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Abstract For decades, angiotensin (Ang) II was consid-

ered as the end product and the only bioactive peptide of

the renin–angiotensin system (RAS). However, later stud-

ies revealed biological activity for other Ang fragments.

Amongst those, Ang IV has drawn a lot of attention since it

exerts a wide range of central and peripheral effects

including the ability to enhance learning and memory

recall, anticonvulsant and anti-epileptogenic properties,

protection against cerebral ischemia, activity at the vas-

cular level and an involvement in atherogenesis. Some of

these effects are AT1 receptor dependent but others most

likely result from the binding of Ang IV to insulin-regu-

lated aminopeptidase (IRAP) although the exact

mechanism(s) of action that mediate the Ang IV-induced

effects following this binding are until now not fully

known. Nevertheless, three hypotheses have been put for-

ward: since Ang IV is an inhibitor of the catalytic activity

of IRAP, its in vivo effects might result from a build-up of

IRAP’s neuropeptide substrates. Second, IRAP is co-

localized with the glucose transporter GLUT4 in several

tissue types and therefore, Ang IV might interact with the

uptake of glucose. A final and more intriguing hypothesis

ascribes a receptor function to IRAP and hence an agonist

role to Ang IV. Taken together, it is clear that further work

is required to clarify the mechanism of action of Ang IV.

On the other hand, a wide range of studies have made it

clear that IRAP might become an important target for drug

development against different pathologies such as Alzhei-

mer’s disease, epilepsy and ischemia.
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Introduction

The renin–angiotensin system (RAS) is widely recognized

as the most powerful signalling system for controlling

sodium balance, body fluid volumes and arterial blood

pressure. The precursor of the RAS is the tetradecapeptide

angiotensinogen from which renin, an aspartyl proteinase,

forms the biologically inactive Ang I. The octapeptide

angiotensin II (Ang II), a major effector peptide of the

RAS, is then formed by enzymatic processing of Ang I by

the angiotensin converting enzyme (ACE) (Fig. 1) in

plasma as well as in tissues such as the brain, kidney and

heart [1]. Ang II is well known for its hypertensive effect

and its ability to stimulate cardiac re-modeling. Receptors

of the AT1 subtype play a major role in these processes.

When stimulated by Ang II, they increase the growth and

contractility of cardiac myocytes and vascular smooth

muscle cells, enhance sympathetic activity and trigger the

release of catecholamines, aldosterone and vasopressin

[2–4]. Prevention of the hypertensive and trophic actions of

Ang II is proven to be amongst the most successful strat-

egies for the treatment of hypertension and congestive
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heart failure. To this end, ACE inhibitors were introduced

to decrease the plasma level of Ang II and, in a later stage,

non-peptide antagonists were developed to selectively

block the AT1 receptor. AT2 receptors constitute the other

major Ang II receptor subtype. Although they are mainly

expressed in foetal tissues, in adulthood, a dramatic

upregulation can occur in most tissues after injury. They

may be involved in the inhibition of cell proliferation as

well as in apoptosis and neuronal differentiation but the

underlying intracellular signalling pathways are still poorly

defined [4, 5].

Although Ang II has long been assumed to represent the

end product of the RAS, more recent studies indicate that

shorter Ang peptides, such as Ang IV or Ang IV-(3–8),

Ang-III, Ang-(1–7) and Ang-(3–7) also accomplish central,

cardiovascular and renal functions [6–14].

An independent renin–angiotensin system in the brain

Next to the circulating RAS that is a crucial component in

blood pressure control, the existence of local RASs in

several tissues is evidenced by the fact that many of its

components are localized in these tissues as well. A local

RAS is for instance present in the heart, the kidney, the

liver, the adrenal and in vascular tissues [15]. Moreover, in

1971 Fisher-Ferraro et al. discovered RAS components in

the brain [16]. Since, peptides and proteins are unable to

pass the blood–brain barrier efficiently, this finding sug-

gests the existence of an independent RAS in the brain [8,

11, 17].

Since 1971, most of the RAS’ peptides and enzymes

have been localized in brain tissue [18–24]. However, the

co-localization of angiotensinogen, renin and Ang I within

a single brain cell has failed [25]. Consequently, cross-talk

between glia and neurons has been proposed as an element

of regulation of the brain RAS [25]. However, since

angiotensinogen is present in astrocytes [26, 27] as well as

in neurons [28, 29], angiotensins might be produced in

both. Another possibility is that angiotensins are synthe-

sized extracellularly [24, 25, 30]. Renin mRNA levels are

low or undetectable in the brain [31–39]. Therefore, it has

been hypothesized that other enzymes besides renin are

producing Ang peptides from angiotensinogen inside the

brain. In this respect, biochemical experiments have indi-

cated that tonin [40], cathepsin G [41], tissue plasminogen

activator and chymase [42, 43] can fulfill this role.

Formation and degradation of angiotensin IV

Ang IV is formed in vivo from Ang II in two steps: first,

Ang II is metabolized into Ang III by aminopeptidase A

(AP-A). Next, aminopeptidase N (AP-N) metabolizes Ang

III into Ang IV that has the amino acid sequence Val-Tyr-

Ile-His-Pro-Phe [44, 45] (Fig. 1). In brain tissue, Ang IV is

probably formed and stored mainly intracellularly. Indeed,

using the in vivo microdialysis technique and LC-MS/MS,

we were only able to measure it immediately after probe

insertion [46, 47]. After restoration of the tissue integrity,

extracellular baseline levels in rat brain were extremely

low and estimated to be around 46 pM [47]. The intra-

cellular formation of Ang IV requires the intracellular

presence of its precursor Ang II. In this respect, receptor-

mediated internalization of Ang II has been demonstrated

in neuronal cells [48–51]. Moreover, inside neurons, Ang II

is rapidly converted to predominantly Ang IV (80% of all

fragments) next to smaller amounts of Ang III, Ang-(1–7)

and Ang-(1–6) [48, 52, 53]. These findings suggest that the

intracellular conversion of Ang II is not merely a break-

down process but rather a biologically significant

conversion to other Ang peptides, of which Ang IV is the

most important. How and under which conditions Ang IV

is then released remains to be further elucidated. However,

we already showed that neuronal depolarization is appar-

ently not able to trigger this since K+-stimulation did not

increase extracellular basal concentrations of Ang IV in

vivo [47].

In the periphery, there are until now only sparse data

concerning the site of generation of Ang IV and its release.

In principle, every organ in which Ang II, AP-A and AP-N

are present can generate Ang IV. This is for instance the

case for the kidneys which have a high density of AP-A

[54] and AP-N [55] and which express AT1 receptors [56],

Fig. 1 Overview of the enzymes involved in the formation and

metabolism of Ang IV [7, 44, 45]. ACE: angiotensin-converting

enzyme, AP-A: aminopeptidase A, AP-N: aminopeptidase N, DAP:

dipeptidyl aminopeptidase
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implying the presence of Ang II. The same could be true

for several other organs such as the heart, the liver, the

adrenal and the cardiovascular system. Moreover, Ang IV

is most likely generated in human atherosclerotic plaques,

monocytes and macrophages [57, 58].

Ang IV is inactivated through enzymatic processing into

smaller peptide fragments [44, 59] by predominantly AP-N

[7] (Fig. 1). In our most recent study, we further demon-

strated the importance of AP-N in the metabolism of Ang

IV as we showed that an AP-N inhibitor was able to

enhance the Ang IV-induced increase in dopamine release

in rat brain [60].

Angiotensin IV as an active renin–angiotensin fragment

There are numerous studies in which Ang IV was found to

produce certain biological functions in the central nervous

system suggesting its possible role as a neuropeptide and/or

neuromodulator. Initial interest in Ang IV originates from

its ability to increase memory recall and learning in pas-

sive and conditioned avoidance response studies. Braszko

and colleagues were the first to demonstrate in 1988 that

intracerebroventricular (i.c.v.) injection of Ang IV in rats

enhances memory retention in a passive avoidance task

[61]. This observation was reproduced independently by

Wright et al. and Tchekalarova et al. [62, 63]. Ang IV or

an Ang IV analogue such as Norleucine-Ang IV (Nle1-Ang

IV) was also able to facilitate memory in conditioned

avoidance [64], object recognition [65] and Barnes maze

experiments [66]. Interestingly, Ang IV and analogues not

only improve learning and memory in healthy rodents, they

have also been found to prevent memory deficits caused by

scopolamine [67–69], mecamylamine [70], alcohol abuse

[71, 72], ischemia [73] or bilateral knife cuts of the per-

forant path [74]. Electrophysiological and biochemical

studies revealed that the cognitive effects are at least par-

tially mediated via the hippocampus. In the dentate gyrus

and the CA1 field of the hippocampus both in vitro [75]

and in vivo [76], Ang IV and its analogues significantly

enhance long-term potentiation (LTP). Ang IV also

potentiates potassium-evoked release of acetylcholine from

rat hippocampal slices [77]. Since, hippocampal choliner-

gic–glutamatergic interactions are known to be implied in

learning and memory processes, manipulation of the

equilibrium between the extracellular acetylcholine and

glutamate concentration in the hippocampus was proposed

as a mechanism of action of the memory-promoting effects

of Ang IV. However, using in vivo microdialysis, we were

unable to observe changes in the extracellular hippocampal

glutamate concentration during i.c.v. administration of Ang

IV [14]. In contrast, after i.c.v. injection of Ang IV we

observed a tendency to increase followed by a significant

sustained decrease of the extracellular hippocampal ace-

tylcholine concentration [78]. Next to glutamate and

acetylcholine, c-aminobutyric acid (GABA) is also impli-

cated in memory function since patients taking

benzodiazepines can suffer from retrograde amnesia and

since transgenic mice lacking the a5 GABAA receptor

subunit perform significantly better in a water maze para-

digm [79]. Moreover, a meta-analysis based on studies of

four behavioural tasks of learning and memory (Morris

water maze, radial maze, passive avoidance and sponta-

neous alternation) demonstrated that also the

monoaminergic (dopamine, serotonin noradrenalin) sys-

tems are involved in cognitive processing [80]. These

neurotransmitter systems might thus be involved in the

memory-enhancing effect of Ang IV. Indeed, i.c.v.

administered peptide produces a decrease of the hippo-

campal GABA levels next to an increase of the

extracellular dopamine and serotonin concentration [14].

Moreover, the cognitive effects of Ang IV such as its

facilitation of conditioned avoidance responses, increase of

a passive avoidance and improvement of object recognition

were blocked by the selective D2 dopamine receptor

antagonist remoxipride [65].

Next to its memory promoting properties, Ang IV also

dose-dependently attenuates PTZ-induced seizures [81].

Furthermore, Ang IV shows an anti-epileptogenic effect as

it not only suppresses the maintenance of the generalization

phenomenon during the kindling procedure but also blocks

the development of epileptic-like state in mice [82, 83]. We

showed that i.c.v. administered Ang IV is anticonvulsant in

the acute pilocarpine model for focal epilepsy in rats [14].

This was accompanied by a concomitant increase of the

hippocampal extracellular dopamine and serotonin con-

centration. Possibly, this plays an important role in the

anticonvulsant effect of Ang IV. Indeed, several well-

known anti-epileptic drugs can elicit a monoaminergic

stimulation [84–90]. Moreover, it was shown in our labo-

ratory that intrahippocampally administered dopamine and

serotonin protect rats against pilocarpine-induced convul-

sions via respectively D2 and 5-HT1A receptor activation

[91].

Ang IV is also able to influence the dopaminergic neu-

rotransmission in the striatum. We showed that local

administration of Ang IV is able to cause an increase of the

extracellular dopamine concentration in the rat striatum, a

functionally important structure of the basal ganglia

implicated in the control of movement but also in the

procedural or habit memory system [12]. This can be of

importance for the development of new therapies against

Parkinson’s disease since it is characterized by a depletion

of dopamine in the striatum [92].

Several studies have reported a potential role for

angiotensin peptides the protection against cerebral
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ischemia-induced neurological damages. It was already

stated by some groups that this effect is independent from

AT1 receptors [93–95]. Instead, the AT2 receptor was put

forward as the mediating binding site [96–98]. However,

recently the study of Faure et al. points for the first time to

Ang IV as the effector of this cerebral protection [99]. An

injection in the carotid artery of rats with Ang IV decreased

the brain infarct volume, resulting in a marked decrease in

mortality. This effect was indeed AT2 receptor independent

but unfortunately, the involvement of AT1 receptors was

not excluded. Pretreatment with the nitric oxide synthase

inhibitor L-NAME abolished the protective effect, sug-

gesting that Ang IV triggers a nitric oxide dependent

pathway [99]. Ang IV has also been shown to promote cell

survival in the hippocampus [100].

Ang IV, as similar to Ang II and Ang III, increases

blood pressure after central administration in anaesthetized

rats [101–103]. Chronic elevation of Ang IV specifically in

the brain in a transgenic mouse model was also associated

with an increased blood pressure [104]. Intriguingly, these

effects were AT1 dependent as they were blocked with an

AT1 receptor antagonist. In contrast, Faure and colleagues

recently observed a vasoconstrictor response to Ang IV in

isolated rat basilar arteries, an ex vivo preparation that fails

to constrict in the presence of Ang II. This effect was

unaffected by AT1 or AT2 receptor blockade, but instead

abolished by removal of endothelium and blockade of

endothelin ETA/ETB receptors [105].

The peripheral role of Ang IV, particularly in the kid-

ney, is unclear since contradictory effects have been

reported. Nevertheless, Ang IV is certainly active at the

vascular level since internal carotid or renal infusion of

Ang IV causes changes in cerebral or renal blood flow.

Some groups observed an increased cerebral and renal

cortical blood flow [106–108] that was independent upon

AT1 receptor activation [108]. Other groups including ours

however have observed a reduction in renal blood flow by

Ang IV [109–112, Yang et al., personal communication]

that arises after renal cortical vasoconstriction through AT1

receptor activation [113, Yang et al., personal communi-

cation]. Ang IV was also found to elicit a natriuretic effect

[108], which would result from an increased renal sodium

excretion, possibly independent from its renal hemody-

namic effects. However, we failed to produce any

alteration in the urinary sodium concentration and the

urinary volume during intrarenal infusion of Ang IV [Yang

et al., personal communication].

As a pathophysiological agent, Ang IV participates in

different steps of atherogenesis including the initial plaque

formation and later stages such as plaque rupture and

thrombus formation [114]. In a model of balloon injury,

Ang IV binding was increased in media, neointima and re-

endothelialized cell layer, suggesting a role for Ang IV in

vascular re-modeling after damage [115]. Ang IV up-reg-

ulates several pro-inflammatory factors [116] and could

therefore participate in some steps of the inflammatory

response. In vascular smooth muscle cells, Ang IV

increases the production of monocyte chemoattractant

protein-1, the main chemokine involved in monocyte

recruitment and up-regulates the expression of the inter-

cellular adhesion molecule-1 that is involved in the

attachment and transmigration of circulating cells into the

damaged tissue. It also increases cytokines such as inter-

leukin 6 and tumour necrosis factor a and stimulates the

production of prothrombotic factor plasminogen activator

inhibitor-1 and could therefore also participate in the per-

petuation of the inflammatory response and the thrombus

formation [116, 117]. Finally, Ang IV was found to acti-

vate the nuclear transcription factor-jB (NF-jB), a pivotal

transcription factor involved in inflammatory diseases and

immune responses [116]. The mechanism by which Ang IV

produces these effects in vascular smooth muscle cells is

unclear but the involvement of AT1 receptors was excluded

since the same effects occurred in AT1 receptor knock-out

mice [116].

The Ang IV binding site(s)

Some of the effects of Ang IV are mediated by its inter-

action with AT1 and/or AT2 receptors. This has indeed

been shown for many of its peripheral effects [109–112,

Yang et al., personal communication] and for some central

effects [61, 118, 104, Yang et al., personal communica-

tion]. Indeed, Ang IV is a full agonist for the AT1 receptors

and the corresponding EC50 value is in the micromolar

range [119, 120]. Moreover, Wright et al. showed that Ang

IV also binds to AT2 receptors [62, 121].

The AT4 receptor as a novel angiotensin-binding site

Many Ang IV-induced effects are already observed at

nanomolar concentrations and, most importantly, are not

blocked by classical non-peptide AT1 and/or AT2 receptor

antagonists such as losartan, candesartan, PD123.177 and

PD123.319 [12, 14, 93–95, 99, 105, 108, 116, 122, 123].

Moreover, it was found that certain effects previously

attributed to Ang II are in fact induced after its conversion

to Ang IV. Indeed, using in vivo microdialysis, Mendel-

sohn et al. [124] and Brown et al. [125] first proposed AT1

receptor dependency of the increase of dopamine release

observed after the local administration of Ang II in the rat

striatum. Using a similar experimental set-up, we showed

that next to Ang II, local administration of Ang IV also

leads to a concentration-dependent increase of the
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extracellular striatal dopamine concentration [12]. Inter-

estingly, the effects of both Ang II and Ang IV could

neither be blocked by the AT1 antagonist candesartan nor

by the AT2 antagonist PD123, 319, which is in line with

Song et al. who were unable to detect AT1 or AT2 receptor

binding sites in the striatum [126]. Instead, the effect of

Ang II was inhibited by the AP-A inhibitor EC33 as well as

the AP-N inhibitor PC18, indicating that the effect of Ang

II is mediated via metabolism into Ang IV. In a similar

way, Braszko et al. suggested that cognitive effects

attributed to Ang II may result from its conversion to Ang

IV [65].

Thus the inability of AT1 and AT2 antagonists to

block several effects induced by Ang IV together with

the previous identification of binding sites with high

affinity for [125I]-Ang IV in different tissue types [106,

127–134] that had only a very low affinity for Ang II and

AT1 and AT2 receptor antagonists [127, 135–138] pro-

vided compelling evidence for the existence of a novel

angiotensin receptor subtype which was called the AT4

receptor [4, 139] of which the pharmacological profile

deviates significantly from that of AT1 and AT2 recep-

tors. Instead, it is activated by Ang IV and by synthetic

peptide analogues like Nlel-Ang IV [131, 140, 141] and

Norleucinal [140].

Structure-activity studies revealed that the first three

amino acid residues of Ang IV are critical for binding to

the AT4 receptor [142]. An N-terminal primary a-amine

and an L-conformation for the first amino acid a-carbon are

requisites for high-affinity binding of the hexapeptide to

the AT4 receptor [143]. An activated aromatic ring in the

side chain of amino acid residue 2 and a hydrophobic

amino acid in position 3 are important for high-affinity

binding [144]. Discrete modifications to the subdomains of

the valine residue in position 1, in particular a straight-

chain aliphatic moiety containing four carbons, resulted in

the 100-fold higher affinity analogue Nle1-Ang IV [143].

The putative AT4 receptor antagonist Divalinal-Ang IV is

generated by the replacement of the amide bonds between

Val1 and Tyr2 and between Val3 and His4 with [CH2–NH].

Divalinal-Ang IV binds to the AT4 receptor in bovine

adrenal membranes with a Ki of *445 nM, which is about

20-fold higher than Ang IV (Ki *16.8 nM) [141]. It

antagonizes some of the effects of Ang IV such as

enhancement of long-term potentiation in rat hippocampus

[76], facilitation of K+-evoked acetylcholine release [77]

and the activation of NF-jB in vascular smooth muscle

cells [116]. On the other hand, its antagonistic nature

remains controversial since it mimics some effects of Ang

IV such as the increase of the extracellular dopamine

concentration in the striatum of the rat [12] and the phos-

phorylation of Erk-1/2 and p38 kinase in human proximal

tubule epithelial cells [145].

LVV-haemorphin-7 as an AT4 ligand

The undetectable extracellular baseline Ang IV levels and

the mismatch between the components of the RAS and the

distribution of AT4 binding sites in the brain have previ-

ously led to the hypothesis that the native ligand for the

AT4 receptors may not be Ang IV. Exploring this possi-

bility, an extract of sheep cerebral cortex was screened for

Ang IV binding site affinity. Resulting from these experi-

ments, the decapeptide LVV-haemorphin-7 (LVV-H7)

with the amino acid sequence Leu-Val-Val-Tyr-Pro-Trp-

Thr-Gln-Arg-Phe was proposed as the native AT4 ligand

[146–148], exhibiting a high affinity (Ki *73 nM) [141].

LVV-H7 is indeed abundantly present in the brain, namely

approximately 2 nmol of peptide per gram of sheep brain

tissue [146, 149]. It is formed from b-globin that was

identified in embryonic mouse brains [150] by the enzymes

pepsin [151] and a high-molecular-weight aspartic pro-

teinase [152]. LVV-H7 mimics most of the biological

effects of Ang IV. We showed an LVV-H7-induced

increase of the extracellular dopamine levels in the rat

striatum as similar to Ang IV [12]. Moreover, it is also able

to stimulate spatial learning [66, 153]. Whereas the central

actions of LVV-H7 thus seem consistent with its affinity

for the Ang IV binding site, it does not mimic the

peripheral effects of Ang IV as it has no effect on renal

blood flow or blood pressure [110]. This is not surprising as

those effects of Ang IV are predominantly induced after

activation of AT1 receptors, whereas we observed a dis-

ability of LVV-H7 to bind at AT1 receptors [Demaegdt

et al., personal communication].

Insulin-regulated aminopeptidase corresponds to the

AT4 receptor

Initially the classification of the AT4 receptor was based on

its distinct pharmacological properties. Later, structural

studies also provided evidence that, unlike AT1 and AT2

receptors, it does not belong to the family of 7-trans-

membrane domain receptors. Instead, photoaffinity

labelling experiments of Ang IV binding sites from bovine

tissue with [125I]benzoylphenyl-Ala-Ang IV revealed that

AT4 receptors exist as complexes formed of three different

peptides with molecular weights of 165 kDa, 50–60 kDa

and 70–80 kDa, respectively [130, 154, 155]. Using

[125I]Nle1-BzPhe6-Gly7-Ang IV, the 165 kDa peptide was

labelled in membranes from SK-N-MC cells, a human

neuroblastoma cell line that expresses binding sites with a

high affinity for Ang IV [156]. In 2001, Albiston and

colleagues identified the 165 kDa peptide as insulin-regu-

lated aminopeptidase (IRAP), a membrane-associated

aminopeptidase homologous to AP-A, AP-N and other
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Zn2+-dependent aminopeptidases included in the large

family of gluzincin aminopeptidases [140, 157]. It is an

integral membrane protein of 916 amino acid residues,

consisting of an acidic intracellular region (109 AA) fol-

lowed by a hydrophobic transmembrane segment (22 AA

a-helix) and a 785 AA extracellular domain containing its

aminopeptidase activity [158–161]. Experiments with

IRAP transfected cells reveal that it indeed binds the

radiolabelled Ang IV analogue [125I]Nle1-Ang IV with

high affinity and that it can be selectively cross-linked with

[125I]Nle1-BzPhe6-Gly7-Ang IV. The correspondence

between the AT4 receptor and IRAP was also evidenced by

the similar regional distribution of IRAP mRNA (in situ

hybridization histochemistry), IRAP positive immunore-

activity (immunohistochemistry) and [125I]Nle1-Ang IV

binding (autoradiography) in mouse brains [140].

IRAP was formerly known as gp160 and vp165 and was

used to designate an enzyme in the rat. Cystein amino-

peptidase or oxytocinase (Otase) (EC 3.4.11.3) are

considered as the human variant of IRAP since there is an

87% homology of their amino acid sequences [157, 162–

165]. In turn, Otase was found to be identical to placental

leucine aminopeptidase (P-LAP) [166], a major human

placental protease. To ensure the clarity of this review, the

membrane protein IRAP/Otase/P-LAP will be referred to

as IRAP.

Distribution of insulin-regulated aminopeptidase

Northern blotting and immunoblotting indicate that IRAP

has a broad tissue distribution. Besides adipocytes and

skeletal muscle, IRAP was also found to be present in the

brain, heart, kidney, spleen, lung, testis, bladder, prostate,

adrenals and colon [121, 127, 134, 160, 167, 168]. IRAP is

also released from the apical membranes of the placental

syncytiotrophoblasts [169].

Within the brain, the distribution pattern of IRAP is

consistent amongst monkeys [171], rats [122, 134], mice

[170] and guinea pigs [135]. In general, IRAP is distributed

in most brain areas including cortical regions, hippocam-

pus, amygdala, thalamus, hypothalamus, caudate nucleus,

basal nucleus of Meynert, nucleus accumbens, lateral

olfactory tract, ventral tegmental area, substantia nigra pars

compacta, superior colliculus, periaqueductal gray, granu-

lar and molecular layers of the cerebellum, inferior olivary

nucleus, lateral vestibular nucleus, locus coeruleus, motor

trigeminal and facial nuclei [132, 134, 140, 168]. Within

the spinal cord, autoradiography has visualized Ang IV

binding sites on somatic and autonomic motor neurons in

the lateral horn of thoracic and lumbar segments, in all

dorsal root ganglia and in lamina II of the dorsal horn

[171].

Sub-cellular fractionation and immunohistochemistry of

different neuronal cell lines demonstrated that IRAP is

predominantly present intracellularly [172]. IRAP immu-

noreactivity appeared punctuate throughout the somata and

proximal dendrites of neurons [134].

Mechanism(s) of action of angiotensin IV through

interaction with insulin-regulated aminopeptidase

At the moment there is no conclusive evidence with respect

to the molecular mechanism of how interaction with IRAP

by Ang IV leads to the above-described effects. However,

three hypotheses have been put forward to explain the role

of IRAP in the physiological effects of Ang IV. They

include (i) inhibition of the catalytic activity of IRAP and

the consequent build-up of its substrates, (ii) Ang IV

mediated modulation of the glucose uptake via interference

with the translocation of IRAP containing GLUT4 vesicles

and (iii) activation of IRAP acting as a receptor and

causing intracellular signalling.

Ang IV and analogues are inhibitors of the

aminopeptidase activity of IRAP

IRAP is able to cleave the N-terminal amino acid from

several bioactive peptides in vitro. These peptides include

Ang III, but its degradation is relatively slow compared

with the other substrates such as oxytocin [157], vaso-

pressin, lys-bradykinin, met-enkephalin, dynorphin A 1–8,

neurokinin A, neuromedin B, somatostatin and cholecys-

tokinin-8 [141, 163, 168, 173]. Although N-terminal

cystein residues contained in vasopressin and oxytocin

peptides were initially thought to be the preferential targets

for the enzyme, several peptides that do not contain cystein

residues are also hydrolysed by IRAP in vitro (lys-brady-

kinin, met-enkephalin, dynorphin A, neurokinin A and

neuromedin B). However, other peptides that possess N-

terminal cystein residues and intramolecular disulfide

bonds, such as calcitonin and endothelin are not cleaved by

the enzyme [174].

Recently, the first in vivo evidence for the catalytic

action of IRAP emerged. Wallis et al. showed that in vivo

N-terminal degradation of intravenously injected vaso-

pressin and to a lesser extent oxytocin was indeed partially

dependent upon the presence of IRAP [175]. Vice versa,

the level of endogenous vasopressin in the blood was

increased in IRAP knock-out mice. These data strongly

suggest that a normal IRAP activity is important in regu-

lating the concentration of several neuropeptide substrates

such as vasopressin and oxytocin. This clearing function is

particularly essential in gestation during which IRAP
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activity increases, reaching a maximum at near term [169,

176, 177]. This is possibly induced by an excessive con-

centration of one or more substrates as a negative feedback

mechanism. An increase of IRAP activity at the cell sur-

face was indeed observed in renal tubule epithelial cells

with vasopressin via the V2 receptor [178] and in umbilical

vascular endothelial cells with oxytocin [179]. Since,

oxytocin is the most potent uterotonic peptide hormone,

IRAP most likely prevents premature onset of uterine

contraction by degrading oxytocin, thus playing a crucial

role in the maintenance of a normal pregnancy. A decrease

of IRAP activity is indeed observed in sera of women that

experienced spontaneous preterm delivery [176, 177].

The AT4 ligands Ang IV, LVV-H7 and Nle1-Ang IV are

relatively high affinity competitive inhibitors of the cata-

lytic activity of IRAP in vitro [141]. Therefore, it has been

proposed that ‘‘AT4 ligands’’-induced physiological effects

are related to the reduced processing of these substrates of

IRAP [140, 141]. Ang IV and analogues inhibit the enzyme

activity of IRAP with Ki values between 113 nM and

2.3 lM (Table 1). They bind to the catalytic site of IRAP,

especially to the Gly and Ala residues of the exopeptidase

motif GAMEN [180] but also to the characteristic gluzin-

cin aminopeptidase Zn2+ binding HEXXH(X18)E motif

[157, 160, 162, 180, 181]. An intriguing phenomenon

relates to the observation that Ang IV and other AT4

ligands display a significantly (up to about 20-fold) lower

affinity in the enzyme assays compared to competition

[125I]-Ang IV binding experiments (Table 1). Recently,

this discrepancy could be ascribed to the absence or pres-

ence of Zn2+ chelators. In the binding assay, divalent cation

chelators such as EDTA and phenantroline remove the

Zn2+ ion from IRAP. In contrast, these substances are not

required for the enzyme activity assay. Whereas high-

affinity binding of [125I]-Ang IV can only be detected with

the apo-enzyme, inhibition of enzyme activity occurs to the

native enzyme [182].

Next to Ang IV, Divalinal-Ang IV is also an inhibitor of

the aminopeptidase activity of IRAP in vitro [141]. This

might explain why this semi-synthetic peptide in certain

experimental set-ups mimics the effects of Ang IV [12,

145]. However, the discrepancy with other experiments in

which it antagonizes an Ang IV-induced effect [76, 77]

remains unsolved.

Previously, the selectivity of AT4 ligands has been

questioned since the catalytic activity of the structurally

related aminopeptidase AP-N has also been found to be

sensitive to LVV-H7 and Ang IV [8, 148]. In addition,

LVV-H7-sensitive high-affinity binding of [125I]Ang IV

was observed in membranes of rabbit collecting duct cells

[148]. As the kidney is a rich source of AP-N, this enzyme

may be considered to represent a target for [125I]Ang IV in

the binding studies. However, when comparing the enzy-

matic and binding properties of human recombinant IRAP

and AP-N, we discovered that both enzymes have a clearly

distinct pharmacological profile and that high affinity

[125I]Ang IV binding is only detectable to IRAP [183].

Until now, the hypothesis that Ang IV and analogues

mediate their effects via an inhibition of the catalytic

activity of IRAP could not be proven in an in vivo

experimental set-up. However, we showed that the anti-

convulsant effect and the increase of the extracellular

hippocampal dopamine and serotonin levels caused by

i.c.v. administered Ang IV could be completely abolished

by the concomitant i.c.v. infusion of the somatostatin

receptor 2 antagonist cyanamid 154806 [14]. These data

suggest that these effects of Ang IV are mediated via an

inhibition of IRAP, leading to an enhanced concentration

of its substrate somatostatin and eventually the anticon-

vulsant effect. Taken together, our study is the first to

obtain indirect in vivo evidence for the inhibition hypoth-

esis. Next to somatostatin, other IRAP substrates may also

play a role in the anticonvulsant effect of Ang IV.

Dynorphin is widely accepted to have significant anti-sei-

zure properties and is even seen as an endogenous

anticonvulsant [184]. There is also evidence that chole-

cystokinin-8 and met-enkephalin possess anticonvulsant

effects in a variety of animal seizure models [185–187].

Next to the anticonvulsant effect of Ang IV, its memory-

enhancing properties might also arise from an inhibition of

the aminopeptidase activity of IRAP. Indeed, amongst its

substrates, vasopressin is known for its convincing facili-

tation of memory consolidation and retrieval in the passive

avoidance paradigm [188–190]. Moreover, vasopressin

reversed memory deficits induced by scopolamine [191]

and transient forebrain ischemia [192]. Finally, a gene

replacement study revealed that the expression of the

vasopressin V1a receptor in the lateral septum is a necessity

for social recognition memory [193]. Oxytocin might also

be involved since it improves reference memory in mice

[194]. In social stimulus situations characterized by a mild

increase in emotional arousal and a negligible degree of

stress, oxytocin produces vasopressin-like facilitatory

effects on memory processing [195, 196]. It convincingly

Table 1 Comparison of the apparent affinities of AT4 ligands, as

assessed by radioligand displacement and fluorescent substrate

cleavage inhibition assays [141]

Ki (binding assay)

(nM)

Ki (enzyme assay)

(nM)

Nle1-Ang IV 1.5 340

Ang IV 16.8 113

LVV-H7 73 845

Divalinal-Ang IV 445 2300

Nle1-Ang IV: Norleucine1-Ang IV, Ang IV: angiotensin IV, LVV-H7:

LVV-haemorphin-7
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improved LTP and long-term (but not short-term) spatial

memory within the eight-arm radial maze task [194].

However, the role of oxytocin on memory storage and

retrieval seems not as clear-cut as for vasopressin since its

effect depends highly on the type of learning tasks pre-

sented, the dose of oxytocin injected and in the case of

central administration, the specific brain site injected [197–

202]. Indeed, in aversive learning situations or in learning

contexts based on emotionally arousing and stressful situ-

ations, oxytocin exerts amnesic actions [200, 202]. As an

example of this, it was shown that oxytocin, injected into

the nucleus basalis of Meynert, plays an inhibitory role in

spatial learning in the stressful Morris water maze task

[203]. Next to vasopressin and oxytocin, cholecystokinin-8

also facilitates memory consolidation in the inhibitory

avoidance paradigm [204] and the two-trial memory task

[205] and reverses performance deficits of spatial learning

in aged Fischer rats [206] and spatial recognition impair-

ment induced by stress [207]. It protected against amnesia

induced by electroconvulsive shock, scopolamine, NMDA

antagonists or protein kinase inhibitors in the passive

avoidance test [208–211]. Decreased cholecystokinin

within areas such as the prefrontal cortex, amygdala and

hippocampus are associated with learning and memory

deficits [212]. Cholecystokinin immunoreactivity is

decreased in human Alzheimer’s disease brain [213] and

cholecystokinin analogues prevent cholinergic degenera-

tion in the rat cerebral cortex in an animal model of

Alzheimer’s disease [214]. Moreover, an age-associated

decrease in cortical cholecystokinin concentration may

underlie the learning and memory deficits attributable to

normal aging in rodents and humans [215, 216].

Modulation of the translocation of IRAP and GLUT4

As its name already reveals, IRAP is morphologically and

possibly also functionally involved in the glucose homeo-

stasis. Keller and colleagues were the first to identify IRAP

in intracellular vesicles that carry the insulin-regulated

glucose transporter GLUT4 [160, 217]. Deprived from

insulin, 85–90% of the GLUT4 vesicles are found intra-

cellularly. This is in line with the recent study of Fernando

et al. who could only detect a small amount of IRAP at the

plasma membrane of mouse brain neurons [172]. In con-

trast, they showed that IRAP co-localizes with the vesicular

marker VAMP2 [172]. Moreover, electron microscopy

identified IRAP specific precipitate associated with secre-

tory vesicles [172].

GLUT4 vesicles migrate to the cell surface after expo-

sure with insulin, thereby enhancing the glucose uptake in

the cell [218–224]. Since, IRAP is situated on GLUT4

vesicles, insulin also regulates its trafficking and hence the

amount of IRAP that is present at the cell surface [158,

160, 161, 225–230]. This is well described in several cell

lines such as 3T3-L1 adipocytes [161, 225], cardiomyo-

cytes [226] and skeletal muscle cells [228]. The co-

translocation of IRAP and GLUT4 is likely to be related to

the presence of a similar dileucine trafficking motif in their

cytoplasmic domain and to the recognition of these motifs

by the same intracellular retention/sorting proteins [223,

231–233], including the Rab GTPase-activating protein

AS160, a substrate of the protein kinase Akt [234, 235],

p115, a vesicle tethering-factor implicated in endoplas-

matic reticulum to Golgi apparatus and post Golgi

apparatus movements [236], FHOS, a formine homologue

overexpressed in spleen [237] and acyl-coenzyme A

dehydrogenases such as tankyrase-1 and tankyrase-2 [238–

240]. The importance of those interactions is revealed in

tankyrase-1 knockdown 3T3-L1 adipoytes in which insu-

lin-stimulated IRAP and GLUT4 translocation as well as

glucose uptake were attenuated [240].

Ang IV is a unique ligand because of its ability to bind

to IRAP, thereby possibly interfering with its recycling and

by thus enhancing or prolonging the exposure of GLUT4 at

the cell surface. The consequent increased glucose uptake

could then be responsible for the Ang IV-induced effects

such as the enhancement of learning and memory. In this

context, trials with both rodents and humans have dem-

onstrated that glucose enhances cognitive performance

[241]. Interestingly, this is particularly the case in elderly

subjects and in patients with Alzheimer’s disease [241,

242]. Possibly, the effect of glucose on learning and

memory results from an interference with the neurotrans-

mission. In this respect, glucose has been shown to enhance

both acetylcholine synthesis and release [243]. Glucose

may also account for the higher metabolic rate that arises

during learning tasks [244]. Finally, glucose stimulates the

tuberous sclerosis complex-mammalian target of rapamy-

cin (TSC-mTOR) pathway [245], a major intracellular

cascade that controls the synthesis of several proteins that

are involved in cellular growth processes by activation and

inactivation of ribosomal S6 kinase and 4E binding protein

1 [246–252]. A disruption of the TSC-mTOR pathway

impairs memory formation.

The link between glucose and epilepsy is until now not

fully understood. Heterozygote mutation in the gene for

GLUT1, the sodium- and insulin-independent glucose

transporter, causes impaired glucose transport across the

blood–brain barrier, leading to hypometabolism and seizures

[253] that are mostly treated with a strict ketogenic diet. On

the other hand, inhibition of glycolysis by 2-deoxy-D-glucose

has powerful antiepileptic effects in rats and was recently

proposed as a scientific basis for the ketogenic diet [254].

This put forward inhibitors of glycolysis as a potentially

pharmacological approach for refractory epilepsy.
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IRAP as a receptor for Ang IV

As described above, local administration of Ang IV and

LVV-H7 elicited a clear-cut increase of the extracellular

dopamine concentration in the rat striatum [60]. Interest-

ingly, this effect could not be reproduced by administration

of the aminopeptidase inhibitor 2(S)-benzyl-3-[hydro-

xy(10R-aminoethyl)phospinyl]propanoyl-L-tyrosine (com-

pound 7B) at a concentration at which it is capable of

inhibiting the enzymatic activity of IRAP. Since the effect

on the dopamine release is AT1 and AT2 independent [12]

and since no other binding sites of Ang IV have been

discovered, a receptor function for IRAP and an agonist

role for Ang IV was assumed. This would imply that IRAP

is capable of activating certain intracellular signalling

pathways. This was indeed observed with Ang IV in sev-

eral cell lines since it caused an increased DNA synthesis

as measured by [3H]-thymidine incorporation in mouse

neuroblastoma NG-108-15 [115], human neuroblastoma

SK-N-MC and in Chinese hamster ovary cells CHO-K1

[Demaegdt et al., personal communication]. Ang IV was

also found to induce a rapid and transient rise of [Ca2+]i in

Madin Darby bovine kidney cells [255], in human proximal

tubule epithelial cells [145] and in opossum kidney cells

[256]. In porcine aortic endothelial cells, the increase in

[Ca2+]i was found to trigger the production of nitric oxide

and cGMP [11, 257, 258]. Nanomolar concentrations of

Ang IV increased the phosphorylation of Erk-1/2 and p38

kinase in human proximal tubule epithelial cells. Similarly,

Ang IV caused a concentration-dependent tyrosine phos-

phorylation of p125 focal adhesion kinase and p68 paxillin

in pig proximal tubule cells [259]. Moreover, it stimulated

c-Fos expression in the hippocampus and the piriform

cortex of the rat [122]. More recently, Ang IV was shown

to activate NF-jB in smooth muscle cells [116]. Finally,

Ang IV activated signalling molecules involved in lung

endothelial cell proliferation such as PI3 kinase, Erk-1/2,

PKBa, p70 ribosomal S6 kinase and the eukaryotic RNA

translation initiation factor 4EBP1 [260, 261].

As IRAP is likely to be a membrane-bound protein with

a single membrane spanning a-helix only, dimerization is

required for it to act as a receptor. At first glance, this

seems hardly compatible with the classification of IRAP as

an enzyme and with its three-dimensional structure com-

prising a single membrane spanning a-helix. However,

homodimer formation is one of the characteristic features

of the membrane-bound M1 metallopeptidase family [262]

to which IRAP belongs. As a dimer, this enzyme can

convey information across the cell membrane in the same

way as growth factors and cytokine receptors. In this line, it

has already been shown that the structurally related AP-N

(EC 3.4.11.2) and dipeptidylpeptidase IV (DP IV, EC

3.4.14.3) have a similar subcellular location and dimeric

structure and that they are able to mediate intracellular

signalling [263–267]. Monoclonal antibodies towards AP-

N trigger both IP3 receptor-linked Ca2+ release and phos-

phorylation of the mitogen-activated protein kinases (Erk1/

2, JNK and p38) in human monocytes [267, 268]. Signal-

ling has also been described for dipeptidylpeptidase IV

which is involved in T cell activation by potentiating the

proliferative response after stimulation of the TcR/CD3

complex [263, 269]. Despite the dipeptidylpeptidase IV

molecule has a short cytoplasmic domain of only six amino

acids, the binding of enzyme inhibitors and of certain

monoclonal antibodies to the extracellular domain of this

enzyme leads to the tyrosine phosphorylation of several

signalling proteins and activation of mitogen-activated

protein kinases in T lymphocytes (involved in its antitu-

mour effect) as well as human hepatocarcinoma cells [265,

270, 271]. It was also found to mediate early phosphory-

lation mechanisms in non-haematopoietic cells such as

hepatocarcinoma [265].

General conclusion

Since 1988, several studies examining different biological

effects have made it clear that Ang IV is not merely a

metabolite of Ang II but that it is an active member of the

RAS with central and peripheral effects. Some of its effects

such as the increase in blood pressure and cerebral and

renal cortical blood flow have turned out to be AT1

receptor mediated. On the other hand, Ang IV also exerts

effects that are not caused by AT1 or AT2 receptor acti-

vation. Amongst them is the enhancement of learning and

memory, the anticonvulsant and anti-epileptogenic effect,

the ability to increase the striatal dopamine release and the

protection against cerebral ischemia. These findings

unequivocally proved that Ang IV has an own pharmaco-

dynamic profile distinct from Ang II. The mechanism by

which these effects are caused is up till now not fully

understood although three hypotheses have been brought

forward, based on the high affinity of Ang IV for IRAP.

First, there is in vitro and indirect in vivo evidence that

Ang IV is capable of inhibiting the catalytic activity of

IRAP, thereby prolonging the half-life of its neuropeptide

substrates. Subsequently, these neuropeptides would pro-

duce the observed effects of Ang IV. On the other hand,

since IRAP is co-localized with the glucose transporter

GLUT4, it has been hypothesized that the binding of Ang

IV to IRAP would modulate the translocation of GLUT4

resulting in an increased glucose uptake in e.g. neurons.

The final and most intriguing hypothesis ascribes receptor

properties to IRAP, implying it to form a dimer. In that

case, Ang IV would behave as an agonist, eliciting intra-

cellular signalling. Moreover, it cannot be excluded that
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Ang IV mediates its effects via a mixture of all three

mechanisms, possibly depending upon tissue type. For

instance, the existence of IRAP as an enzyme in one tissue

and as a receptor in other tissues could explain why Di-

valinal-Ang IV in some experiments appears to behave as

an Ang IV antagonist while in others, it mimics the effects

of Ang IV. Taken together, it is clear that further work is

required to identify the exact mechanism of action of Ang

IV. Nevertheless, the different effects observed with Ang

IV points toward IRAP as a potentially interesting target

for future drugs that could be used for the treatment of e.g.

Alzheimer’s dementia or epilepsy.
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