provokes NF-jB and JNK activation which have quite the opposite

effects on caspase-8 inhibitor c-FLIP. Cytosolic TRADD/RIP1/

FADD complex interacts with caspase-8 and thereby enhancing its

enzymatic activity. Bid, a direct substrate of caspase-8, connects the

extrinsic and intrinsic signaling pathways. Cleaved Bid triggers the

release of cytochrome c from the inner membrane of mitochondria.

The consequential activation of caspase-9 and caspase-3 results in

DNA fragmentation and apoptotic cell death. TNFR1, tumor necrosis

factor receptor type 1; TRADD, TNFR1-associated via death domain;

RIP, TNFR-interacting serine-threonine kinase; TRAF2, TNFR-

associated factor 2; FADD, Fas-associated death domain; NF-jB,

nuclear factor kappa-light-chain-enhancer of activated B cells; JNK,

c-Jun N-terminal kinase; cFLIP, cellular caspase-8 (FLICE)-like

inhibitory protein; tBid, truncated Bid

Heart Fail Rev (2010) 15:543–562 547

123



competitive MMP inhibitor [85] has proven to be of ben-

efit. TNF-a-mediated activation of NF-jB and the AP-1

family of transcription factors has been proposed to mod-

ulate the MMP-1, MMP-3, MMP-7, MMP-9, and MMP-13

and TIMP-1 and TIMP-2 gene expression at the tran-

scriptional level [86], an effect which could be suppressed

by the use of transcription factor inhibitors [87, 88].

IL-6

IL-6-related cytokines, including IL-6, IL-11, leukemia

inhibitory factor (LIF), oncostatin M (OSM), ciliary neu-

rotrophic factor (CNTF), and cardiotrophin-1 (CT-1), are

pleiotropic cytokines with redundant properties. These

cytokines are expressed in a wide variety of tissues and

organs, mediating proliferation, growth, differentiation,

survival and apoptosis signals and are crucial during

embryogenesis and subsequently throughout life [89–92].

Without exception, all the members of the IL-6 super-

family share gp130 as the central signal transducer subunit.

To some extent, this may explain the underlying

mechanisms of redundancy in their functions [92]. Ligand-

receptor complex formation, either transmembrane recep-

tor or soluble receptor, leads to gp130 dimerization that

triggers downstream signaling cascades including Janus

kinase (JAK)/signal transducer and activator of transcrip-

tion (STAT) pathway, Ras/Raf/mitogen-activated protein

kinase (MAPK)/ERK kinase (MEK)/extracellular signal-

regulated kinase (ERK) pathway, and phosphoinositide

3-kinase (PI3K)/Akt pathway [89, 91] (Fig. 4).

There are wide discrepancies in cumulative findings of

clinical and experimental studies; it is not clear whether

IL-6-related cytokines either improve or deteriorate the

cardiovascular performance. Although numerous studies

have been performed in this regard, the results are incon-

clusive. To explain the reported inconsistencies, though not

entirely satisfactory, the following statements should be

considered. First, IL-6-related cytokines are closely inter-

related and show redundancy. Thus, in vitro studies on

individual cytokines may show poor correlation with

clinical studies in which a complex and sophisticated net-

work of cytokines have been activated. Second, recent

studies demonstrate the interaction between cytokines and

neurohormonal mediators [3, 14], which share JAK/STAT

[93], MAPK [94], and PI3K [94] as their common final

intracellular pathways. Therefore, excessive elaboration of

neurohormonal mediators within context of the failing

heart masks the cytoprotective effects of IL-6 related

cytokines. Third, although the discrete signal transduction

pathways are well defined, the complex interactions among

them are widely debated. Attempts to clarify the regulatory

functions of downstream signaling molecules will further

explain the diversity of gp130-mediated biological activi-

ties and strengthen the links between experimental findings

and clinical observations.

Cytoprotective effects

Activation of gp130 exerts cytoprotective effects and

improves cardiac myocyte survival via inhibition of

apoptotic signaling pathways [94]. The following discus-

sion provides compelling evidence in 4 different areas

including ischemia–reperfusion injury, hemodynamic

overload, doxorubicin-induced cardiotoxicity, and inflam-

matory heart diseases.

IL-6 treatment of cardiac myocytes prior to induction of

ischemia–reperfusion injury is associated with decreased

reperfusion-induced mitochondrial depolarization, swelling

and loss of structural integrity, increased mitochondrial

Fig. 4 The divergent intracellular signaling pathways of the IL-6

superfamily of cytokines. LIF, leukemia inhibitory factor; OSM,

oncostatin M; CNTF, ciliary neurotrophic factor; CT-1, cardiotro-

phin-1; JAK, Janus kinase; STAT, signal transducer and activator of

transcription; MEK, ERK kinase; ERK, extracellular signal-regulated

kinase; PI3K, phosphoinositide 3-kinase; SHP, Src homology 2 (SH2)

domain-containing protein tyrosine phosphatase; IL-6R, interleukin-6

receptor
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Ca2? loading, and decreased cytosolic Ca2? transients.

IL-6 preconditioning exerts its beneficial effects through

PI3K/Akt-mediated activation of iNOS. Administration of

PI3K inhibitor attenuates both iNOS induction and IL-6-

dependent protection [95]. Administration of CT-1, either

prior to ischemia or at the time of reperfusion, improves

cardiac myocyte survival. It has been shown that both

cultured adult cardiac myocytes and intact heart ex vivo

considerably benefit from CT-1, represented by decreased

cell death and reduced infarct size/zone at risk ratio,

respectively [96]. Its beneficial effects are blocked by the

administration of p42/p44 MAPK inhibitor [96].

In an in vivo murine model of acute myocardial

infarction, ischemic and healthy cardiac myocytes show

increased levels of STAT3 phosphorylation. Administra-

tion of JAK2 inhibitor prior to induction of myocardial

infarction results in decreased STAT3 phosphorylation and

increased caspase-3 activity and Bax expression [97].

Ischemic preconditioning of the heart exerts potent car-

dioprotective effects, as demonstrated by improved post-

ischemic ventricular function, reduced infarct size, and

decreased apoptotic cell death. At the molecular level,

JAK2 and STAT3 phosphorylation are increased; the

antiapoptotic BCL2 gene expression is upregulated,

whereas the proapoptotic BAX gene expression is down-

regulated. JAK2 inhibitor has the ability to completely

reverse the aforementioned findings [98].

Following acute pressure overload, dilated cardiomy-

opathy is rapidly developed in gp130 cardiac-specific

knockout mice. In comparison to control mice, the prev-

alence of cardiac myocyte apoptosis is markedly increased.

What draws attention is the compensatory hypertrophic

growth response in control mice with intact gp130 sig-

naling pathway, which magnifies its beneficial role in

cardiac myocyte adaptation and survival [99]. In fact,

cardiac myocyte loss contributes significantly to the tran-

sition from compensatory LV hypertrophy to overt heart

failure [100].

Cardiac toxicity is a unique characteristic of the

anthracycline antibiotics, doxorubicin [89]. LIF pretreat-

ment significantly reduces doxorubicin-induced myocyte

apoptosis. Following LIF administration, PI3K and Akt

kinase activities are partially restored, doxorubicin-induced

caspase-3 activation is totally inhibited, and protective

function of Bcl-xL is improved [101]. Transgenic mice

with cardiac-specific overexpression of STAT3 show pro-

longed survival following doxorubicin administration [102,

103], whereas cardiomyocyte-specific deletion of STAT3

renders cardiac myocytes more vulnerable to doxorubicin-

induced cardiotoxicity [104].

Mice with a cardiomyocyte-restricted STAT3 deletion

are particularly susceptible to LPS-induced myocardial

inflammation. Accordingly, apoptotic cell death and TNF-a

secretion are increased significantly. Advanced age mice

demonstrate increased cardiac fibrosis and spontaneous

development of heart dysfunction [104]. Cardiac-specific

gp130-knockout mice show increased susceptibility to viral

infection of cardiac myocytes, demonstrating the major role

of gp130 signaling in mediating the survival signal. Specific

inhibition of the STAT3 signaling pathway blocks the

cytoprotective effects of CT-1, whereas specific inhibition

of the other two pathways, i.e. MEK/ERK1/2 and PI3K/Akt

signaling, has no effect [105].

To summarize, current evidence points to the impor-

tance of 3 major signaling cascades as the mediator and

regulator of gp130-induced cytoprotective effects; how-

ever, their exact contributions are not clear.

Maladaptive responses

Cardiac myocyte hypertrophy

IL-6-related cytokines, with the subsequent activation of

gp130 signaling, contribute to cardiac myocyte hypertro-

phic growth response [94]. Continuous activation of gp130

signaling in double transgenic mice overexpressing both

IL-6 and IL-6 receptor (IL-6R) is associated with cardiac

myocyte hypertrophy, measured in terms of cardiac myo-

cyte size, cardiac weight, and LV wall thickness [53].

Neither IL-6 nor IL-6R overexpression alone is sufficient to

induce detectable myocardial abnormalities due to low

expression level of IL-6R in cardiac myocyte [106]. Cul-

tured neonatal cardiac myocytes, incubated with IL-6 and

soluble form of IL-6R, become hypertrophied, emphasizing

the importance of IL-6-IL-6R complex formation for signal

initiation [53]. On the other hand, LIF receptor is abun-

dantly expressed in cardiac myocytes, with exogenous

addition of LIF and CT-1 being sufficient to elicit hyper-

trophic growth response [107, 108]. LIF and CT-1 are

shown to predominantly increase myocardial cell length

with the addition of new sarcomeric units in series rather

than myocardial cell width [109]. Furthermore, transgenic

mice with cardiac-specific overexpression of STAT3

develop myocardial hypertrophy with no additional stimuli

[110].

To gain better insight into the underlying intracellular

mechanisms, overexpression or inactivation of various

components of gp130-mediated signaling pathways have

been studied. A growing body of evidence points to STAT3

as the central transducer of hypertrophic growth response;

however, a few studies credit MAPK/ERK and PI3K cas-

cades with complementary and regulatory roles [110–114].

Cultured murine cardiac myocytes overexpressing wild-

type STAT3 demonstrate augmented STAT3 phosphory-

lation following LIF stimulation. Administration of a
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MAPK inhibitor has no effect on STAT3 phosphorylation;

however, gene expression and protein synthesis are sub-

stantially reduced even in cells overexpressing STAT3

[115]. It has been demonstrated that MAPK activity is

required for maximal transcriptional activity of JAK/STAT

cascade [94, 116, 117]. On the contrary, following CT-1

stimulation, the negative regulatory role of ERK1/2, as the

inhibitor of STAT3 phosphorylation, has been reported

[113, 118]. The cross-talk between STAT3 and ERK1/2

seems to modulate CT-1-induced cardiac myocyte hyper-

trophy and serve as an intrinsic regulatory mechanism

[113].

PI3K is reported to be involved in the regulation of

gp130-dependent signaling pathways. Following admin-

istration of wortmannin, a specific PI3K inhibitor, MAPK

activation is attenuated and LIF-induced gene expression,

protein synthesis, and kinase activation are inhibited;

however, STAT3 phosphorylation remains unaffected

[112]. Various parameters of hypertrophic cell growth,

including cell size, gene expression, protein synthesis,

and myofilament reorganization, have been measured

following specific blockade of the MAPK/ERK, JAK/

STAT, and PI3K pathways with MEK, JAK2, and PI3K

inhibitors, respectively. The results indicate the priority

of MAPK/ERK cascade over JAK/STAT and PI3K

pathways in gp130-mediated cardiac myocyte hypertro-

phy [114].

Pressure and volume overload produce morphologi-

cally distinct types of cardiac myocyte hypertrophy. In

fact, intracellular signaling pathways have been shown to

be differentially activated. It is suggested that stimulus-

specific heterogeneity in the signaling pathways deter-

mine either eccentric, maladaptive cardiac hypertrophy

or concentric, adaptive cardiac hypertrophy to ensue

[119].

Contractile dysfunction

IL-6 is a potent mediator of myocardial depression,

which in turn potentiates the cardiodepressant effects of

TNF-a and IL-1 [120] (Fig. 1). Similar to TNF-a, acute

exposure to IL-6 decreases intracellular Ca2? transients

and the amplitude of cell contraction within a few min-

utes. The early depressant effect is attributed to enhanced

Ca2?-dependent NOS activity in cardiac myocytes. Pre-

treatment with L-NMA completely inhibits the IL-6-

induced contractile dysfunction, whereas subsequent

addition of L-arginine restores the depressed cell con-

traction [121]. Prolonged exposure to IL-6 decreases

cardiac contractility via enhanced de novo synthesis and

activation of Ca2?-independent iNOS [122]. The negative

inotropic effect of IL-6 is the result of JAK2/STAT3-

mediated activation of iNOS [122].

Extracellular matrix remodeling

LIF and CT-1 have been demonstrated to stimulate cardiac

fibroblast proliferation in vitro [123, 124]. Pretreatment

with antibodies for gp130, LIF receptor, or CT-1 signifi-

cantly inhibits basal as well as CT-1-induced cardiac

fibroblast growth. A reciprocal interaction has also been

reported between CT-1/gp130/LIF receptor and endothelin-

1 (ET-1)/ET type A (ETA) receptor axis [123]. Collagen

synthesis, assessed by [3H] proline incorporation into car-

diac fibroblasts, has been shown to increase upon exoge-

nous CT-1 stimulation [123]. In contrast, IL-6 and LIF

significantly reduce collagen synthesis and total collagen

content in adult cardiac fibroblasts, respectively [78, 124].

Following experimental induction of acute myocardial

infarction, IL-6 and MMP-9 mRNA levels increase signif-

icantly in the infarcted and border regions, whereas

decreasing IL-6 mRNA levels from the infarcted to the

remote noninfarcted regions correlates negatively with

increasing MMP-2 and TIMP-1 mRNA levels, being

highest in the noninfarcted region [125]. In cardiac fibro-

blast cultures, IL-6 increases, whereas LIF decreases, MMP

activity, as demonstrated by gelatin zymography [78, 124].

Treatment of adult cardiac myocytes and fibroblasts with

gp130 ligand OSM increases TIMP-1 production, with no

effect on the expression of constitutively expressed MMP-

1, MMP-2, MMP-3, MMP-9, and TIMP-2. In the same

experimental study, IL-6, LIF, and CT-1 exert no effect on

the expression of the studied MMPs and TIMPs [126].

IL-1

The IL-1 superfamily of cytokines comprises IL-1a, IL-1b,

IL-1 receptor antagonist (IL-1Ra), IL-18, and the newly

discovered IL-33. IL-1a and IL-1b are structurally distinct

molecules with indistinguishable biological functions, which

share common intracellular signaling cascades through IL-1

type I receptor (IL-1R1). IL-1a and IL-1b are produced as

precursor peptides, which are cleaved by caspase-1 or the

IL-1 converting enzyme (ICE) to form the active molecules.

These pleiotropic cytokines function as mediators of innate

immunity responses which are mainly produced by macro-

phages, monocytes, and dendritic cells [127]. IL-1Ra is an

endogenous regulator of IL-1 activity with potential anti-

inflammatory properties. It competitively occupies IL-1R

and interrupts intracellular signal transduction [128].

In response to various injurious insults, cardiac struc-

tural cells are triggered to produce IL-1 as well as other

proinflammatory cytokines [129–132]. The deleterious

maladaptive effects of IL-1 have been the focus of interest

in the majority of experimental studies. However, benefi-

cial effects of IL-1 have also been reported.
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Cytoprotective effects

IL-1 pretreatment reduces myocardial ischemia reperfusion

injury [133–135]. IL-1 preconditioning results in poly-

morphonuclear leukocyte (PMN) accumulation and H2O2

generation in myocardium. The preceding oxidant stress

induces increased glucose-6-phosphate dehydrogenase

(G6PD) activity, which provides cytoprotective effects

against the subsequent oxidant insult [133]. Increased

Cu/ZnSOD, MnSOD, catalase, and glutathione peroxidase

activities and HSP-27 overexpression provide additional

protection [134].

Maladaptive responses

Cardiac myocyte hypertrophy

IL-1 is involved in myocardial hypertrophic growth

response, which partially compensate for environmental

stresses. The expression of IL-1b is increased in pressure

[136] and volume [137] overload-induced cardiac hyper-

trophy. Both in vitro [138–140] and in vivo [52, 141]

experimental studies provide proof of the direct effect of

IL-1 on cardiac myocyte hypertrophy; however, the com-

plex interaction between myocyte and nonmyocyte cells

and the intracellular signaling pathways have not been fully

identified.

Mice with cardiac-specific overexpression of IL-1a after

birth shows concentric LV hypertrophy with preserved LV

systolic function [141], while constitutively increased

levels of IL-1a even before birth produce cardiac myocyte

hypertrophy and heart failure [52]. IL-1b induces growth of

isolated cultured cardiac myocyte [138, 139], whereas it

inhibits cultured cardiac fibroblast proliferation [138].

Hypertrophic growth response accompanies increased fetal

gene (atrial natriuretic factor and b-myosin heavy chain)

and decreased calcium regulatory gene (sarcoplasmic

reticulum Ca2?-ATPase, calcium release channel, voltage

dependent calcium channel) expression [52, 139]. The

hypertrophic effect of IL-1 is NO-independent [138, 139],

which appears to be mediated through a tyrosine kinase

signaling pathway [138]. IL-1-induced growth effect is

inhibited by tyrosine kinase inhibitor, whereas the addition

of NOS, protein kinase C (PKC), and cyclooxygenase

inhibitors has no substantial effect [138].

Contractile dysfunction

In vitro studies have demonstrated that IL-1, in synergism

with TNF-a, exacerbates cardiac myocyte [60, 142] and

intact heart [61] contractile dysfunction. IL-1 produces

delayed and prolonged phase of decreased myocardial

contractility, emphasizing the necessity for de novo gene

expression, protein synthesis, and recruitment of secondary

mediators [143] (Fig. 1). The underlying mechanism(s) has

not been uniformly elucidated and both NO-dependent and

NO-independent mechanisms have been proposed (Fig. 2).

IL-1, in parallel with other proinflammatory cytokines,

augments the expression of cardiac myocyte iNOS [144–

146]. The subsequent increase in NO production dampens

cardiac myocyte [60, 146, 147] and intact heart [61, 148]

contractile function, which can be attenuated with isoform

nonselective [60, 61, 146, 147] and selective [148] inhib-

itors of NOS. NO may directly inhibit the mitochondrial

activity in cardiac myocytes [146, 149], with the resultant

energy depletion and contractile dysfunction [147].

Increased glucose consumption and lactate production, and

decreased cellular ATP content are blocked by addition of

an NOS inhibitor. However, neither the administration of

cGMP donor nor an inhibitor of cGMP-dependent protein

kinase reverses the metabolic, electrophysiological, and

contractile derangements [147]. These results point to the

direct non-cGMP dependent cardiodepressant effects of

IL-1-induced NO production.

Alterations in Ca2? homeostasis, rather than NO-medi-

ated pathways, have been shown to mediate the cardiode-

pressant effect of IL-1. Chronic exposure to IL-1b
reversibly decreases basal and stimulated contractility and

the amplitude of calcium transients [150]. Altered calcium

handling of cardiac myocytes is evidenced by decreased

expression of genes involved in the regulation of Ca2?

homeostasis, namely phospholamban and sarcoplasmic

reticulum Ca2?-ATPase (SERCA), at both the transcript

and protein levels [150, 151]. There is a growing body of

evidence from experimental and clinical studies to support

the fundamental role of altered SERCA/phospholamban

interactions in the failing heart [152, 153]. Either decreased

level of SERCA or increased inhibition of its activity by

phospholamban is responsible for impaired removal of

cytosolic Ca2? and a subsequent decrease in sarcoplasmic

reticulum Ca2? release, which are the characteristic fea-

tures of cardiac diastolic and systolic dysfunction. Aden-

oviral gene transfer of SERCA2a in the transitional phase

from compensated hypertrophy to heart failure restores

systolic and diastolic function to normal levels [154].

Besides, overexpression of SERCA2a in failing hearts

results in improved survival, normalized LV volumes, and

increased phosphocreatine/ATP ratio [155]. In addition to

the paramount importance of altered Ca2? homeostasis, the

shift from a-MHC toward b-MHC gene expression [52,

139], which signifies the structural changes in myofibrillar

protein composition, might contribute to modified con-

tractile properties.
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Cardiac myocyte apoptosis

IL-1 induces programmed cell death in cultured cardiac

myocytes through NOS induction [156]. Following

administration of an NOS inhibitor, increased levels of

iNOS mRNA and NO metabolites are reversed, while

apoptotic cell death is completely blocked [156, 157].

NO-mediated apoptosis seems not to be driven by cGMP-

dependent mechanisms, as evidenced by the lack of

antiapoptotic effect of cGMP-dependent protein kinase

inhibitor. IL-1-induced apoptosis is mediated, at least in

part, by generation of reactive nitrogen species in the

presence of oxygen free radicals, caspase activation, and

alteration in the cellular balance of Bak and Bcl-xL.

Apoptotic cell death is attenuated by antioxidants and

caspase inhibitor administration, which further support the

proposed mechanisms [156].

In line with the aforementioned evidence, the antiapo-

ptotic property of anakinra, an exogenous recombinant

human IL-1Ra, has been demonstrated in models of

ischemia–reperfusion injury [158, 159] and acute myo-

cardial infarction [160]. The resultant reduction in cardiac

myocyte apoptosis leads to reduced infarct size and signs

of favorable ventricular remodeling. The anti-apoptotic

property of anakinra is partly due to decreased expression

of pro-apoptotic mediators, namely Bax, Bak, and caspase-

3 with no significant effect on the expression of anti-

apoptotic mediator Bcl-2 [158, 159]. Furthermore, anakinra

inhibits caspase-1 and caspase-9 activities as a mixed

competitive and noncompetitive enzyme inhibitor [160].

Extracellular matrix remodeling

IL-1 exerts a potent antiproliferative effect on cultured

cardiac fibroblasts [138]. IL-1b serves as a robust stimulus

of adult cardiac fibroblast migration; TNF-a substantially

enhances, whereas TGF-b1 strongly inhibits, the migratory

response to IL-1b [161]. IL-1b induces a selective down-

regulation of fibrillar collagen synthesis, as demonstrated

by decreased expression of procollagen a1(I), a2(I), and

a1(III) mRNA and increased expression of procollagen

a1(IV), a2(IV), and fibronectin mRNA [78]. IL-1b treat-

ment increases collagen breakdown through induction of

proMMP-2 and proMMP-3 mRNA expression and

increased MMP activity, with specific increases in both the

proenzyme and active enzyme bands corresponding to

MMP-2, MMP-9, and MMP-13 [78]. IL-1b increases

MMP-2 transcription and activity in cultured cardiac

fibroblasts, an effect which could be inhibited by the NOS

inhibitor L-NMMA [162]. PKC isoforms (a, b1, f, and h)

differentially activate ERK1/2, JNKs, and NF-jB, which

have been shown to be differentially regulated in IL-1b-

induced MMP-2 and MMP-9 expression and activity [163].

IL-1b-mediated activation of NF-jB and the AP-1 family

of transcription factors might be responsible for IL-1b-

induced MMP-1, MMP-3, MMP-7, MMP-9, and MMP-13

and TIMP-1 and TIMP-2 gene expression at the transcrip-

tional level [86], as demonstrated by decreased MMP-1,

MMP-2, and MMP-9 levels following administration of

MAPK and NF-jB inhibitors [163, 164].

IL-18

IL-18, originally identified as IFN-c inducing factor, is

a proinflammatory cytokine with pleiotropic biological

effects on immune, infectious, and inflammatory processes.

IL-18 belongs to the IL-1 superfamily of cytokines with

structural, rather than functional, homology to IL-1. Fur-

thermore, the IL-18 receptor complex and its intracellular

signaling pathways are closely analogous to IL-1. Similar

to IL-1a and IL-1b, IL-18 is synthesized as a biologically

inactive precursor (pro-IL-18), which is processed by ICE

to form the bioactive mediator [165].

IL-18 shares functional similarities with IL-12 as a key

element of both innate and adaptive immunity [165, 166].

IL-18, in synergism with IL-12, stimulates IFN-c produc-

tion by T cells, natural killer (NK) cells, and macrophages.

The synergistic function of IL-18 and IL-12 is partly due to

simultaneous activation of transcriptional factors involved

in IFN-c gene expression. IL-12 is an essential prerequisite

for IL-18R induction on naı̈ve T cells. Subsequently, IL-12

and IL-18 stimulate the reciprocal upregulation of their

receptors, which in combination with antigenic engage-

ment of T-cell receptor (TCR), direct T-cell differentiation

toward TH1 lineage [166]. Although the biological effects

of IL-18 are mainly due to enhanced IFN-c production,

IFN-c-independent mechanisms have also been identified.

Myocardial structural cells, including endothelial cells,

smooth muscle cells, and cardiac myocytes, are able to

produce IL-18 in response to ischemia–reperfusion injury,

acute myocardial infarction [167], and endotoxemia [168].

The emerging body of evidence represented herein deals

with the direct role of IL-18 in mediating the cardiovas-

cular maladaptive responses. Its indirect impacts through

IFN-c-dependent mechanisms are beyond the scope of the

current literature.

Maladaptive responses

Cardiac myocyte hypertrophy

IL-18 has been demonstrated to induce cardiac myocyte

hypertrophy, which provides early functional compensa-

tion followed by eventual decompensation and heart
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failure. In vitro treatment with IL-18 results in phosphor-

ylation of the translational regulatory proteins, increased

total protein synthesis and cell surface area, and enhanced

fetal gene expression and protein synthesis [169]. The

critical role of IL-18 in the cardiac growth response has

been demonstrated in an in vivo model of chronic pressure

overload. IL-18 knockout mice showed blunted hypertro-

phy in association with reduced expression of contractile-,

hypertrophy-, and remodeling-associated genes [170].

PI3K/PDK1/Akt/GATA4 signaling pathway has been

demonstrated to relay IL-18-induced hypertrophic growth

response [169, 170]. In support of the above findings are in

vivo models of cardiac specific PI3K [171] and Akt [172]

overexpression, which result in increased cardiac myocyte

size and concentric LV hypertrophy. Akt phosphorylation

leads to its nuclear translocation, which augments GATA4

DNA binding activity with the subsequent increase in tar-

get gene expression. NF-jB, p38 MAPK, JNK, and ERK

activation has been spotted in IL-18-treated cardiac myo-

cytes in vitro; however, their inactivation does not interfere

with cardiac myocyte growth [169]. This result runs con-

trary to the previous experimental studies in which the

transcriptional factor NF-jB [173] and members of the

MAPK cascade [174–176] are implicated as main regula-

tors of cardiac myocyte growth.

Contractile dysfunction

Daily administration of IL-18 seems to be sufficient to

compromise contractile function and b-adrenergic respon-

siveness in healthy mice [177, 178]. Furthermore, IL-18

neutralization attenuates LPS-induced myocardial dys-

function [168]. The ability of IL-18 to stimulate proin-

flammatory cytokines with known cardiodepressant effects,

i.e., TNF-a, IL-1a, IL-1b, IL-6 [179–181], and IFN-c
[182], has been postulated as the plausible underlying

mechanism. IL-18 has been shown to induce NO synthesis

[181, 183], which mediates myocardial dysfunction either

directly or as a consequence of IL-18-mediated proin-

flammatory cytokines production (Fig. 1). Moreover, IL-18

enhances intercellular adhesion molecule-1 (ICAM-1) and

vascular cell adhesion molecule-1 (VCAM-1) expression

[184, 185], induces neutrophilic cell infiltration [186], and

activates cytotoxic T lymphocytes [187, 188], all of which

contribute to aggravated myocardial inflammation and the

severity of contractile dysfunction.

In support of the aforementioned statement, improved

contractile function following IL-18 neutralization is

associated with reduced myocardial IL-1b production and

ICAM-1/VCAM-1 expression [168]. However, neither

increased cardiac infiltration of leukocytes nor increased

endothelial leukocyte adhesion or ICAM-1 protein syn-

thesis has been documented in IL-18-treated mice [177].

Additionally, either daily administration of IL-18 [177] or

IL-18 neutralization in an in vivo model of LPS-induced

myocardial dysfunction [168] fails to make a significant

difference in TNF-a mRNA and protein levels in the car-

diac tissue.

The direct effects of IL-18 on Ca2? homeostasis, rather

than its indirect effects, may contribute to contractile

dysfunction. Increased peak Ca2? transients and diastolic

Ca2? concentration consistent with reduced myofilament

responsiveness to Ca2? has been demonstrated in vitro

[177]. However, the precise mechanisms of altered Ca2?

homeostasis are not well identified.

Cardiac myocyte apoptosis

IL-18 is a proinflammatory cytokine with proapoptotic

properties. Programmed cell death might be attributed

indirectly to IL-18-induced TNF-a, IL-1b, IL-6 [179–181],

and NO production [189], which contributes to cardiac

myocyte apoptosis. More important, IL-18 induces apop-

totic cell demise via the extrinsic and intrinsic signaling

pathways [190]. A comprehensive description of the

common mechanisms of apoptosis has been provided pre-

viously (Fig. 3). Engagement of death receptors, i.e.,

TNFR1 and Fas, initiates extrinsic signaling pathway.

IL-18 induces proapoptotic Fas, Fas-L, and TNFR1

expression in endothelial cells [190, 191], NK cells [192],

and TH1 cells [187]. The increased Fas and Fas-L promoter

activities are mediated through NF-jB activation [190]. Of

note, IL-18 activates caspase-8 and caspase-3 and inhibits

the caspase-8 inhibitor c-FLIP, further potentiating the

extrinsic signaling pathway [190]. On the other hand, the

release of mitochondrial cytochrome c initiates intrinsic

signaling pathway. IL-18 has been noted to activate Bid,

which promotes cytochrome c release, and to increase

caspase-9 activation. Furthermore, IL-18 alters the

expression of Bcl-2 family proteins in favor of apoptosis

[190].

In addition, a novel signal transduction pathway has

been identified in IL-18-mediated cardiac endothelial cell

apoptosis. IL-18 induces phosphatase and tensin homolog

(PTEN) expression via p38MAPK/NF-jB signaling path-

way [193]. PTEN is a tumor suppressor, which negatively

regulates PI3K/Akt signaling pathway [194]. Akt functions

as a prosurvival kinase through activation of antiapoptotic

and inhibition of proapoptotic signaling molecules [195].

PTEN dephosphorylates phosphatidylinositol-3,4,5-tri-

phosphate (PI3P), a substrate for PI3K-dependent Akt

phosphorylation and activation [194].

In stark contrast to the aforementioned reports, IL-18-

treated cardiac myocytes show no sign of increased sus-

ceptibility to apoptotic cell death [169]. The antiapoptotic

property of IL-18 is mediated in part by phosphorylation of
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Bcl2-antagonist of cell death (BAD), which prevents it

from inactivating anti-apoptotic members of the Bcl-2

family [196, 197]. Therefore, it has been suggested that

IL-18-induced apoptosis might be cell specific.

Extracellular matrix remodeling

IL-18 stimulates fibronectin expression in adult cardiac

fibroblasts, an effect which is blocked by either anti-IL-18

neutralizing antibodies or IL-18BP:Fc chimera. IL-18-

induced fibronectin expression has been shown to be

independent of other proinflammatory cytokines (i.e.

TNF-a and IL-1b) and growth factors (i.e. TGF-b and

CTGF). IL-18 induces fibronectin expression via PI3K-

Akt-dependent NF-jB activation [198]. In murine models

of left ventricular pressure and volume overload, there is a

parallel increase in IL-18 and osteopontin expression and

the subsequent interstitial fibrosis and diastolic dysfunc-

tion. IL-18 induces osteopontin expression in cultured

cardiac fibroblasts, while anti-IL-18 neutralizing antibodies

abolish this effect [199].

Conclusions

Chronic heart failure is among the leading causes of mor-

tality worldwide. Approximately 2% of adult population

are diagnosed with moderate or severe systolic dysfunction

[200] with an incidence rate of 10 per 1000 population after

the age of 65 [201]. The number of patients with estab-

lished heart failure tends to increase in parallel with

improved management of the underlying cardiovascular

diseases. Despite the identification of efficacious pharma-

cological regimens targeting neurohormonal activation and

introduction of mechanical interventions, chronic heart

failure remains to be a leading cause of hospitalization and

poses a considerable financial challenge to health care

resources worldwide [202]. Therefore, the introduction of

novel therapeutics as adjunctive to conventional pharma-

cotherapy has been a topic of intensive research.

In the past two decades, numerous experimental and

clinical investigations provide powerful evidence to sup-

port a role for immune system dysregulation, and in par-

ticular the pathogenic role of proinflammatory cytokines, in

the development and progression of heart failure. Experi-

mental studies mainly fall into three categories including

genetically manipulated models of ‘‘gain of function’’ and

‘‘loss of function’’, exogenous addition of cytokines, either

alone or in combination with their soluble receptors, and

pharmacological inhibition of cytokine-mediated intracel-

lular signaling pathways. Accordingly, the complex nature

of immunopathophysiological mechanisms in mediating

the adaptive and maladaptive responses has become

increasingly evident. The substantial impact of proinflam-

matory cytokines on cardiac myocyte hypertrophy, con-

tractile dysfunction, cardiac myocyte apoptosis, and

extracellular matrix remodeling could be of immense sig-

nificance for designing novel therapeutic strategies to delay

the progression of heart failure. Neutralization of proin-

flammatory cytokines and inhibition of intracellular sig-

naling pathways and subsequent gene expression are

among the most promising therapeutic strategies in the near

future.

A number of proinflammatory cytokines (i.e. TNF-a and

IL-6) are believed to play either physiological or patho-

logical roles depending on their concentrations and the

acuteness versus chronicity of the primary insult. The

results of large, well-designed, randomized, double-blind,

placebo-controlled clinical trials of anti-TNF-a therapies,

i.e. infliximab [203] and etanercept [204], showed either

neutral or even detrimental effects of such treatment. It has

been postulated that reduction of TNF-a concentration to

below the physiological levels may have blocked its ben-

eficial cytoprotective effects, emphasizing on the pleio-

tropic nature of proinflammatory cytokines in mediating

both adaptive and maladaptive responses [205]. In addi-

tion, infliximab-induced antibody and complement-depen-

dent cytotoxicity [206] and caspase-dependent apoptosis

[207] could have resulted in detrimental effects on TNF-a-

expressing cardiac myocytes [205]. Due to the irreversible

nature of cardiac myocyte apoptosis and ECM remodeling,

anti-cytokine therapy would probably benefit those patients

in whom these processes are not yet begun or are in their

earliest stages. Therefore, further studies are needed to

determine the best type and optimal dosage of anti-TNF-a
therapy, as well as the specific subgroups of patients who

might benefit the most [205]. Given the relative contribu-

tion of other proinflammatory cytokines and chemokines to

the deleterious maladaptive responses in the context of the

failing heart, the lack of clinical benefit is also probably

due to the highly selective nature of the adopted strategies,

underlining the inherent complexity and redundancy of the

immune system [208, 209].

The dual role of proinflammatory cytokines in mediating

both beneficial and detrimental effects might have hindered

the development and clinical implementation of anti-

inflammatory therapeutic modalities. Given the pleiotropic

nature of proinflammatory cytokines, complete blocking of

an individual mediator may actually result in adverse

clinical outcomes. Based on the results of experimental

studies, TNFR1 gene ablation blunts TNF-a-induced car-

diomyopathy, whereas ablation of TNFR2 gene exacer-

bates heart failure and reduces survival [34]. Therefore, it

could be hypothesized that the clinical benefit of anti-

cytokine therapy resides in balancing the disturbance in the

cytokine network and its receptor-mediated signaling,
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rather than inhibition of one specific cytokine. Further-

more, given the considerable redundancy in the charac-

teristic features of proinflammatory cytokines, the

introduction of highly specific anti-inflammatory strategies

has proved to be futile [205]. Therefore, to tackle various

components of the immune system, the employment of

broad spectrum anti-inflammatory strategies, including

nonspecific immunomodulation therapy [210], intravenous

immunoglobulin [211], pentoxifylline [212, 213], and

immunoadsorption [214], has received much attention in

the recent years.

In the present review, the current knowledge on the

immunopathogenic roles of the most studied proinflam-

matory cytokines, including TNF-a, IL-6, IL-1, and IL-18,

in mediating cardiac myocyte hypertrophy, contractile

dysfunction, cardiac myocyte apoptosis, and extracellular

matrix remodeling have been summarized. The pleiotro-

pic properties of proinflammatory cytokines underline the

importance of identifying and effective targeting of cell-

specific intracellular signaling pathways specified for

relaying the undesirable effects. Thus, the systemic and

local consequences of such immunomodulation could be

minimized to a great extent. Furthermore, to overcome

their redundant activities, several elements of the

inflammatory response could be simultaneously modu-

lated by targeting the intracellular signaling molecules

which are shared among various cytokines. Cognizance

must also be taken of the differential roles of proinflam-

matory cytokines in the stepwise progression of disease

from the initial insult to the clinical syndrome of heart

failure. Although sustained overexpression of TNF-a,

IL-1, and IL-18 has been demonstrated to be involved in

the pathogenesis of myocarditis and DCM [7–10], the

potential benefit from TNF-a and IL-1b blockade is

limited to the onset of the disease [215]. Similarly, the

vast majority of experimental studies have been per-

formed in relatively acute models of myocardial infarc-

tion, where inhibition of the inflammatory response during

the infarct healing process has been proven to be of

therapeutic value [216, 217]. Intervention directed at

proinflammatory cytokine signaling could potentially

provide efficacious treatment of heart failure; however,

the current knowledge has not yet been applied to clini-

cally applicable protocols. In order to delineate the ther-

apeutic potential of proinflammatory cytokines in heart

failure, a greater understanding of their physiological

and pathological roles with emphasis on identifying the

key signaling pathways and regulatory molecules is

mandatory.
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