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Abstract
Cell-based therapeutics bring great hope in areas of unmet medical needs. Mesenchymal stem cells (MSCs) have been sug-
gested to facilitate neovascularization mainly by paracrine action. Endothelial progenitor cells (EPCs) can migrate to ischemic 
sites and participate in angiogenesis. The combination cell therapy that includes MSCs and EPCs has a favorable effect on 
ischemic limbs. However, the mechanism of combination cell therapy remains unclear. Herein, we investigate whether stromal 
cell-derived factor (SDF)-1 secreted by MSCs contributes to EPC migration to ischemic sites via CXCR4/Phosphoinositide 
3-Kinases (PI3K)/protein kinase B (termed as AKT) signaling pathway. First, by a “dual-administration” approach, intra-
muscular MSC injections were supplemented with intravenous Qdot® 525 labeled-EPC injections in the mouse model of 
hind limb ischemia. Then, the mechanism of MSC effect on EPC migration was detected by the transwell system, tube-like 
structure formation assays, western blot assays in vitro. Results showed that the combination delivery of MSCs and EPCs 
enhanced the incorporation of EPCs into the vasculature and increased the capillary density in mouse ischemic hind limb. 
The numbers of CXCR4-positive EPCs increased after incubation with MSC-conditioned medium (CM). MSCs contributed 
to EPC migration and tube-like structure formation, both of which were suppressed by AMD3100 and wortmannin. Phospho-
AKT induced by MSC-CM was attenuated when EPCs were pretreated with AMD3100 and wortmannin. In conclusion, we 
confirmed that MSCs contributes to EPC migration, which is mediated via CXCR4/PI3K/AKT signaling pathway.

Keywords  Mesenchymal stem cells · Endothelial progenitor cells · Stromal cell-derived factor-1 · CXCR4 · AKT · Mouse 
model of hind limb ischemia

Introduction

Organisms require blood vessels to carry oxygen and nutri-
ents for proper development and physiological functioning, 
abnormalities in this process may lead to disease develop-
ment or progression. Tissue ischemia, which is characterized 
as an insufficient supply of oxygen and nutrients, impairs 
bodily function and can even be life-threatening (Couffin-
hal et al. 1998). Naturally, neovascularization is required 
to maintain the integrity and function of ischemic tissues.

Currently, therapeutic neovascularization based on stem 
cells is under intense investigation. A combination cell 
therapy that includes EPCs and MSCs improves perfusion 
in patients with severe ischemic limbs (Lasala et al. 2010, 
2011, 2012). However, the underlying mechanisms are 
poorly understood. A number of researchers have focused on 
SDF-1 and its receptor CXCR4 as critical regulators of stem 
cell recruitment (Ghadge et al. 2011; Yu et al. 2015; Tsai 
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et al. 2014). Furthermore, cell migration is mediated through 
the activation of PI3K/AKT, which is a major downstream 
pathway of SDF-1/CXCR4 (Xiu et al. 2020). MSCs secrete 
a vast array of chemoattractants, such as SDF-1, vascular 
endothelial growth factor, platelet-derived growth factor, 
hepatocyte growth factor, insulin-like growth factor-1, fibro-
blast growth factor, and hypoxia inducible factor-1α (Vanden 
2014). Studies suggest that the paracrine property of MSCs 
plays a greater role in therapeutic angiogenesis than their 
transdifferentiation or cell infusion (Yong et al. 2018). In 
view of the reasons stated above, we speculate that AKT 
protein is phosphorylated by PI3K when SDF-1 secreted by 
MSCs engages the corresponding receptor CXCR4 on EPC 
surface, which induces EPC migration.

Given the above, we investigated whether a combination 
cell therapy that includes EPCs and MSCs improves perfu-
sion in the mouse model of hind limb ischemia. We per-
formed in vitro experiments to explore the potential molecu-
lar mechanisms involved in EPC migration. An excellent 
understanding of the mechanisms involved in the effect of 
cytokines secreted by MSCs on EPC migration will contrib-
ute to maximizing the local concentration of EPCs in the 
ischemic area and increase cell invasion. This information 
will provide insights into effective therapeutic approaches 
for cellular transplantation.

Materials and methods

Mice

C57BL/6 mice that respectively were 1–2 (15–25 g) and 6–7 
(25–30 g) months old were obtained from the Laboratory 
Animal Center of Xinjiang Medical University (Urumqi, 
China). Mice were maintained under a 12 h light/dark cycle 
in a constant temperature and humidity environment, food 
and water were available ad libitum. All experiments were 
approved by the Shihezi University Ethics Committee (Shi-
hezi, China) and performed in accordance with the Xinjiang 
Medical University Guide for Laboratory Animals.

Cell isolation and culture

MSCs and EPCs derived from murine bone marrow were 
simultaneously isolated as previously described (Wang et al. 
2018). MSCs were cultured in complete Dulbecco’s modi-
fied Eagle’s medium (DMEM) that consisted of low-glucose 
DMEM (Gibco; Thermo Fisher Scientific, Waltham, MA, 
USA), 10% fetal bovine serum (FBS; Hyclone, GE Health-
care Life Sciences, Logan, UT, USA), 100 U/ml penicil-
lin, and 100 U/ml streptomycin (both from Sigma-Aldrich; 
Merck KGaA, Darmstadt, Germany). EPCs were cultured 
in endothelial growth medium (EGM) that contained 

endothelial cell basal medium-2, EGM™-2 MV Single-
Quots™ (both from Lonza Group, Basel, Switzerland), 100 
U/ml penicillin, and 100 U/ml streptomycin. Both were 
maintained at 37 °C in a humidified 5% CO2 incubator. 
When the cells reached 80–90% confluence, the cultures 
were harvested using StemPro Accutase (Gibco; Thermo 
Fisher Scientific). Passage 3 MSCs and late EPCs cultured 
for more than 14 days were used for cell transplantation.

Unilateral hind limb ischemia (HLI) model and cell 
transplantation

The femoral arteries of 6-month-old (30–35 g) male mice 
were ligated to induce left hind limb ischemia as described 
previously (Niiyama et al. 2009). To track EPC incorpo-
ration at early time point after transplantation (on day 3), 
late EPCs were labeled using the Qtracker® 525 Cell Labe-
ling Kit (Life technology, Carlsbad, CA, USA) according 
to the manufacturer’s protocol. At 24 h after operation, the 
mice with ischemic limbs were randomly allocated into four 
groups as follows: phosphate-buffered saline (PBS) group; 
MSC (1 × 106) group; Qdot® 525 labeled-EPCs (1 × 106) 
group; and a combination of MSCs (1 × 106) and Qdot® 525 
labeled-EPCs (1 × 106) group. Cells or PBS were admin-
istrated as above. After 3 days, the adductor muscles of 
ischemic and healthy limbs were immediately harvested for 
frozen section samples.

We also investigated the combination effect of MSCs and 
EPCs on neovascularization at late time point after trans-
plantation (on day 14). At 24 h after operation, the mice 
were randomly allocated into four groups that received the 
following injections: PBS; MSCs (1 × 106); EPCs (1 × 106); 
or a combination of MSCs (1 × 106) and EPCs (1 × 106). 
MSCs suspended in 50 μl of PBS or PBS alone were infused 
to the gracilis muscles at four sites. Then, EPCs suspended 
in 20 μl of PBS or PBS alone were injected via the tail vein. 
After 14 days, the adductor muscles of ischemic and healthy 
limbs were harvested for paraffin section samples.

Morphologic observation and histological 
assessment of transplanted mice

It was well known that blood circulation disorder resulted 
in necrosis. To visually characterize morphological changes, 
the limb salvage, toe loss, and foot necrosis of ischemic hind 
limbs were recorded when mice were subjected to the femo-
ral artery ligation for 14 days.

For frozen section samples, tissues were embedded in 
OCT compound and snap frozen in liquid nitrogen. Fro-
zen sections with a thickness of 8 μm were mounted on 
silane-coated glass slides and air-dried for 1 h. The section 
samples were then washed for 5 min thrice with PBS and 
blocked with normal goat serum (Solarbio, Beijing, China) 
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for 20 min at room temperature (RT). Subsequently, the sec-
tions were stained with rabbit antibody against mouse CD31 
(1:100; Cell Signaling Technology, Danvers, MA, USA) 
overnight at 4 °C. After three washes in PBS for a total 
of 30 min, a secondary TRITC-conjugated goat anti-rabbit 
IgG antibody (1:50; ZSGB-BIO, Beijing, China) was added 
for 30 min at RT. Any excess liquid was removed from the 
specimen, and one drop of the mounting reagent (glyceri-
num: PBS = 9:1) was applied (Thermo Fisher Scientific) to 
the specimens. Photographs were taken using a Zeiss LSM 
510 META laser confocal microscope (Zeiss, Germany).

For paraffin section samples, tissues were fixed, dehy-
drated, and paraffin embedded. Paraffin sections with a 
thickness of 5 μm were prepared. Vascular density was 
determined by quantifying the CD31-positive vessels/mm2 
present in the peri-infarct region. The sections were incu-
bated with primary rabbit anti-mouse CD31 (1:200; Abcam) 
and then with secondary horseradish peroxidase (HRP)-con-
jugated goat anti-rabbit antibody (1:10,000; Abcam). After 
rinsing with PBS thrice, a DAB working solution was added 
for 5 min. The sections were counterstained with hematoxy-
lin for 10 s and mounted with neutral balsam. Photographs 
were taken using an inverted microscope (Olympus, Japan). 
CD31-positive staining was measured in two sections of four 
distinct views of each specimen by using the Image-Pro Plus 
6.0 software.

Preparation of MSC‑CM

MSCs were seeded in DMEM supplemented with 10% FBS 
until 90% confluence. After washing the cells with PBS, the 
medium was changed into EBM supplemented with 1% BSA 
and conditioned at 37 °C and 5% CO2. After 24 and 48 h, the 
medium was collected and centrifuged at 300 g for 10 min 
to remove cell debris and then filtered (0.22 μm pore size; 
Merck Millipore, Billerica, MA, USA). The control medium 
was comprised of EBM and 1% BSA in the absence of cell 
procedure.

Flow cytometry analysis of CXCR4 expression 
on EPCs induced by MSC‑CM

We investigated whether SDF-1 secreted by MSCs affected 
CXCR4 expression in EPCs. First, quantitative immunoas-
says were used to assess the ability of MSCs to produce 
SDF-1 according to the manufacturer’s protocol (Elabsci-
ence, Wuhan, China). The MSC-CM obtained above was 
detected. Data were acquired using a spectrophotometer, and 
measurement wavelength was 450 nm.

CXCR4 expression in EPCs was measured via flow 
cytometry. EPCs were cultured with EGM until 90% con-
fluence. After serum-free starvation overnight, EPCs were 
divided into four groups and cultured with EBM + 2% FBS, 

MSC-CM + 2% FBS for 24 h, MSC-CM + 2% FBS for 48 h, 
and MSC-CM + 2% FBS for 72 h. Then, EPCs were har-
vested and incubated with rabbit anti-mouse CXCR4 anti-
body (Abcam) for 30 min at RT, washed with PBS thrice, 
and incubated with TRITC-conjugated goat anti-rabbit IgG 
at 4 °C in the dark. Data were acquired using a flow cytom-
eter (Becton Dickinson, USA).

Migration assays

To investigate the effect of cytokines secreted by MSCs on 
EPC migration through CXCR4/PI3K/AKT signaling path-
way, we performed the assays using the transwell assembly 
(Corning) with 6.5 mm diameter inserts (8 μm pore size) as 
described previously (Li et al. 2018). Briefly, EPCs were 
pretreated with 50 ng/ml AMD3100 for 2 h (Tsai et al. 2014) 
and 0.1 μM wortmannin for 1 h (Teranishi et al. 2009). 
AMD3100 is a highly selective antagonist of SDF-1 that 
binds to its receptor CXCR4. By comparison, wortmannin 
is a PI3K inhibitor. Non-pretreated EPCs and pretreated 
EPCs (1 × 105) were harvested and suspended in 100 μl of 
EBM-2 supplemented with 2% FBS and then reseeded in 
the upper compartment. MSCs (5 × 104) were suspended 
in 600 μl EBM-2 supplemented with 2% FBS and replated 
in the lower compartment of the transwell chambers. After 
incubation at 37 °C for 18 h, the cells on the filters were 
stained with 0.1% crystal violet. Thereafter, the filters were 
washed with 33% acetic acid, and the OD570 nm value of 
the eluate was detected using a spectrophotometer (Thermo 
Fisher Scientific).

Tube‑like structure formation assays

The tubule formation assays were performed with a thick 
Matrigel (BD Biosciences) according to the manufacturer’s 
instruction. Briefly, a pre-cooled 48-well plate was coated 
with the Matrigel, which was melted into liquid at 4 °C over-
night. The plate was placed at 37 °C and 5% CO2 for 45 min 
to allow polymerization of the Matrigel. Meanwhile, EPCs 
were pretreated with 50 ng/ml AMD3100 for 2 h and 0.1 μM 
wortmannin for 1 h. The nonpretreated EPCs and pretreated 
EPCs (2 × 104) were suspended in 350 μl of MSC-CM or 
EBM supplemented with 2% FBS and then inoculated on 
top of the Matrigel. After incubating for 6–8 h at 37 °C and 
5% CO2, all wells were photographed (× 5 amplification) 
using an inverted microscope (Zeiss). Tubule formation was 
quantified with the Angiogenesis analyzer from Image-Pro 
Plus 6.0.

Western blotting

To investigate the migration signaling, we pre-incu-
bated EPCs with 50 ng/ml AMD3100 for 2 h or 0.1 μM 
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wortmannin for 1 h. The EPCs were then incubated for 
30 min or 48 h with MSC-CM + 5% FBS. Cells were har-
vested for immunoblotting of phospho-AKT, total AKT, 
Girdin, Paxillin and PAK1, the last three proteins of which 
correlated with cell migration. Extracts were prepared using 
a lysis buffer solution (RIPA:PMSF:protein phosphatase 
inhibitor = 100:1:1; Solarbio). Proteins were measured 
using the Pierce™ BCA protein assay kit (Pierce; Thermo 
Scientific) with BSA as a standard. Equal amounts of pro-
teins (20 μg) were separated in 10% sodium dodecyl sul-
fate–polyacrylamide gel electrophoresis and transferred to 
nitrocellulose membranes (Amersham Biosciences). The 
membranes were then blocked with 5% nonfat dried milk in 
Tween phosphate-buffered saline (T-PBS) and probed with 
rabbit polyclonal anti-phospho-AKT (1:2000; Cell Signaling 
Technology), total AKT (1:2000; Cell Signaling Technol-
ogy), Girdin (1:1000; Abcam), Paxillin (1:5000; Abcam) 
and PAK1 (1:1000; Abcam) antibody overnight at 4 °C. 
After incubation with primary antibody, blots were washed 
thrice in T-PBS and incubated for 1 h with anti-rabbit HRP-
conjugated IgG (1:10,000; Abcam). The protein bands were 
detected by Odyssey CLx system (Gene Company Limited, 
Hong Kong, China), and the intensities of the immunoblot 
bands were quantified using the Odyssey CLx Image Studio 
3.1. Immunoblots were re-probed with rabbit anti-mouse 
β-actin (Abcam) for normalization. After digitization, band 
intensities were evaluated with GraphPad Prism 5 (Graph-
Pad Software, CA, USA).

Statistical analysis

All values were expressed as mean ± standard deviations of 
the mean. Comparisons between two groups were analyzed 
using an independent t-test, one-way ANOVA was used to 
compare the differences among three groups and more. Sta-
tistical analysis was performed using GraphPad Prism 6.0, 
and p value < 0.05 was considered statistically significant.

Results

Contribution of MSCs to EPC incorporation 
into ischemic hind limb neovasculature

To study the effect of MSCs on recruitment of EPCs from 
the systemic circulation, we measured the incorporation of 
injected EPCs into the microvasculature in the ischemic hind 
limb. Transplanted EPCs labeled with Q-tracker were iden-
tified in tissue sections by green fluorescence, whereas the 
native mouse vasculature stained by anti-CD31 antibody was 
identified by red fluorescence in the same tissue sections. 
3 days after cell administration, the incorporation of EPCs 
into vasculature increased in the combined group compared 

with that in the EPC group alone (Fig. 1a), which was con-
firmed via statistical analysis (Fig. 1b).

Local delivery of MSCs increase vascular ratio 
per area

Angiogenesis promoted by MSCs results from the paracrine 
effect, hence, we evaluated its beneficial effect with the com-
bined cell therapy. At 14 days subjected to the femoral artery 
ligation, morphologic observation showed the mice receiv-
ing the combined injection of MSCs and EPCs underwent 
toenail salvage compared with PBS injection and the single 
cell injection (Fig. 2a). Statistically speaking, the numbers 
of limb salvage, toe loss and toe necrosis had not siginificant 
difference in four groups. However, toenail necrosis numbers 
in the combination groups of MSCs and EPCs markedly 
diminished compared with those in PBS groups (Table 1), 
suggesting that the combined cell therapy was conducive to 
angiogenesis.

It was known that the nuclei of muscle cells were on the 
edge, and they moved inward when muscle cells degener-
ated. At 14 days after cell delivery, hematoxylin and eosin 
(HE) staining showed that a small number of nuclei were 
located in the center of muscle cells in the combination 
groups of MSCs and EPCs in contrast to the control groups 
and the single cell treatment groups (Fig. 2b).

The vascular ratio per area was represented by CD31-
positive staining (Fig. 2b). It was significantly higher in the 
combined groups than in the control groups and the single 
cell treatment groups (Fig. 2c).

SDF‑1 production by MSCs and CXCR4 expression 
by EPCs

After 24 h, 48 h and 72 h, SDF-1 secreted by MSCs was 
0.62, 2.61 and 1.93 ng/ml, respectively (Fig. 3a). Therefore, 
MSC-CM was collected from MSCs cultured for 48 h.

CXCR4 was measured via flow cytometry when EPCs 
were incubated by MSC-CM with 5% FBS. Results showed 
that the rate of CXCR4-positive EPCs was 50.3%, 67.6%, 
and 51.9% after 24, 48, and 72 h, respectively. By contrast, 
the rate of CXCR4-positive EPCs was 27.7% when cultured 
in EBM with 5% FBS (Fig. 3b). Statistically, the protein 
level of CXCR4 in EPCs significantly increased after incu-
bation with MSC-CM (Fig. 3c).

Effect of SDF‑1 secreted by MSCs on EPC migration

EPC migration is a critical step in neovascularization. 
Transwell migration assays revealed that EPCs, which 
migrated to the lower surface of the inserts, significantly 
increased in the MSC-CM groups compared with the EBM 
groups. We examined the mechanism of SDF-1 secreted 
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by MSCs on EPC migration with AMD3100 and wortman-
nin. Notably, the pre-incubation of AMD3100 or wortman-
nin significantly lessen EPC migration (Fig. 3d, e). The 
results demonstrated that blockade of CXCR4 remarkably 
suppressed EPC migration induced by MSCs, which was 
similar to the blockade of PI3K.

Effect of SDF‑1 in MSC‑CM on tube‑like structure 
formation of EPCs

Cell migration was also included in the process of tube-
like structure formation. Compared with EBM, EPCs were 
prone to migrate, assemble, and form complete tube-like 
structures under MSC-CM induction. The pre-incubation 
of AMD3100 or wortmannin resulted in incomplete tubule 
formation than that seen in no pre-incubation group con-
taining MSC-CM (Fig. 3f). These structures were quanti-
fied with total mesh area and total segment length. The 
data indicated that the numbers of total mesh area and total 
segment length significantly decreased with AMD3100 
or wortmannin pre-incubation (Fig. 3g). The blockade of 
CXCR4 had been suggested to suppress the formation of 
a tube-like structure, which was similar to the blockade 
of PI3K.

Effect of SDF‑1 in MSC‑CM on AKT phosphorylation 
in EPCs

To investigate whether SDF-1 in MSC-CM affects AKT 
phosphorylation, we evaluated AKT Ser473 phosphoryla-
tion in EPCs stimulated with MSC-CM for 30 min. Western 
blot analysis revealed that MSC-CM incubation remarkably 
increased the level of phospho-AKT, as well as Girdin, Pax-
illin and PAK1 in EPCs, however, the increase was signifi-
cantly suppressed by AMD3100 or wortmannin (Fig. 4a, b).

Discussion

The therapeutic approach of combined MSCs and EPCs 
stems from the evidence that the process of angiogenesis 
may need more than one cytokine or cell type to optimize 
new vessel formation. EPCs might be fundamentally used to 
refer to populations of cells that are capable of differentiation 
into mature endothelial cells, with purportedly physiologi-
cal roles in neovascularization (Chong et al. 2016). Several 
clinical and preclinical studies have documented that admin-
istrated EPCs successfully augment neovascularization in 
multiple animal models of vascular injury (Sun et al. 2011; 
Xue et al. 2020). An important challenge for therapeutic 

Fig. 1   Representative photomicrographs of EPC incorporation into 
neovasculature sites in  vivo. a The top, middle, and bottom pan-
els showed Q-tracker-labeled EPCs (green, indicated by arrows) 
between the skeletal myocytes, CD31-positive vasculature (red), and 

EPC incorporation into vasculature (yellow, indicated by arrows), for 
3 days after administration (n = 3). Scale bar, 100 μm. b The statisti-
cal analysis of the incorporation of EPCs into vasculature in the EPC 
groups alone and the MSC + EPC groups. *p < 0.05
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neovascularization is the migration of a sufficient number 
of EPCs to the injury site to participate in neovasculariza-
tion. EPCs cultured in vitro are distinguished into early and 
late EPCs depending on their time of appearance in culture 

(Medina et al. 2017). In the present study, we used late EPCs 
to identify their integration into endothelium because early 
EPCs generate high levels of angiogenic cytokines, and late 
EPCs have the potential to form blood vessels (Barsotti et al. 
2009).

MSCs are non-hemopoietic stromal cells, which are 
characterized by the multilineage differentiation potential, 
paracrine action, and low immunogenicity. MSCs make an 
important contribution to postnatal vasculogenesis, espe-
cially during tissue ischemia (Han et al. 2019). Mounting 
evidence shows that paracrine action probably underlies the 
vascular effects of MSCs (Konoplyannikov et al. 2018; Luo 
et al. 2019; Gharaei et al. 2018). Moreover, the conditioned 
medium of MSC cultures induces the migration of fibro-
blasts, keratinocytes, and endothelial cells and promotes the 
formation of capillary-like structures by HUVECs (Pereira 
et al. 2016).

In combined cell therapy, we critically consider the 
delivery methods of cells aside from the selection of cell 

Fig. 2   Morphologic observation and histological analysis of mice 
ischemic hind limb. a Toes appearance were observed on 14  days 
after femoral artery ligation. b Morphological characteristics of skel-
etal muscle cells and capillary counts were identified by HE staining 

in top panels and CD31 immunohistochemistry in bottom panels, 
respectively (n = 3). Scale bar, 100  μm. c Quantification analysis of 
vascular ratio per area. *p < 0.05

Table 1   the quantitative results for limb salvage, toe loss, and foot 
necrosis in different groups

n the number of mice, 5nthe number of mice toe/toenail
**p < 0.01

PBS (n = 4) MSCs 
(n = 7)

EPCs 
(n = 4)

MSCs + EPCs 
(n = 7)

Limb 
salvage

3/n 7/n 3/n 5/n

Toe loss 1/5n 0/5n 0/5n 0/5n
Toe necro-

sis
4/5n 3/5n 1/5n 2/5n

Toenail 
necrosis

9/5n 12/5n 6/5n 6/5n**
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types. To maximize the local concentration of EPCs in 
the ischemic area and increase cell invasion, we chose to 
implement a “dual-administration” approach, which was 
developed by Franz and Bartsch to treat patients with 

arterial occlusive disease (Franz et al. 2009, 2015; Bar-
tsch et al. 2007). In this approach of the present study, 
intramuscular MSC injections were supplemented with 
intravenous EPC injections in contrast to previous works 

Fig. 3   The identification of EPC migration, which was contributed 
by MSC-secreted SDF-1 via CXCR4/PI3K/AKT signaling pathway. 
a Levels of SDF-1 secreted by MSCs at 24 h, 48 h and 72 h. b Rep-
resentative flow cytometric analysis of CXCR4 expression (blank 
space) from EPCs; red space represents isotype controls. c Quan-
tification analysis of CXCR4-positive EPCs induced by MSC-CM. 
Each experiment was repeated thrice. d EPCs that migrated to the 

subsurface of the inserts (n = 3). Scale bar, 200 μm. e Quantification 
analysis of migrating EPCs. Three independent trials were performed. 
f Tube-like structures formed by EPCs (n = 3). Scale bar, 200  μm. 
g Quantification of total mesh area and total segment length in the 
tube-like structure. The experiment was repeated thrice. *p < 0.05, 
**p < 0.01, ***p < 0.001
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in which the subjects received a mixture of MSCs and 
EPCs (Rossi et al. 2017; Traktuev et al. 2009). The theo-
retical foundation of the design is that cytokines are the 
crucial stimulating factor for stem cell homing, and they 
build an attractive gradient, with forming migratory route 
and guiding EPC migration to the region to be vascular-
ized (Schmidt et al. 2007). To generate as many chemoat-
tractants as possible, we envisioned that a vast array of 
chemoattractants secreted by intramuscular-administrated 
MSCs were locally deposited in ischemic muscle, attract-
ing the homing of intravenous-administrated EPCs. Our 
results showed that Qdot® 525 labeled-EPCs in vascula-
ture increased, and vessel numbers also increased when 
the combination of MSCs and EPCs was infused into the 
hind limb of ischemic mice. Thus, we conclude that che-
moattractants secreted by MSCs promote EPC migration 
to the neovascularization sites.

We explored the molecular mechanism involved in EPC 
migration via in vitro experiments. Previous studies have 
suggested that SDF-1 induces EPC migration after binding 
to CXCR4, which is highly expressed on EPCs (Walter et al. 
2005; Chiang et al. 2015). In the present work, SDF-1 con-
centration increased in MSC culture supernatants of different 
time spans. In addition, the level of CXCR4 protein in EPCs 
increased after incubation in MSC-CM. The data indicated 

that SDF-1 produced by MSCs promoted CXCR4 expression 
in EPCs.

AKT, a multifunctional serine/threonine protein kinase, is 
the downstream of class I PI3K and various receptors. PI3K-
AKT signaling pathway also has a crucial effect on multiple 
processes, including cell proliferation, cell survival, cell migra-
tion, activation of integrins, MMP, and angiogenesis. Using 
both chemical inhibitors to detect the role of PI3K/AKT sign-
aling, we found that CXCR4 and PI3K participated in EPC 
migration. Furthermore, AKT phosphorylation resulted in 
cytoskeleton changes in many cells (Chen et al. 2013). In the 
present study, AKT phosphorylation induced by MSC-CM 
was inhibited by both AMD3100 and wortmannin, indicating 
that phospho-AKT is the downstream of SDF-1/CXCR4/PI3K. 
Consistent with our results, Yu et al. revealed that SDF-1/
CXCR4 mediated the migration of BMSCs toward heart MI 
through the activation of PI3K/AKT (Xiu et al. 2020). Dimova 
et al. reported that SDF-1 treatment of cardiac stem/progenitor 
cells increased AKT phosphorylation (Dimova et al. 2014).

Fig. 4   Role of the AKT pathway in MSC-secreted SDF-1 induction 
of EPC migration. a AKT and phosphor-AKT levels in EPCs cultured 
for 30 min (top) and the levels of Girdin, Paxillin, PAK1 and β-actin 
in EPCs cultured for 48  h (below) in the indicated groups. b Bar 
graphs show the ratio of the densitometry measurement of phosphor-

AKT to that of AKT and the ratio of the densitometry measurement 
of Girdin, Paxillin, PAK1 to that of β-actin. Data were obtained from 
three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, 
NSno significance
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Conclusion

Taken together, we argue that in combined cell therapy, 
MSCs facilitate the migration of circulating EPCs to neo-
vascularization sites via the SDF-1/CXCR4/PI3K/AKT 
signaling pathway. Herein, we provide new insights into the 
mechanisms underlying the effects of combined cell ther-
apy. These novel findings suggest that the modulation of the 
homing mechanism may be used as a therapeutic strategy to 
improve the efficacy of stem cell therapy.
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