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Abstract A number of epidemiological and animal

studies have suggested a cardioprotective role for estrogen.

This review will focus on the cardioprotective role of

estrogen in ischemia-reperfusion injury. Estrogen binding

to receptors can lead to altered gene expression and

estrogen has been shown to induce expression of a number

of genes that have been suggested to be important in car-

dioprotection. Estrogen is reported to increase expression

of the plasma membrane glucose transporter GLUT4 and to

increase carbohydrate metabolism. Estrogen has also been

reported to increase mitochondrial biogenesis and to alter

mitochondrial generation of reactive oxygen species.

Estrogen results in upregulation of cardiac eNOS and

nNOS, which have been shown previously to be important

mediators of cardioprotection. Nitric oxide has been shown

to result in S-nitrosylation and inhibition of the L-type

calcium channel, thereby reducing calcium loading during

ischemia. Nitric oxide has also been reported to inhibit

complex I and inhibition of complex I has been reported to

reduce activation of the mitochondrial permeability tran-

sition pore. Nitric oxide has been shown to result in acti-

vation of the mitochondrial KATP channel, which has been

shown to be involved in cardioprotection. Estrogen can

also activate rapid non-genomic pathways that activate

cardioprotective-signaling pathways such as the phospha-

tidylinositol-3-kinase (PI-3 kinase) pathway which has also

been shown to initiate protection. Taken together, estrogen

by genomic and non-genomic pathways can result in the

initiation of a number of signaling pathways that enhance

cardioprotection.
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Introduction

Epidemiological studies have suggested that pre-meno-

pausal females have a reduced incidence of cardiovascular

disease [1–3]. Much of the cardiovascular protection ob-

served in females have been attributed to beneficial effects

of estrogen on lipid profile and endothelial function [4].

The direct effects of estrogen on cardiac myocytes have not

been extensively studied. Furthermore, despite reduced

cardiovascular disease in pre-menopausal females, in a

large clinical trial, hormone replacement therapy did not

reduce cardiovascular disease [5]. The lack of estrogen

mediated protection in the Women’s Health Initiative

(WHI) contrast not only with prior epidemiological studies,

but also with data from animal studies. Potential reasons

for the lack of protection in the WHI study, such as po-

tential differences in the pharmacology between conju-

gated equine estrogen and 17-b-estradiol and the age of

women at the start of treatment have been discussed in

detail by others [6–8]. This review will focus on the data in

animal models showing a protective effect of estrogen.

Perhaps a better understanding of the mechanisms by

which estrogen mediates protection in animal studies will

provide insight into why hormone replacement therapy was

not protective in the WHI study.
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Estrogen receptor signaling

Most of the action of estrogen has been attributed to

estrogen binding to either estrogen receptor (ER)-a or ER-

b, two nuclear hormone receptors that act as ligand-acti-

vated transcription factors binding to DNA response ele-

ments. ER-a and ER-b are differentially expressed in

different tissues of the body. ER-a and ER-b activate some

common genes, but they also each activate a unique set of

genes. Furthermore, ER-a and ER-b can oppose each other

in a ying-yang relationship [9]. For example, ER-a induces

and ER-b represses expression of apolipoprotein E in the

hippocampus [10]. ER-a and ER-b, which can form homo

and heterodimers, bind to DNA resulting in the recruitment

of co-activators and co-repressors that modify estrogen

mediated transcription. The expression of co-activators and

co-repressors is tissue-specific and depends on cell context

which will modify the effects of estrogen in a tissue spe-

cific manner. For example mitogen activated protein kin-

ases (MAPK) can phosphorylate these co-regulators and

modify their activity. Details regarding the complexity of

ER interaction with co-regulators have been reviewed

elsewhere [6, 11]. In addition, ligand bound ER can bind to

DNA indirectly through complexes in association with SP1

(stimulator protein 1) or AP1 (activator protein 1) [12]. IGF

and EGF have also been reported to cross talk with ER

gene expression. IGF-1 can increase uterine weight in

ovariectomized mice by a pathway that requires ER-a,

since it does not occur in mice lacking ER-a [13]. Cross

talk between ER and other transcription factors such as

nuclear factor kappa B has also been reported [14].

In addition to estrogen action via binding to ER and

activation of gene expression, there are data suggesting that

estrogen can bind to an ER localized to the plasma mem-

brane and acutely activate PI3-kinase and other signaling

pathways [15]. There are also data suggesting that estrogen

can bind to and signal via a G protein coupled receptor

(GPR 30) [16]. Thus depending on the relative mix of

receptors that are present in a target tissue, the response of

the tissue to estrogen can differ. Additional diversity is

provided by polymorphisms in ER as well as post-trans-

lational modification of ER such as S-nitrosylation and N-

acetyl-glycosylation.

Estrogen and cardioprotection in animal models

A number of different models and approaches have been

used to examine the effect of estrogen on ischemia-reper-

fusion injury. One approach has been to examine whether

there are male–female differences in ischemia-reperfusion

injury. Another approach is to examine the effect of

addition of exogenous estrogen.

Male–female differences in I/R

Some studies have reported that females have reduced

ischemia-reperfusion injury [17, 18]. Other studies have

failed to observe a male–female difference in ischemia-

reperfusion injury [19–21]. However, females have re-

duced ischemia-reperfusion injury in a number of trans-

genic mouse models characterized by increased

contractility and in wild-type hearts with addition of iso-

proterenol or elevated extracellular calcium [21–26]. These

data raise the possibility that the discrepancies regarding

endogenous protection in females may be related to the

sympathetic tone or contractile state in the different mod-

els.

Treatment with estrogen

There also are many studies showing that acute treatment

of animals or perfused hearts with exogenous estrogen can

reduce ischemia-reperfusion injury [20, 27–30]. Hale et al.

reported that bolus IV administration of beta estradiol

(10 lg), but not administration of 1 mg of alpha estradiol

(which does not bind to ER) reduced infarct size in rabbits

[29]. Booth et al. [30] showed that treatment of rabbits

with 20 lg of estradiol prior to coronary occlusion reduced

infarct size (19%) compared to vehicle (48%). Similarly,

Das and Sarkar reported [28] that pretreatment of rabbits

with estradiol (10 lg/kg iv) prior to coronary artery liga-

tion significantly reduced infarct size (19% versus 40%).

Sbarouni et al. showed that 4 week treatment with estrogen

reduces infarct size in oophorectomized female rabbits on a

normal [31], and cholesterol-enriched diet [32]. However,

raloxifene treatment did not reduce infarct size [32]. It has

also been reported that the inhibitors of the mitochondrial

KATP channel block the protection afforded by estrogen

[33]. Taken together the data suggest that estrogen can be

protective.

Which ER is involved and are the effects via gene

expression or acute signaling?

As discussed above, estrogen mediates most of its effect

by binding to the estrogen receptor. A number of studies

have examined whether the protection afforded by estro-

gen is mediated by ER-a or ER-b. These studies have been

carried out using either genetically altered mice that lack

either ER-a or ER-b or by addition of an ER-a or ER-b
selective agonist. Unfortunately there is no consensus

regarding which estrogen receptor mediates protection

against ischemia-reperfusion injury. There are data sug-

gesting a role for both ER-a [18, 27, 34] and ER-b [25,

35–37] in mediating cardioprotection. Possible reasons for
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the discrepancy include different models of ischemia-rep-

erfusion and different end-points. Another variable, par-

ticularly in the studies using ER-a and ER-b agonists, is

the dose and the timing of the addition of the agonist. In

some studies, high levels of an ER-a agonist given for a

short time were protective [27]; this protection may be

mediated by acute-signaling pathways rather than gene

induction. Another study showed protection by addition of

an ER-b agonist after long-term (2 week) addition [36];

the protection observed in this study is likely mediated by

altered gene expression. Thus both ER-a and ER-b may

mediate protection, but by different mechanisms. Fur-

thermore, altered gene expression is likely to be important,

but acute effects of estrogen may also be involved and

these acute and chronic effects may be mediated by dif-

ferent estrogen receptors. Also, some of the effects of

estrogen are associated with high non-physiological levels

and the mechanisms involved may not be mediated by

binding to ER.

Estrogen mediated mechanisms of cardioprotection

Regardless of which ER mediates the protection, the

mechanisms by which estrogen elicits cardioprotection in

females are poorly understood. Given the lack of protection

observed by HRT in the WHI, it is important to better

understand the mechanisms by which estrogen might elicit

cardioprotection. In this review we will focus on the role of

estrogen and its well-established target nitric oxide syn-

thase in cardioprotection. There are considerable data

suggesting that alterations in nitric oxide synthase expres-

sion and signaling are important for protection in females

[24, 38–40]. Altered expression of other genes are also

likely to be involved and we will also review estrogen-

mediated changes in gene expression that might play a role

in cardioprotection.

Nitric oxide and cardioprotection in females

It has been well-established that estrogen results in in-

creased expression of several nitric oxide synthase (NOS)

isoforms [4, 39, 40]. The increase in basal NOS levels can

lead to an increase in baseline nitric oxide generation in

females [38, 40]. The increase in NOS in females has been

shown to result in improved endothelial function. An in-

crease in eNOS, mediated by ER-b, has been reported in

cardiac myocytes [39]. Chen et al. have reported an in-

crease in nNOS in cardiac myocytes [41] and Sun et al.

have reported an increase in eNOS in the heart associated

with caveolin 3 [40], the cardiomyocyte specific caveolin.

The increase in eNOS and nNOS in cardiomyocytes in

females is interesting in light of the well established role

for increased NOS in cardioprotection [42]. Nitric oxide is

suggested to mediate expression of cyclooxygenase 2

(COX-2), which has also been shown to be involved in

cardioprotection [42]. Furthermore an increase in nitric

oxide has been shown to be involved in cardioprotection

via activation of protein kinase G (PKG), which leads to

activation of mitochondrial pathways including activation

of an ATP regulated mitochondrial channel that allows

transport of K+ into the mitochondria (mito KATP channel)

[43]. Opening of the mitochondrial KATP channel has been

reported to induce cardioprotection. An increase in nitric

oxide has also been shown to result in increased S-nitro-

sylation of complex I of mitochondria [44]; it is suggested

that this might alter ROS generation during ischemia and/

or reperfusion. An increase in NOS and nitric oxide in

females has also been shown to cause increased S-nitro-

sylation of the L-type Ca2+ channel, which results in less

Ca2+ loading during ischemia [40]. There are also a number

of studies showing that nitric oxide can alter cell metabo-

lism [45–47]. Nitric oxide is also reported to increase

mitochondrial biogenesis and reduce mitochondrial gener-

ation of ROS [47]. An increase in NOS in females can thus

alter gene expression and activate acute nitric oxide sig-

naling pathways. Given the pleiotropic effects of nitric

oxide, it is likely that the increased NOS in female car-

diomyocytes has an important role in the male-female

differences in cardioprotection.

Estrogen regulated gene expression

There are a large number of genes which are regulated by

estrogen in a tissue specific manner. Otsuki et al. examined

gene changes in hearts from ovariectomized females trea-

ted for 3 weeks with estradiol compared to vehicle [48].

They reported an induction of seven genes and decreased

expression of nine genes [48]. The induced genes included

lipocalin-type prostaglandin D synthase and dipeptidase I.

The repressed genes included thymosin beta10 and several

types of procollagen. Gabel el al. performed gene profiling

to determine genes that are differentially expressed in

hearts from mice lacking ER-b (compared to WT and

aERKO mice) [25]. Loss of ER-b was found to lead to an

induction of solute carrier 4 (member 1) and decreased

expression of a number of metabolism genes including

SPOT14 homolog, lipoprotein lipase, ATP citrate lyase,

stearoyl CoA desaturase and fatty acid synthase [25]. These

data suggest that estrogen via ER-b results in induction of a

number of genes involved in metabolism. The effect of an

increase in these genes by ER-b is unclear but worthy of

study. It is interesting that mice lacking eNOS were also

reported to have an increase in solute carrier family 4

(member 1) and a decrease in stearoyl-CoA desaturase

[49]. A cardiac specific stearoyl CoA desaturase has been
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recently reported [50]. Stearoyl CoA desaturase catalyzes

the synthesis of monounsaturated fatty acids from saturated

fatty acids; monounsaturated fatty acids are important

components in membrane phospholipids. As reviewed

elsewhere [51] leptin has been reported to repress hepatic

stearoyl CoA desaturase and expression of stearoyl CoA

desaturase is increased in leptin deficiency. Mice with

global deletion of stearoyl CoA desaturase have decreased

body fat. It is therefore not clear that increased levels of

this enzyme per se would enhance cardioprotection in fe-

males, although the role of this enzyme in cardiac and

hepatic tissue could be different. ATP citrate lyase converts

citrate to oxaloacetate and acetyl CoA; acetyl CoA is then

converted to malonyl CoA which is an inhibitor of carni-

tine-palmitoyl transferase 1 (CPT-1) and thereby inhibits

fatty acid oxidation. Interestingly, many of the genes de-

creased in the bERKO females are regulated by sterol

receptor element binding protein (SREBP). SREBP-1a is

reported to bind directly to the ERE(1/2) motifs and en-

hance ER binding when both ER subtypes are present [52].

A recent study by Nikolic et al. [36] examined cardiac

genes induced by treatment of ovariectomized females with

an ER-b selective agonist, DPN (2,3-bis(4-hydroxyphe-

nyl)-propionitrile). DPN was reported to increase expres-

sion of over 100 genes, including COX2 and 6-

phosphofructo-2-kinase/fructose-2,6-bisphosphatase, an

enzyme important for regulating glycolysis [53].

Other studies have used a candidate gene approach and

have identified a number of genes regulated (directly or

indirectly) by estrogen, including, peroxisome proliferator-

activated receptor gamma-coactivator 1a (PGC-1a), conn-

exin 43 [54, 55], adenine nucleotide translocator [56], heat

shock proteins [57], mitochondrial complex IV [58],

GLUT4 [59], and MCIP1 an inhibitor of calcineurin [60].

Many of these proteins have been suggested to be impor-

tant in cardioprotection [61, 62].

Estrogen and metabolism

As discussed, ER-b increases the level of several key en-

zymes involved in substrate selection. In addition to altered

regulation of metabolism genes, estrogen could regulate

metabolism by alterations in signaling pathways such as

nitric oxide signaling which is also upregulated in females,

due to induction of NOS. Since estrogen results in altered

expression of a large number of metabolism genes, coupled

with the estrogen induction of NOS which can also regulate

metabolism, the relationship between estrogen and

metabolism and its potential role in cardioprotection will

be discussed.

Mitochondria and mitochondrial biogenesis

Mitochondria from females are reported to have increased

maximum rates of electron transport and increased oxygen

consumption [63]. Females also have increased mito-

chondrial biogenesis and reduced generation of mitochon-

drial ROS [64]. However, there are also reports that

estrogen can increase mitochondrial ROS generation

resulting in activation of redox sensitive transcription fac-

tors. Mitochondrial generation of ROS is complex and may

depend on the levels of estrogen as well as other signaling

pathways that are activated in the cell. Additional studies

will be needed to resolve the role of estrogen on mito-

chondria and ROS generation. Increased mitochondrial

generation of ROS has been a popular theory of aging. It

has been suggested that with aging there is increased ROS

mediated damage to electron transport chain components,

which causes increased ROS production leading to a

downward spiral. It has also been suggested that the in-

creased longevity in females is related to altered mito-

chondrial electron transport and reduced ROS [64, 65]. NO

is reported to be involved in increased mitochondrial bio-

genesis and increased longevity associated with caloric

restriction [47, 66]. Nisoli et al. also reported that an in-

crease in NO results in an increase in Sirt1 [66], a tran-

scription factor associated with an increase in longevity

and cardioprotection [67]. It is tempting to speculate that

perhaps these mitochondrial alterations in females are

mediated by nitric oxide.

Consistent with reduced ROS damage in females, Yan

et al. using a proteomics approach reported age-dependent

differences between male and female monkey hearts in

glycolytic and mitochondrial electron-transport pathways

[68]. They note that the changes in the old male monkeys

are similar to changes that occur in disease and suggest

that the lack of these changes in old female hearts is

consistent with delayed cardiovascular risk in females.

Also consistent with estrogen mediated changes in mito-

chondrial proteins, Stirone et al. [65] have shown that in

blood vessels, estrogen increases levels of the nuclear

coded cytochrome c, subunit IV of complex IV and

manganese SOD, and increases the level of subunit I of

complex IV that is coded in the mitochondria. Stirone

et al. [65] further showed that hydrogen peroxide levels

were decreased in estrogen treated animals. These chan-

ges were inhibited by the ER antagonist ICI-182, 780, but

not by inhibitors of nitric oxide or the PI3-kinase

pathway. Mitochondrial DNA contains estrogen receptor

response elements. ER has been detected in the mito-

chondria [69, 70]; however these data are controversial

[71].
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Diabetes and body weight

A number of studies have suggested a link between

estrogen and metabolism. Data from the Heart and Estro-

gen/Progestin Replacement Study (HERS) showed that

there was significantly less type II diabetes in women on

HRT [72]. Furthermore, the aERKO mice develop type II

diabetes and exhibit an increase in body fat [73]. Inter-

estingly ovariectomy of aERKO mice decreases body fat

and body weight [74]. A human male lacking ER-a was

also reported to have glucose intolerance [75], suggesting

that the phenotype observed in mice is also relevant to

humans. Whether the increase in type II diabetes associated

with loss of ER-a is due to lack of ER-a signaling or due to

unopposed ER-b signaling is unresolved. It is also inter-

esting that eNOS-KO mice were reported to have an in-

crease in body weight [47], suggesting a possible link

between estrogen, NOS and altered body weight and

metabolism. Thus there are considerable data suggesting

that estrogen can regulate whole body metabolism; how-

ever, there are very limited data examining the effect of

estrogen on myocardial metabolism.

Cardiac metabolism

We have recently found that substrate selection in heart is

different in males versus females [25]. Using 13C NMR,

labeled fatty acid, and carbohydrates, and measuring

incorporation of the label into the C4 of glutamate, Gabel

et al. [25] reported that in the C4 of glutamate, the ratio of

13C label from carbohydrate relative to fatty acid was

significantly higher in females compared to males. The

increase in carbohydrate relative to fatty acid utilization in

females is consistent with the estrogen induction of ATP

citrate lyase and 6-phosphofructo-2-kinase/fructose-2,6-

bisphosphatase. How might this alteration in substrate

selection result in cardioprotection? Numerous studies

have shown that stimulation of glucose oxidation is pro-

tective. It has been proposed that increasing glucose oxi-

dation during ischemia-reperfusion will result in pyruvate

oxidation by pyruvate dehydrogenase (PDH) rather than

pyruvate conversion to lactate; the latter can increase aci-

dosis and result in calcium overload during ischemia and

early reperfusion [76, 77]. Drugs that increase glucose

oxidation, such as activators of PDH, have been shown to

reduce ischemia-reperfusion injury [78, 79]. An increase in

glucose oxidation in females might therefore be cardio-

protective. In contrast to the observation by Gabel et al.

[25] that females have increased glucose oxidation relative

to fatty acid oxidation, Saeedi et al. [80] reported that

relative to males, females have reduced glucose oxidation;

however, in this study females also exhibited significantly

poorer recovery of function than males. The reason for this

discrepancy, particularly the enhanced ischemia-reperfu-

sion injury in females is unclear.

In contrast to the concordant increase in mitochondrial

biogenesis by nitric oxide and estrogen, an increase in ni-

tric oxide is suggested to decrease carbohydrate oxidation

and increase fatty acid oxidation, an effect opposite of that

suggested for estrogen by Gabel el al. It has been shown in

an in vivo model that acute inhibition of NOS causes an

increase in glucose oxidation in heart [45, 46] This would

suggest that NO results in a decrease in glucose oxidation.

Since females have an increase in NO, if the metabolic

effects observed in females are due solely to the effect of

NO, one would expect a decrease in glucose oxidation in

females. This suggests that perhaps estrogen alters

expression of genes involved in metabolism resulting in

increased glucose oxidation, but at the same time estrogen

increases NO which counters the gene changes. It is also

interesting that in a perfused heart model, inhibition of

NOS does not cause an increase in carbohydrate metabo-

lism [81]. Nitric oxide is also reported to alter glucose

metabolism in the heart, but the results are somewhat

conflicting. Lei et al. report that exogenous nitric oxide

reduces glucose transporter translocation in heart [82].

However, Li et al. report that AMP kinase stimulation of

GLUT4 translocation is at least partially mediated by an

increase in NO [83]. Additional experiments will be nec-

essary to unravel the complex role of estrogen and NO in

metabolism.

Summary and conclusions

Estrogen binding to receptors can lead to altered gene

expression, which can alter the response of the cell to

ischemia-reperfusion. Figure 1 illustrates mechanisms by

which estrogen might mediate cardioprotection. Nitric

oxide synthase isoforms have been shown in many tissues

to be increased in response to estrogen. Estrogen also re-

sults in altered expression of many additional genes. As

discussed elsewhere, estrogen mediated gene expression is

different in different tissues and can vary depending on co-

repressors, co-activators, and other signaling pathways

active in the tissue. We are just beginning to identify how

estrogen alters cardiac gene expression. How does this all

result in protection in females? Estrogen results in upreg-

ulation of cardiac eNOS and nNOS which have been shown

previously to be important mediators of cardioprotection.

An increase in NO has been shown in females to increase

S-nitrosylation of the L-type Ca channel and thereby re-

duce Ca loading during ischemia and reperfusion [40]. An

increase in NO has also been reported to enhance cardio-

protection by activation of the mitochondrial KATP channel

[84]. Estrogen also induces expression of a number of other
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genes that have been suggested to be important in cardio-

protection.
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Fig. 1 The figure illustrates mechanisms involved in estrogen-

mediated cardioprotection. Estrogen alters expression of a number

of cardioprotective genes such as nitric oxide synthase (NOS). An

increase in NOS activity results in stimulation of nitric oxide (NO)

production, which can activate the mitochondrial KATP channel [84].

NO can also lead to S-nitrosylation of the L-type calcium channel

[40] which would reduce calcium loading and thereby reduce opening

of the mitochondrial permeability transition pore (mPTP). NO also

results in S-nitrosylation of complex I of the mitochondria [44], which

inhibits opening of the mitochondrial permeability transition pore

(mPTP) [85]. NO also inhibits cytochrome c oxidase which would

reduce Dw and thus reduce calcium uptake into the mitochondria and

opening of the mPTP. Estrogen is also reported to reduce

mitochondrial generation of reactive oxygen species (ROS) [65]

which would also reduce mPTP. Furthermore estrogen increases

glucose oxidation, which, during ischemia-reperfusion, would reduce

lactate production and thus reduce cytosolic increases in sodium and

calcium. Finally estrogen can act via rapid non-genomic mechanisms

to increase signaling pathways, such as the PI3-kinase pathway, to

enhance protection in females
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