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Abstract Obstructive sleep apnea (OSA) is increasingly

recognized as a novel cardiovascular risk factor. OSA is

implicated in the pathogenesis of hypertension, left ven-

tricular dysfunction, coronary artery disease and stroke.

OSA exerts its negative cardiovascular consequences

through its unique pattern of intermittent hypoxia. Endo-

thelial dysfunction, oxidative stress, and inflammation are

all consequences of OSA directly linked to intermittent

hypoxia and critical pathways in the pathogenesis of car-

diovascular disease in patients with OSA. This review will

discuss the known mechanisms of vascular dysfunction in

patients with OSA and their implications for cardiovascular

disease.
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Introduction

Obstructive sleep apnea (OSA) is a respiratory disorder of

sleep characterized by recurrent episodes of complete or

partial upper airway obstruction. OSA has an estimated

prevalence of 9–24% in middle-aged individuals [1, 2] and

is increasingly emerging as a cardiovascular risk factor [3–

6]. Several etiological factors in OSA overlap with those of

cardiovascular diseases creating difficulty in distinguishing

the direct cardiovascular consequences of OSA from its

role in exacerbating concomitant cardiovascular dis-

ease. Nevertheless, an independent role for OSA in

cardiovascular morbidity and mortality is now well

supported [4–6].

This review will discuss the pathophysiological

responses to episodes of obstructive apnea and hypopnea.

These responses include sympathetic activation, increased

respiratory workload, and intermittent hypoxia in the

immediate term. Endothelial dysfunction, oxidative stress,

and inflammation are long-term consequences that mediate

cardiovascular disease in patients with OSA. A subsequent

review in this series will attempt to present the background

and evidence for a causative relationship between OSA and

cardiovascular disease with focus on hypertension and

heart failure.

Presentation and definition of OSA

The term Sleep Disordered Breathing (SDB) encompasses

all types of respiratory disturbance during sleep: obstruc-

tive, central, and mixed. Typically, patients have

predominance of either central or obstructive events, so

SDB is divided broadly into two main clinical syndromes,

central and obstructive sleep disorders.
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In normal conditions, a tenuous balance between con-

strictor and dilator forces maintains the patency of the

upper airway during sleep [7, 8]. Obstructive events occur

when this balance shifts toward the constricting forces [9].

One of the important collapsing factors leading to con-

striction of the upper airway is the extra-luminal pressure

from the tissue surrounding the airway [10], a common

condition in obesity.

The presence of compatible clinical symptoms, includ-

ing excessive daytime sleepiness, and at least five

obstructive respiratory events, apneas or hypopneas, per

hour of sleep defines Obstructive Sleep Apnea Syndrome.

Obstructive apneas result from complete collapse of the

upper airway resulting in cessation of airflow against which

the inspiratory effort persists. Obstructive hypopneas result

from a partial collapse of the upper airway causing

reduction in, but not cessation of airflow, and are associ-

ated with increased respiratory effort.

The most effective treatment for OSA is continuous

positive airway pressure (CPAP), which acts as pneumatic

splint keeping the airway open during sleep. Discussion of

treatment modalities for OSA is elsewhere in this special

issue.

The physiological response to episodes of obstructive

apnea and hypopnea

A typical patient with OSA may experience anywhere

from five to well over one hundred apnea or hypopnea

events per hour. Each of these obstructive respiratory

events results in an episode of hypoxia. Re-oxygenation

occurs when the episode is terminated by an arousal that

restores the airway patency (Fig. 1). The recurrence of

these respiratory events and their respective recovery

phases produces a characteristic pattern of nocturnal

intermittent hypoxia that is unique to OSA. Generally,

both apnea and hypopnea events produce the same pattern

of intermittent hypoxia. Each episode of hypoxia stimu-

lates the carotid chemoreceptors resulting in sympathetic

nerve activation [11] and subsequent surge in blood

pressure [12]. As a result, patients with OSA spend their

sleep period in a state of intermittent hypoxia and a

cycling pattern of recurrent surges of sympathetic activity

and blood pressure.

Significant experimental evidence has emerged indi-

cating that intermittent hypoxia is a unique physiological

state with a profile of biological consequences that is

distinct from other types of hypoxia [13–16]. More

importantly, intermittent hypoxia is the critical element

accounting for most of the immediate and long-term

cardiovascular consequences of OSA including hyperten-

sion [17–19].

Intermittent hypoxia, sympathetic activation,

and the pathogenesis of hypertension

Patients with OSA experience recurrent episodes of sym-

pathetic activation and blood pressure surges throughout

the sleep period [20]. This sympathetic activation, along

with the increased blood pressure persists during the day-

time indicating a link between OSA and the pathogenesis

of hypertension [20]. Several studies attempted to explain

this blood pressure relation to apnea. Xie et al. reported

that a short (20 min) exposure to hypoxia in healthy

humans resulted in substantial increase in sympathetic

nerve activity, which remained elevated 20 min after

withdrawal of the chemical stimulus [21]. In humans

exposed to intermittent hypoxia, intact sympathetic path-

way was required for the hypertensive response to

voluntary apnea [12, 21]. In other experiments, the same

investigators, as well as others, confirmed that intermittent

hypoxia, and not the respiratory effort associated with

apnea, is responsible for the sympathetic activation fol-

lowing episodes of obstructive apnea [11, 22].

Additionally, hypoxia, and not hypercapnea, was critical

for the persistence of sympathetic activation following

episodes of apnea [23]. Withdrawal of the inhibitory vagal

signal associated with inspiration during breath holds was

not important for the sympathetic activation and blood

pressure surge [24]. In summary, these human experiments

confirmed that intermittent hypoxia is the critical stimulus

for OSA-associated sympathetic activation [22] and surge

in blood pressure following obstructive episodes [12, 21].

The sympathetic response to intermittent hypoxia is asso-

ciated with a carryover effect in which sympathetic
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Fig. 1 A fragment from a full night sleep study recording (polysom-

nography) of a patient with severe OSA. Channels from top: LOC:

left eye electrooculogram, ROC: right eye electrooculogram, Chin

EMG: Electromyogram of the chin, C3-A2 and O2-A1: recordings of

two Electroencephalogram leads used for scoring sleep; EKG:

Electrocardiogram, Air flow: measured by nasal pressure cannula;

Abdomen and chest effort measured by respiratory inductance

plesythmography belts, SaO2: Pulse oximetry. Note the recurrent

episodes of cessation of flow with persistent respiratory effort

(obstructive apneas). Each episode is associated with hypoxia, and

is terminated by an arousal and subsequent restoration of the patency

of the airway and airflow
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activation and blood pressure surge persist after hypoxia

has resolved [25].

Animal models confirmed the role of intermittent

hypoxia-induced sympathetic activation in OSA-related

hypertension. In a landmark experiment, Brooks et al.

developed a dog model of OSA in which they mimicked

the upper airway occlusion of OSA. Again, intermittent

hypoxia was the mandatory stimulus for the blood pressure

response [19]. Fletcher et al. developed an animal model of

OSA in which rats were exposed to a protocol of inter-

mittent hypoxia designed to simulate the pattern of

nocturnal hypoxia in OSA [26]. An increase in blood

pressure occurred in the rats exposed to this intermittent

hypoxia protocol compared to control animals [27]. Carotid

body denervation prevented the increase in arterial blood

pressure. Additionally, either chemical or surgical sympa-

thectomy prevented the blood pressure response to

intermittent hypoxia [17, 28]. Similar to human experi-

ments, these series of experiments demonstrated that

chemoreception-induced sympathetic activation mediated

the blood pressure response to intermittent hypoxia. In

particular, intact renal artery, and medullary sympathetic

activity were required for the hypertensive response in this

animal model [29]. Moreover, in this rat model, intermit-

tent hypoxia not only resulted in increased basal

sympathetic activity, but also facilitated enhanced sympa-

thetic response to subsequent episodes of hypoxia [30–32].

Other investigators, using a similar rat model, confirmed

that intermittent hypoxia induces long-term facilitation in

the sympathetic activation via an effect on the carotid

chemoreceptors [25].

Sympathetic overactivity appears to be the critical link

between OSA and hypertension [20, 33]. The mechanism

by which sympathetic activation contributes to the patho-

genesis of hypertension in patients with OSA is not yet

fully understood. Parallels do exist in the current under-

standing of the pathogenesis of essential hypertension, in

which sympathetic activity is central [34, 35]. Increased

sympathetic tone exerts systemic changes that promote the

persistence of elevated blood pressure [36, 37] and aug-

ment the response to subsequent sympathetic stimuli [38].

Young patients with early essential hypertension have

increased cardiac sympathetic tone compared to age mat-

ched controls [39]. In a population-based study, increased

heart rate, a manifestation of sympathetic activation, cor-

related with future development of hypertension [40]. The

sympathetic interaction with the renin-angiotensin system

may be another important element in the pathogenesis of

hypertension [36, 41, 42]. In turn, angiotensin II potentiates

the vasoconstrictor effects of sympathetic activation via

post-ganglionic effects [43–45]. In the previously men-

tioned rat model of intermittent hypoxia, Fletcher et al.

showed that intermittent hypoxia-induced hypertension

was mediated by renal sympathetic nerve activity [17, 46]

and that intact renin-angiotensin system was critical for this

blood pressure response to intermittent hypoxia [47].

Another important link between OSA and hypertension

is the resetting of the baroreflex. Patients and animal

models of hypertension demonstrate changes in their

autonomic regulation of blood pressure (baroreflex) con-

sistent with adaptation of the baroreceptors to a higher

blood pressure set point [48, 49]. This adaptation was

reported in patients with OSA both with and without

changes in the sensitivity of the baroreflex [50, 51].

Adaptation of the baroreflex in hypertension requires

reactive oxygen species (ROS) [52]. Also, long-term

facilitation of sympathetic activation in animal models of

intermittent hypoxia required ROS [53], establishing

another important link with OSA, that is oxidative stress.

Finally, sympathetic activation-mediated vasoconstric-

tion may induce long lasting structural changes in

resistance vessels that contribute to the persistence of

hypertension [54]. Animal models of intermittent hypoxia

demonstrate early structural and functional changes [55],

along with impaired vasodilator response to hypoxia [56].

These local effects of increased sympathetic tone on the

vascular wall and structure may be mediated by endothelial

factors. In the rat model of intermittent hypoxia, endothe-

lin-1 was critical for the sustained increase in blood

pressure in response to intermittent hypoxia [57, 58].

In summary, sympathetic activation is central to the

pathogenesis of hypertension in OSA. Intermittent

hypoxia-induced sympathetic activation and blood pressure

increases in patients with OSA persist through the day and

mediate a cascade of changes that set the stage for per-

sistent hypertension, probably similar to the conditions of

initial stages of essential hypertension [33].

Respiratory effort and the mechanical consequences

of OSA

When an obstructive apnea occurs, an increase in the

respiratory effort against the closed airway ensues. This

inspiratory effort is a result of increased respiratory drive

stimulated by the associated hypoxia [59] and results in a

profound increase in negative intrathoracic pressure with

each inspiration. Interest in the mechanical effects of this

negative pressure on cardiac function has been long pres-

ent. However, the available data suggest that hypoxia and

not the respiratory effort is responsible for most of the

cardiovascular response to respiratory events [60]. Never-

theless, the effect of this respiratory effort may be more

important in patients with existing cardiac dysfunction [61,

62] than in otherwise healthy individuals with OSA. Neg-

ative intrathoracic pressure augments the gradient between

the intraventricular pressure and the intrathoracic pressure
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resulting in increased left ventricular work and wall stress

during systole [61]. Also, this negative intrathoracic pres-

sure may affect the balance of forces governing the

transudation of fluid into the interstitial space resulting in

pulmonary edema [63]. Finally, increased venous return to

the right ventricle is likely [64], which may cause an

increase in preload. Alternatively, some sources suggest

that the negative intrathoracic pressure may cause a

reduction in venous return and preload and subsequently

would reduce stroke volume [61]. It is well established that

patients with heart failure and OSA experience immediate

improvement in their cardiac work index with elimination

of OSA events [65, 66].

Endothelial dysfunction

Endothelial dysfunction generally denotes impairment in

endothelium-dependent vasodilation, a function mediated

by nitric oxide. Endothelial dysfunction is an important

vascular abnormality that precedes the clinical manifesta-

tions of cardiovascular disease including hypertension [67,

68]. Dysfunction promotes atherosclerotic changes and

arterial lesion development with subsequent clinical com-

plications [69]. Flow-mediated dilation (FMD) is nitric

oxide-dependent vasodilation [70] that results from shear-

mediated activation of endothelial nitric oxide synthesis in

response to an acute increase in blood flow [71]. Mea-

surement of flow-mediated dilation by non-invasive

methods provides an assessment of endothelial function

and can help in the evaluation of cardiovascular risk [72].

Endothelial dysfunction was demonstrated repeatedly in

patients with OSA and in animal models of intermittent

hypoxia providing an important link between OSA and

cardiovascular diseases. Kato et al. described impaired

endothelial-mediated vasodilation in a group of newly

diagnosed patients with OSA compared to matched con-

trols [73]. Later, Ip et al. evaluated flow-mediated dilation

in a group of OSA patients who were otherwise free of

clinically known cardiovascular disease. These investiga-

tors also found baseline impairment in endothelial function,

which improved after treatment of OSA [74]. A correlation

existed between the apnea hypopnea index and the

impairment in flow-mediated dilation in both studies. A

similar correlation between baseline vascular diameter and

oxygen desaturation index was also reported in a large

population based study of patients with sleep apnea and

cardiovascular disease further supporting a cause-effect

relationship [75].

In animal models of intermittent hypoxia, endothelial

dysfunction occurred without a change in the levels of

endothelial nitric oxide synthase (eNOS) [76]. To date,

however, the levels and function of eNOS have not been

directly measured in patients with OSA. Circulating levels

of nitric oxide (NO) in patients with OSA were reduced at

baseline and improved with treatment with CPAP [77].

Oxidative stress plays a major role in disorders of endo-

thelial dysfunction and NO bioavailability [78–81].

Recently, two important studies demonstrated an

improvement in endothelial dysfunction in patients with

OSA with antioxidant treatment [82, 83], suggesting a

similar role for oxidative stress in the mechanism of

reduced NO availability in patients with OSA. This pro-

vides parallels to other cardiovascular diseases in which

oxidative stress-induced endothelial dysfunction is impor-

tant [84, 85].

Several mechanisms have been proposed to explain the

oxidative stress-mediated reduction in NO in patients with

OSA. Hypoxia-mediated reduction in molecular oxygen, a

substrate of eNOS, in the endothelial cell is one possible

mechanism. The increase in free radical production in OSA

may cause superoxide-mediated scavenging of NO gener-

ating peroxynitrite. Svatikova et al. measured circulating

nitrotyrosine as an indicator of peroxynitrite formation in

the vascular environment in humans with OSA and found

no increase in nitrotyrosine levels [86]. This study, how-

ever, does not rule out the accumulation of peroxynitrite in

the endothelial cells. Tetrahydrobiopterin (BH4) is a

cofactor critical for NO production by eNOS [87, 88].

When this cofactor is depleted in conditions of increased

oxidative stress, eNOS produces superoxide instead of NO

resulting in endothelial dysfunction [89]. Ascorbate is

suggested to replete BH4 [90]. In a relevant study, Grebe

et al. showed an improvement in endothelial dysfunction in

OSA patients after supplementation with vitamin C, lend-

ing support to this pathway [82, 83]. Sources of ROS in the

vascular environment are numerous and include mito-

chondria, xanthine oxidoreductase (XOR), NADPH

oxidase, eNOS, Cytochrome P450 enzymes, and the ara-

chidonic acid pathway enzymes lipoxygenase and

cyclooxygenase. ROS generated from xanthine oxidore-

ductase activity during ischemia reperfusion injury [91, 92]

are implicated in endothelial dysfunction [93, 94] and

hypertension [95, 96]. XOR inhibitors have already been

shown to improve endothelial function in humans with

other forms of endothelial dysfunction [97–99]. Recent

evidence also shows improvement in endothelial dysfunc-

tion with xanthine inhibitor treatment in patients with OSA

[83].

Asymmetrical dimethylarginine (ADMA) and NG-

monomethyl-L-arginine(L-NMMA) are structural analogues

of L-Arginine, a substrate for eNOS, and can function as

competitive inhibitors for eNOS when their levels accu-

mulate in the vascular environment. Only one human study

so far suggests a change in the level of ADMA in patients

with OSA with treatment. This reduction of ADMA cor-

related with the improvement in FMD in these OSA
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patients [100]. Figure 2 summarizes some of the mecha-

nisms of oxidative stress-mediated endothelial dysfunction

that may play a role in endothelial dysfunction in patients

with OSA.

Intermittent hypoxia and oxidative stress

Oxidative stress describes an imbalance between the pro-

duction of ROS and the antioxidant capacity of a biological

system. Oxidative stress occurs in conditions of ischemia

reperfusion typical to many disease states. Oxidative stress

can be assessed directly by measurement of ROS in bio-

logical systems, or indirectly by measurement of oxidation

products such as lipids, proteins, or DNA. Additionally,

increased oxidative stress can be quantified by measuring

the available in vitro antioxidant capacity of a biological

system as an indicator of existing oxidative stress. Given

the significant influence of environmental factors on oxi-

dative activity, large sample sizes, very meticulous

techniques, and sophisticated measurements are usually

required to evaluate the role of oxidative stress in a par-

ticular disease process [101].

The resemblance between the pattern of intermittent

hypoxia associated with OSA and ischemia reperfusion

patterns leads to the postulation that OSA would also be

associated with oxidative stress. Potential mechanisms for

oxidative stress in OSA may be related directly to inter-

mittent hypoxia in a fashion similar to ischemia reperfusion

injury, or indirectly via inflammatory response. The

increased sympathetic tone and elevated catecholamine

levels, a hallmark of OSA, might also be associated with

increased ROS production.

Despite the biological plausibility, several earlier studies

provided conflicting information regarding the presence of

increased oxidative stress in patients with OSA [102–105].

In some of these studies, the negative results may have

been due to inadequate controlling, small sample size or

use of less-refined techniques than what is available cur-

rently [102–104]. Recent studies, particularly ones that

involved larger numbers of patients, were able to demon-

strate that OSA is indeed associated with increased markers

of oxidative stress. Lavie et al. [106] measured plasma

levels of thiobarbituric reactive substances (TBARS), a

marker of lipid peroxidation, and the levels of paraxonase-

1, a marker of antioxidant capacity, in 114 OSA patients

and a group of normal controls. The investigators found an

increase in lipid peroxidation and a reduction in antioxidant

capacity in patients with OSA, which correlated with the

severity of their OSA, and subsequently improved with

treatment. Similarly, Barcelo et al. [107] found increased

lipid peroxidation (oxidized LDL) in patients with OSA

compared to controls. Treatment with CPAP reduced the

susceptibility of LDL to oxidation.

Several studies evaluated direct or indirect measure-

ments of increased ROS production in patients with OSA.

Christou et al., in a series of experiments, evaluated the

presence of oxidative stress in blood samples of patients

with OSA [108–110]. In one experiment, they measured

levels of Diacron reactive oxygen metabolism (D-ROM).

Diacron indicates the ability of metals to catalyze the

formation of free radicals in the presence of peroxide. They

found increased levels of reactive oxygen metabolites

which correlated with the severity of OSA [108]. In a later

study, the same group found a reduction in this measure of

oxidative stress (D-ROM) after treatment with CPAP.

Carpagnano et al. found increased levels of 8-isoprostane

in exhaled breath condensate and blood of patients with

OSA compared to controls [111, 112]. Isoprostane is

another measure of lipid peroxidation that may be linked to

the pathogenesis of atherosclerosis [113–115]. Tan et al.

recently described a link between the lipid abnormality in

OSA and atherosclerosis. These investigators found that

HDL was dysfunctional in preventing LDL oxidation in

patients with OSA [116]. Other investigators evaluated

products of oxidized DNA as a measure of increased ROS

production. These investigators found increased oxidized

DNA products in patients with OSA which correlated with

the desaturation index [117]. Takahashi et al. evaluated

thioredoxin levels in patients with OSA. Thioredoxin is a

protein that is released from cells in response to oxidative

stress and may be implicated in myocardiac injury [118]

and atherosclerosis. The investigators found increased

levels of thioredoxin and a correlation between these levels

and severity of OSA [119].

Other studies evaluated cellular antioxidant capacity in

patients with OSA. This antioxidant capacity can change in

the presence of significant oxidative load and is a potential

measurement or marker of existing oxidative stress in the

system. Using Trolox Equivalent Antioxidant Capacity

assay, Christou et al. found that the antioxidant capacity in
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Fig. 2 A schema of potential mechanisms of oxidative stress-

mediated endothelial dysfunction. IH: intermittent hypoxia, ADMA:

asymmetrical dimethlarginine, BH4: tetrahydrobiopterin, eNOS:

endothelial nitric oxide synthase, NO: nitric oxide, O2: oxygen

ONOO-: peroxynitrite
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the blood of patients with severe OSA was reduced in

comparison to normal controls [109]. Another study also

found that the antioxidant capacity of the serum in 47

patients with OSA was reduced compared to normal con-

trols and improved with treatment of OSA [120]. Together,

these studies indicated an impairment in the protective

system from oxidative stress in patients with sleep apnea.

In summary, oxidative stress in patients with OSA is

central to the cardiovascular morbidity of OSA. Most

recent studies in patients with OSA and animal models of

intermittent hypoxia confirm that OSA is associated with

oxidative stress, which generally correlated with the

severity of sleep apnea, and improved with treatment. The

conflicting results of some of the earlier human studies are

likely a result of methodology or control of patient vari-

ables. Meticulous controlling for environmental and

circadian factors along with the controlling of subjects is

required for evaluation of oxidative stress in OSA patients.

The mechanism of increased oxidative stress in patients

with OSA and its consequences remains incompletely

understood. Oxidative stress provides an important link in

understanding the cardiovascular consequences of OSA.

Reactive oxygen species are required for the memory effect

of the sympathetic activation in animal models of inter-

mittent hypoxia. Increased oxidative stress in the vascular

milieu is involved in the pathogenesis of endothelial dys-

function [82, 121]. Furthermore, cognitive impairment

[122, 123], inflammation [124, 125], atherosclerosis [116],

hypertension [126]and myocardial injury [118] may all be

direct consequences of the oxidative stress in OSA.

OSA and inflammation

A link between OSA and inflammation is an intriguing and

increasingly likely component of the pathophysiology of

OSA. Several studies suggested that systemic inflammation

may be involved in the increased ROS production in OSA

[111, 124]. Schulz et al. [124] reported a marked increase

in neutrophil superoxide generation in OSA patients when

compared to controls. Enhanced superoxide generation by

neutrophils decreased with CPAP treatment. The neutro-

phil chemokines, IL-8 and granulocyte chemotactic

protein-2, were significantly higher in OSA patients com-

pared to healthy controls [105].

Htoo et al. assessed nuclear factor kappa B (NF-kap-

paB) activity in OSA patients compared to control subjects.

They determined that neutrophils in OSA patients dem-

onstrate several fold increase in NF-kappaB binding

activity compared with control subjects. There was a

positive correlation between the degree of NF-kappaB

activation and indices of OSA severity. CPAP treatment

decreased neutrophil NF-kappaB activation to control

levels [127].

In an animal model of OSA, Nácher and colleagues

determined that recurrent airway obstruction leads to rapid

endothelial cell activation. They noted endothelial cell

activation and systemic leukocyte recruitment in the

microcirculation, with the apnea group having significantly

increased flux of leukocyte activation when compared with

the sham groups. P-selectin, an adhesion molecule found in

endothelial cells and activated platelets, which plays an

essential role in leukocyte recruitment, was up-regulated

only in the apnea group [128].

Other studies established that patients with OSA have

elevated levels of tumor necrosis factor-a (TNF-a), a pro-

inflammatory cytokine that plays an important role in

neutrophil activation [129, 130]. Vgontzas et al. also

demonstrated that Interleukin-6 (IL-6), another pro-

inflammatory cytokine, was elevated in OSA patients

compared to normal controls. The primary factor influ-

encing TNF-a levels was the degree of sleep disturbance,

and the main factor affecting IL-6 levels was body mass

index (BMI) [129]. In a recent study, patients with OSA

were found to have elevated serum levels of neopterin, a

pro-inflammatory marker for macrophage activation, which

plays a role in the pathogenesis of cardiovascular disease.

In this study, the elevated levels of neopterin also corre-

lated with the severity of the underlying severity of sleep

apnea and with the degree of sleep disruption [131].

Expanding literature connecting both IL-6 and C-

Reactive Protein (CRP) to OSA is very important, as both

of these inflammatory markers are risk factors for cardio-

vascular disease, including atherosclerosis and coronary

heart disease [132–137]. Shamsuzzaman et al. reported that

plasma CRP levels were significantly higher in OSA

patients compared to age and weight matched controls. In

their study, multivariate analysis demonstrated that CRP

levels were independently associated with the severity of

OSA [138]. In a study assessing adolescents (ages 13–

18 years, and free of known cardiovascular disease), an

AHI C 5 was associated with increased levels of CRP. The

authors concluded that OSA in adolescents confers addi-

tional cardiovascular risk beyond that of obesity [139].

Another study examining 69 men who were free of car-

diovascular disease demonstrated a strong association

between the severity of OSA and CRP levels [131].

Monocyte production of IL-6 was higher in patients with

OSA compared to obese control subjects. In those patients

with OSA, the factors influencing CRP levels were OSA

severity and BMI, and the factors affecting IL-6 levels

were BMI and nocturnal hypoxia. Treatment with nasal

CPAP significantly decreased levels of CRP and produc-

tion of IL-6 [140].

Activated leukocytes play an important role in the

inflammatory response to injury resulting from hypoxia/

reoxygenation that may set off the atherogenic processes
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[141]. Dyugovaskaya et al. investigated the link between

certain adhesion molecules expression on leukocytes and

their ability to generate ROS in OSA patients. They found

that OSA was associated with increased expression of the

adhesion molecules CD15 and CD11c by monocytes,

increased adherence of monocytes in culture to human

endothelial cells, and increased intracellular ROS produc-

tion in some monocyte and granulocyte subpopulations.

Nasal CPAP reversed most of these inflammatory activi-

ties. Minoguchi et al. examined carotid intima-media

thickness (IMT) along with inflammatory markers associ-

ated with cardiovascular disease (CRP, IL-6, and IL-18).

Carotid IMT correlated with serum CRP levels, IL-6, and

IL-18, duration of OSA-related hypoxia, and severity of

OSA. The primary factor influencing carotid IMT was

duration of hypoxia during total sleep time [142]. These

findings indicate that patients with OSA are exposed to

atherogenic insult nightly [143].

Therefore, OSA appears increasingly linked to cardio-

vascular morbidity via a distinct inflammatory response.

This response is complex and includes several humoral and

cellular pathways that are only minimally understood so

far. This inflammatory response directly links OSA with

the pathogenesis of atherosclerosis.

Summary

In otherwise healthy individuals, OSA constitutes a sig-

nificant risk factor for the development of cardiovascular

disease or the progression of existent cardiovascular dis-

orders toward heart failure, stroke, or death. OSA exerts its

negative cardiovascular consequences through its unique

pattern of intermittent hypoxia. Endothelial dysfunction,

oxidative stress, and inflammation are all consequences of

OSA directly linked to intermittent hypoxia and critical

pathways in the pathogenesis of cardiovascular disease in

patients with OSA.
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