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Abstract
Myocardial infarction (MI) is a great threat to patients all over the word. MicroRNAs (miRNAs) are a group of non-coding 
RNAs and can regulate initiation and progression of MI. The current research aimed to investigate the role of miR-467a-5p 
in MI. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was conducted to detective relative expres-
sion of miR-467a-5p in cardiac tissues and mouse cardiomyocytes (MCMs). Hematoxylin and eosin staining was used to 
reveal the histology of the myocardium. Echocardiography was utilized to reveal cardiac function of mice. Flow cytometer 
analysis was used to reveal cell apoptosis. Luciferase reporter assay was applied for determining the binding capacity between 
molecules. We discovered that the level of miR-467a-5p was up-regulated in MI mice and in MCMs induced by H2O2 or 
hypoxia. Functionally, an elevation of left ventricular end-diastolic diameter and left ventricular end-systolic diameter, as 
well as a decrease of left ventricular ejection fraction and left ventricular fractional shortening were observed in MI mice. 
In addition, deficiency of miR-467a-5p improved MI in mice by increasing the contents of lactate dehydrogenase, creatine 
kinase and malondialdehyde and reducing the activity of superoxide dismutase in serum. Moreover, silencing of miR-467a-5p 
reversed hypoxia-induced apoptosis of MCMs. Mechanistically, zinc finger E-box binding homeobox 1 (ZEB1) was confirmed 
as the target of miR-467a-5p. Moreover, miR-467a-5p negatively regulated ZEB1 level in MI mice and MCMs. Finally, the 
promotive effect of miR-467a-5p inhibition on cell apoptosis was reversed by knockdown of ZEB1. All the experimental 
results demonstrate that miR-467a-5p aggravates MI by modulating ZEB1 expression in mice, which may provide a novel 
therapeutic strategy for MI.
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Introduction

Myocardial infarction (MI) refers to myocardial necrosis 
mainly caused by persistent ischemia and hypoxia in the 
coronary arteries (Lim et al. 2018; Venetsanos et al. 2017). 
Clinically, the MI patients are often diagnosed with severe 
and continuous post-sternal pain (Rozado et  al. 2017). 
Unfortunately, MI might be complicated by arrhythmia, 
shock or heart failure, which has caused tremendous mortali-
ties worldwide (Liang et al. 2016; Wincewicz and Sulkowski 
2017). In China, approximately 24 million individuals will 
experience MI each year by 2030 based on the prediction of 

World Health Organization (Lee et al. 2016). Known fac-
tors like smoking, drinking, metabolic syndrome and hyper-
tension are closely associated with the progression of MI 
(Mathiew-Quiros et al. 2017; Pedrinelli et al. 2012; Yusuf 
et al. 2004). However, the molecular regulatory mechanisms 
in MI are required to be further investigated.

MicroRNA (miRNA) is a member of non-coding RNAs 
(ncRNAs) with less than 24 nucleotides in length (Dong 
et al. 2013). Numerous evidence has showed that the dys-
regulated miRNA may contribute to the initiation or pro-
gression of diseases (Ameres and Zamore 2013). Particu-
larly, miRNAs were supposed to be implicated in several 
biological processes. For instance, miR-377 inhibitor was 
reported to inhibit renal ischemia–reperfusion injury by 
suppressing inflammation and oxidative stress through a 
VEGF-dependent mechanism (Liu et al. 2019). MiR-150 
inhibits cell apoptosis and autophagy in LPS-induced acute 
lung injury by modulating AKT3 level (Li et al. 2019). Most 
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recently, miR-467a-5p has been identified to be upregulated 
in MI mice model (Zhang et al. 2019a, b). However, the spe-
cific function of miR-467a-5p in MI remains to be explored.

Mechanistically, miRNAs are able to bind with comple-
mentary sequences of downstream target genes to inhibit 
their expression in the posttranscriptional level (Sotillo and 
Thomas-Tikhonenko 2011). MiR-26a targets ataxia-telangi-
ectasia mutated to attenuate cardiac apoptosis in MI (Chiang 
et al. 2020). MiR-132 inhibits myocardial remodeling in MI 
through inhibition on IL-1β (Zhao et al. 2020). MiR-494 
induces proliferation and migration of vascular endothelial 
cells in rats following Myocardial Infarction through tar-
geting LRG1 Expression (Su et al. 2019). The miR-let-7a/
TGFBR3 pathway regulates apoptosis of cardiomyocyte 
after infarction (Chen et al. 2019).

The current project aimed to explore the specific func-
tion and molecular mechanism of miR-467a-5p in MI, which 
may provide a new insight into the potential therapeutic tar-
get for MI.

Materials and methods

Myocardial infarction mouse model

C57BL/6 male mice (10 weeks old, 20–25 g) were obtained 
from the SLAC Laboratory Animal Co., Ltd. (Shanghai, 
China) and were randomly divided into 5 groups (n = 8 in 
each group). The MI mouse model was established by coro-
nary artery ligation as described before (Zhang et al. 2019b). 
For heart rate analysis, once body temperature reached 37 
°C, heart rate was allowed to stabilize for 10 min to deter-
mine the baseline rate using subcutaneous electrodes in lead 
II configuration. Animals underwent 30 min ischemia and 60 
min reperfusions, and then injected with adeno-associated 
virus (AAV). After 4 weeks, mice were sacrificed via cervi-
cal dislocation, and the hearts were collected for follow-up 
analysis. The animal experimental protocols were approved 
by The Third Xiangya Hospital of Central South University 
(Hunan, China).

Cell culture and cell treatments

Mouse cardiomyocytes (MCMs) were acquired from Cell 
Bank of Chinese Academy of Science, (Shanghai, China) 
and grown in Dulbecco’s Modified Eagle’s Medium 
(DMEM; Hyclone, Logan, UT, USA). Then, 10% (v/v) 
fetal bovine serum (FBS; Invitrogen, Carlsbad, CA, USA) 
and 1% penicillin/streptomycin (Invitrogen) were added 
into DMEM. For hypoxia treatments, cells were kept in an 
anaerobic system (Thermo Forma, Marietta, OH, USA) for 

12, 24 or 48 h at 37 °C with 1% O2, 5% CO2 and 94% N2. 
For control group, MCMs were cultivated and operated in a 
humidified incubator at 37 °C with 95% air and 5% CO2 with 
the same time. Different concentration gradients of H2O2 
(50, 100, 200 or 400 μM) were added into DMEM with the 
same dose of PBS as control.

Adeno‑associated virus (AAV)

AAV (serotype 9) containing anti-miR-467a-5p and the 
empty AAV (AAV-Mock), purchased from Hanheng Com-
pany (Hanheng Biotechnology, Shanghai, China), were 
injected into (1012 v.g/mL) mice via tail vein to knockdown 
the level of miR-467a-5p in vivo. AAV injection was con-
ducted immediately after reperfusion. Twenty-eight days 
later, mice heart was collected for following assays.

Reverse‑transcription quantitative polymerase 
chain reaction (RT‑qPCR)

RNA was initially extracted from cardiac tissues of mice or 
MCMs via TRIzol (Takara, Dalian, China). Reverse tran-
scription was conducted with RNA using a Transcriptor First 
Strand cDNA Synthesis Kit (Roche, Mannheim, Germany) 
and RT-qPCR was conducted for assessing gene expression 
using the TanMan® microRNA Assay Kit (Life Technolo-
gies, Carlsbad, CA. USA) and iQ SYBR Green Supermix 
(Bio-Rad Laboratories, Hercules, CA, USA). Results were 
calculated using 2−ΔΔCt approach with GAPDH or U6 as an 
internal control. Primer sequences used in this assay were 
listed as bellow.

mmu-miR-29b-3p: forward 5′-TAG CAC CAT TTG AAA 
TC-3′ and reverse 5′-GTG CAG GGT CCG AGG T-3′;

mmu-miR-3473a: forward 5′-TAG CAC CAT TTG AAA 
TC-3′ and reverse 5′-GTG CAG GGT CCG AGG T-3′;

mmu-miR-467a-5p: forward 5′-TAA GTG CCU GCA 
TGT A-3′ and reverse 5′-GTG CAG GGT CCG AGG T-3′;

mmu-miR-30c-5p: forward 5′-TGT AAA CAT CCT ACA 
CT-3′ and reverse 5′-GTG CAG GGT CCG AGG T-3′;

mmu-miR-467a-3p: forward 5′-CAT ATA CAT ACA 
CAC A-3′ and reverse 5′-GTG CAG GGT CCG AGG T-3′;

mmu-miR-34c-3p: forward 5′-AAT CAC TAA CCA CAC 
A-3′ and reverse 5′-GTG CAG GGT CCG AGG T-3′;

zinc finger E-box binding homeobox 1 (ZEB1): forward 
5′-CTG CTG GGA GGA TGA CAC AG-3′ and reverse 
5′-GTC CTC TTC AGG TGC CTC AG-3′;

GAPDH: forward 5′-CTC AGA CAC CAT GGG GAA 
GGT GA-3′ and reverse 5′-ATG ATC TTG AGG CTG TTG 
TCA TA-3′;

U6: forward 5′-CTC GCT TCG GCA GCA CA-3′ and 
reverse 3′-AAC GCT TCA CGA ATT TGC GT-5′.
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Echocardiographic study

Mice echocardiographic study were examined 28 days (4 
weeks) after delivery of AAVs. Left ventricular end-diastolic 
diameter (LVEDD) as well as left ventricular end-systolic 
diameter (LVESD) were calculated from the parasternal 
long-axis view. Left ventricular ejection fraction (LVEF) and 
left ventricular fractional shortening (LVFS) were studied to 
evaluate left ventricular systolic function.

Histopathology assay

The heart tissues were rapidly resected from anesthetized 
mice 28 days after delivery of AAV vectors, and then main-
tained in a 4% paraformaldehyde solution. Subsequently, tis-
sues were dehydrated, cleaned, and embedded with paraffin. 
After that, the paraffin blocks were cut into 4 μm sections 
with a microtome (Leica M650; Leica Microsystems GmbH, 
Wetzlar, Germany). Hematoxylin and eosin (H&E, Solarbio) 
was used for histopathology analysis. A light microscopy 
(Olympus, Tokyo, Japan) was utilized to observe the histol-
ogy of the myocardium.

Triphenyl tetrazolium chloride (TTC) staining

Triphenyl tetrazolium chloride (TTC) staining was utilized 
to measure the size of the myocardial infarction as described 
before (Luo et al. 2016). Twenty-eight days after injection 
of AAV, the mice cardiac tissues were harvested. The slices 
of mice heart were cultured in 1% TTC solution after being 
washed with ice-cold PBS (Invitrogen). The pale white areas 
(cannot be stained) were infarcted and red areas (stained) 
were not infracted. ImageJ v1.8.0 (National Institutes of 
Health, Bethesda, USA) was used to calculate the infarct 
sizes.

The measurement of area at risk (AAR)

To measure area at risk in mice’s myocardium, the heart 
was isolated and stained with Evan’s blue. In detail, after 
cannulation and washing, the aorta was infused with Evan’s 
blue (2 mL, 0.5%) with ligation of left anterior descend-
ing coronary artery at the same site again. The areas cannot 
be stained were area at risk (ischemic area), and the areas-
stained blue were ischemic areas.

Myocardial enzyme determination

Twenty-eight days after injection of AAV, the bloods from 
the inner canthus vein were collected and kept at 4 °C for 

4 h. The serum of mice was separated by centrifugation 
and maintained at − 80 °C. The commercial kits (Sangon-
Biotech, Shanghai, China; Solarbio, Beijing, China) were 
applied to measure the contents of malondialdehyde (MDA), 
lactate dehydrogenase (LDH), creatine kinase (CK) and the 
activity of superoxide dismutase (SOD) in serum.

Cell transfection

Specific siRNAs against ZEB1 (si-ZEB1) with si-NC as 
negative control, miR-467a-5p inhibitor (anti-miR-467a-5p) 
with NC inhibitor as negative control, miR-467a-5p mimics 
(miR-467a-5p) with NC mimics as negative control were 
synthesized by GenePharma (Shanghai, China). Hypoxia or 
H2O2-treated MCM cardiomyocytes were transfected with 
these plasmids via Lipofectamine 2000 (Invitrogen). The 
oligo sequences were as follows: si-ZEB1: 5′-AAC​UGA​
ACC​UGU​GGA​UUA​U-3’; si-NC: 5′-AAC​AGG​CAC​ACG​
UCC​CAG​CGU-3′; miR-467a-5p inhibitor: 5′-UAC​AUG​
CAG​GCA​CUUA-3′; miR-467a-5p mimics: 5′-UAA​GUG​
CCU​GCA​UGU​AUA​UGCG-3′.

Western blot

Total protein was extracted, followed by separation using 
SDS-PAGE (Beyotime, Jiangsu, China), and sequentially 
transferred onto PVDF membranes (Millipore, Billerica, 
MA, USA). Membranes were then blocked for 2 h utiliz-
ing 5% skimmed milk. Primary antibodies against Bax 
(ab32503, 1:1000), Bcl-2 (ab182858, 1:1000), Cleaved cas-
pase-3 (ab49822, 1:1000), ZEB1 (ab87280, 1:1000), cTnI 
(ab209809, 1/2500), cTnT (ab209813, 1/5000), and GAPDH 
(ab245356, 1:1000) from Abcam (Cambridge, UK) were 
added to membranes. Membranes were subsequently incu-
bated using secondary antibody (1:5000). Finally, proteins 
were visualized via ECL (Beyotime).

Luciferase reporter assay

The wild type or mutant interacting sequences of miR-
467a-5p on 3’-UTR of ZEB1 were sub-cloned into the pmir-
GLO dual-luciferase vector (Promega, Madison, WI, USA) 
to generate wild type or mutant pmirGLO-ZEB1-3’UTR 
vectors, which were co-transfected into MCMs with miR-
467a-5p inhibitor (anti-miR-467a-5p), miR-467a-5p mim-
ics (miR-467a-5p). Luciferase activities were evaluated via 
Dual-Luciferase reporter assay system (Promega) upon 48 
h of co-transfection.



770	 Journal of Molecular Histology (2021) 52:767–780

1 3



771Journal of Molecular Histology (2021) 52:767–780	

1 3

Flow cytometer

An FITC-Annexin V/PI kit (BD Biosciences, Franklin 
Lakes, NJ, USA) was applied in this assay. Cardiomyocytes 
were washed thrice using PBS (Sigma-Aldrich), followed by 
being dyed for 30 min using 5 μL of FITC-Annexin V, and 
added with 1 μL of PI working solution for 5 min without 
light. Apoptotic cells were assessed with a flow cytometer 
(BD Biosciences).

Cell counting kit‑8 assay (CCK‑8) assay

The CCK-8 assay and colony formation assays were con-
ducted to assess cell proliferation. MCMs (1,000 cells/well) 
were cultivated in 96-well plates. 10 µL of CCK-8 solvent 
was supplemented to each well. The absorbance of each well 
was assessed at the wavelength of 450 nm using a microplate 
reader.

Statistical analysis

Data were showed as means ± standard deviation. Statisti-
cal analysis was progressed using the SPSS (Chicago, IL, 
USA) and GraphPad Prism 5 software (San Diego, CA). 
Significance of the difference between 2 groups was evalu-
ated through Student’s test, and difference among more than 
two groups was assessed by analysis of variance (ANOVA) 
followed by Tukey’s post hoc test. P < 0.05 was regarded as 
statistical significance. Experiments have been done at least 
three times.

Result

MiR‑467a‑5p is up‑regulated in MI tissues 
and injured MCMs

Previous studies have identified several up-regulated miR-
NAs in MI patients or mice model (Zhang et al. 2019b; 
Zhong et al. 2018; Zhu et al. 2019; Zile et al. 2011). As 
depicted in Fig. 1a, miR-467a-5p displayed the most up-
regulation among those miRNAs in MI mice compared with 

sham-operated mice. Additionally, the expression level of 
miR-467a-5p was upregulated in cardiac tissues of MI mice 
at a time dependent way (Fig. 1b). To mimic cardiomyocyte 
injury in vitro, H2O2 and hypoxia condition were used to 
treat MCMs. According to the result of CCK-8 assay and 
flow cytometry analysis, the treatment with increasing con-
centration of H2O2 triggered decreased proliferation and 
increased apoptosis of MCMs (Fig. 1c, d). In addition, RT-
qPCR analysis indicated that the treatment of H2O2 (100 
or 200 μM) enhanced the level of miR-467a-5p in MCMs, 
and miR-467a-5p level reached the highest in response to 
100 μM of H2O2 (Fig. 1e). Hereafter, CCK-8 assay and flow 
cytometry analysis illustrated that hypoxia induction for 
24 or 48 h reduced proliferation and promoted apoptosis 
of MCMs (Fig. 1f, g). Similarly, miR-467a-5p level was 
elevated by hypoxia treatment for 12, 24 and 48 h, and miR-
467a-5p showed the highest expression after 24 h of hypoxia 
treatment (Fig. 1h).

MiR‑467a‑5p deficiency hinders MI in mice

To figure out the role of miR-467a-5p in MI mice, a series 
of experiments were implemented. To begin with, the level 
of miR-467a-5p was prominently displayed no significant 
change 24 h after AAV-anti-miR-467a-5p injection (Sup-
plementary Fig. 1A), and decreased in cardiac tissues of 
MI mice 4 weeks after AAV-anti-miR-467a-5p injection 
(Fig. 2a). No significant difference was found in the heart 
rates of mice in different groups (Fig. 2b). Ratio of heart 
weight to body weight was lower in MI mice than in sham 
mice and was higher in MI mice injected with AAV-anti-
miR-467a-5p than in MI mice (Fig. 2c). Figure 2d revealed 
that serum protein levels of MI markers including cTnT and 
cTnI were increased in MI mice and were downregulated by 
AAV-anti-miR-467a-5p injection. Additionally, compared to 
the sham-operated mice, the levels of LDH, CK and MDA 
were elevated in serum of MI mice while the treatment of 
AAV-anti-miR-467a-5p reduced LDH, CK and MDA con-
centrations in serum of MI mice. On the contrary, the activ-
ity of SOD was decreased in serum of MI mice and then 
elevated by miR-467a-5p inhibition (Fig. 2e). At last, we 
evaluated the cardiac function of mice using echocardiog-
raphy and discovered that LVEDD and LVESD were sig-
nificantly enhanced in the MI mice, while LVEF and LVES 
were decreased in MI mice. However, all these influences 
were offset by miR-467a-5p knockdown (Fig. 2f).

MiR‑467a‑5p knockdown prevents cardiac damages 
of MI mice

H&E staining was used to detect the pathological morpholo-
gies of myocardial tissue. Based on Fig. 3a, the clear left 
ventricular area with the arranged neatly myocardial fibers 

Fig. 1   MiR-467a-5p is up-regulated in MI tissues and injured MCMs. 
a The levels of miR-29b-3p, miR-3473a, miR-30c-5p, miR-467a-5p, 
miR-467a-3p and miR-34c-3p were examined by RT-qPCR.#P < 0.01 
compared with sham. b MiR-467a-5p level was examined by RT-
qPCR in cardiac tissues from mice undergoing ischemia reperfu-
sion for 30 or 60 min. #P < 0.01 compared with control. &P< 0.01 
compared with MI 0 min. c and f Cell proliferation was assessed by 
CCK-8 assay. #P < 0.01 compared with control. d and g Cell apopto-
sis was evaluated by flow cytometry analysis.#P < 0.01 compared with 
control. e and h The detection of miR-467a-5p level was carried out 
in RT-qPCR analysis in MCM.#P < 0.01 compared with control

◂
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Fig. 2   MiR-467a-5p deficiency hinders MI in mice. a The influ-
ence of AAV-anti-miR-467a-5p on the expression of miR-467a-5p in 
mice cardiac tissues (n = 8 in each group). # P< 0.01 compared with 
AAV-Mock. b Heart rates of mice in the Sham/AAV-Mock, MI/AAV-
Mock, MI/AAV-anti-miR-467a-5p groups. c Ratio of heart weight to 
body weight of mice in the Sham/AAV-Mock, MI/AAV-Mock, MI/
AAV-anti-miR-467a-5p groups. d Western blotting of cardiac tro-
ponin T (cTnT) and cardiac troponin I (cTnI) proteins in serum of 

mice in the Sham/AAV-Mock, MI/AAV-Mock, MI/AAV-anti-miR-
467a-5p groups. e The changes of serum concentrations of LDH, 
CK, SOD and MDA were determined by myocardial enzyme assay 
(n = 8 in each group). #P< 0.01 compared with Sham/AAV-Mock 
and φP < 0.01 compared with MI/AAV-Mock. f The determination of 
LVEED, LVESD, LVEF and LVES were performed by cardiac func-
tion assay (n = 8 in each group). #P < 0.01 compared with Sham/AAV-
Mock and φ P< 0.01 compared with MI/AAV-Mock

without inflammatory cell infiltration in myocardial was 
observed in sham-operated mice. Meanwhile, a significantly 
increased infiltration of inflammatory cells, the dissolution 
myocardial fibers and the missing of myocardial stripes in 
the infarcted area were noticed in the heart tissues of MI 

mice. However, all these pathological changes were coun-
teracted by injecting AAV-anti-miR-467a-5p into MI mice. 
Moreover, compared with sham-operated mice, the I/R 
operation induced a significant myocardial infarction, and 
the infarction was then mitigated by miR-467a-5p inhibition 
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(Fig. 3b). The ratio of myocardial infarct size/area at risk 
(AAR) was lessened by miR-467a-5p in MI mice, while the 
ratio of AAR/heart displayed no significant difference in 
MI mice injected with AAV-anti-miR-467a-5p compared to 
AAV-Mock (Fig. 3c, d).

MiR‑467a‑5p promotes cardiomyocyte apoptosis 
in MI mice

We also assessed the impact of miR-467a-5p on cardio-
myocyte apoptosis. According to the result of western blot 

Fig. 3   MiR-467a-5p knockdown prevents cardiac damages of MI 
mice. a H&E staining assay was used to observe the histopathologi-
cal characteristics of MI mice heart tissues (n = 8 in each group). b 
The evaluation of myocardial infarct size by TTC staining among 
the groups (n = 8 in each group). c The comparison of myocardial 
infarct size and area at risk among the groups (n = 8 in each group). 

*P < 0.01 compared with sham. @P < 0.01 compared with sham/
AAV-Mock. φP < 0.01 compared with MI/AAV-Mock. d The ratio of 
area at risk to total myocardial area among the groups (n = 8 in each 
group). *P < 0.01 compared with sham. @P < 0.01 compared with 
sham/AAV-Mock
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analysis, the reduction of Bcl-2 protein level, the increase of 
Bax and cleaved caspase-3 protein levels in MI mice were 
countervailed by miR-467a-5p deficiency (Fig. 4a, b).

MiR‑467a‑5p directly targets and negatively 
regulates ZEB1

Then, we explored the regulatory mechanism of miR-
467a-5p in MCMs. According to starBase website (http://​
starb​ase.​sysu.​edu.​cn/), miR-467a-5p possesses binding 
site on several mRNAs. To further specify the target gene 
for miR-467a-5p, we operated RT-qPCR to detect these 
mRNA levels. The result sowed that zinc finger E-box bind-
ing homeobox 1 (ZEB1) displayed the most upregulation in 
response to miR-467a-5p knockdown and showed the most 
downregulation in response to miR-467a-5p overexpres-
sion, which suggested that miR-467a-5p negatively regu-
lated ZEB1 levels (Supplementary Fig. 1B). As depicted in 
Fig. 5a–c, relative to sham-operated group, ZEB1 displayed 
lower protein and mRNA levels in MI group. ZEB1 has been 
discovered to regulate MI by targeting the JAK/STAT/PI3K/
AKT pathway (Shi et al. 2019). Additionally, the decrease 
of ZEB1 protein and mRNA levels in tissues of MI mice 
were reversed by miR-467a-5p silence (Fig. 5d–f). With the 
assistance of Targetscan (http://​www.​targe​tscan.​org/​vert_​
71/), miR-467a-5p was predicted to harbor binding site on 
ZEB1 3’UTR (Fig. 5g). Hereafter, we explored the interac-
tion between miR-467a-5p and ZEB1. RT-qPCR analysis 
revealed that miR-467a-5p expression was down-regulated 
by transfection of anti-miR-467a-5p and up-regulated by 

transfection of miR-467a-5p mimics. Furthermore, the 
luciferase activity of wild type pmirGLO-ZEB1 3’UTR was 
elevated by miR-467a-5p inhibition and repressed by miR-
467a-5p overexpression (Fig. 5h). At last, the ZEB1 protein 
and mRNA levels were reduced by anti-miR-467a-5p and 
elevated by miR-467a-5p mimics in MCMs (Fig. 5i–k).

MiR‑467a‑5p promotes MCM cell apoptosis 
by modulating ZEB1 expression

Eventually, rescue assays were performed to explore whether 
miR-467a-5p promotes MCM cell apoptosis by targeting 
ZEB1. CCK-8 assay disclosed that the knockdown of ZEB1 

Fig. 4   MiR-467a-5p promotes apoptosis of MCMs. a-b Western blot analysis was utilized to supervise the protein levels of Bax, Bcl-2 and 
cleaved caspase-3 in mice (n = 8 in each group). #P < 0.01 compared with Sham/AAV-Mock and φP < 0.01 compared with MI/AAV-Mock

Fig. 5   MiR-467a-5p directly targets and negatively regulates ZEB1. 
a-b The examination of ZEB1 protein level in MCMs was carried out 
by western blot analysis. #P < 0.01 compared with Sham. c We used 
RT-qPCR analysis to monitor the mRNA level of ZEB1 in MCMs. 
#P < 0.01 compared with Sham. d–e The exploration of ZEB1 pro-
tein level in mice was conducted in western blot analysis. #P < 0.01 
compared with Sham/AAV-Mock and φP < 0.01 compared with MI/
AAV-Mock. f We used RT-qPCR analysis to monitor the mRNA level 
of ZEB1 in mice. #P < 0.01 compared with Sham/AAV-Mock and 
φP < 0.01 compared with MI/AAV-Mock. g The binding sequences 
between miR-467a-5p and ZEB1 3’UTR (position 2357–2364) were 
predicted by Targetscan. h The knockdown and overexpression effi-
ciency of miR-467a-5p in MCMs were assessed by RT-qPCR analy-
sis, and a luciferase reporter assay was performed to verify the bind-
ing capacity between miR-467a-5p and ZEB1. #P < 0.01 compared 
with Mock. i–k The influence of anti-miR-467a-5p and miR-467a-5p 
mimics on protein and mRNA expression of ZEB1 was measured 
through western blot and RT-qPCR analysis. #P < 0.01 compared with 
Mock

◂

http://starbase.sysu.edu.cn/
http://starbase.sysu.edu.cn/
http://www.targetscan.org/vert_71/
http://www.targetscan.org/vert_71/
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not only facilitated the cell apoptosis but also reversed the 
inhibitory effect of anti-miR-467a-5p on cell apoptosis in 
H2O2 or hypoxia-induced MCMs (Fig. 6a, b). In addition, 
anti-miR-467a-5p-mediated the decline of Bax, cleaved 
caspase-3 protein levels and the increase of Bcl-2 protein 
levels were counteracted by ZEB1 deficiency. Similarly, 
ZEB1 silence induced a rise of Bax, cleaved caspase-3 pro-
tein levels and a decline of Bcl-2 protein levels (Fig. 6c–e). 
Moreover, we detected the effects of ZEB1 in MI mice. 
ZEB1 expression was upregulated in MI mice by injec-
tion of AAV-ZEB1, and was downregulated by injection of 
AAV-miR-467a-5p (Fig. 7a). ZEB1 alleviated MI in mice 
and its effects in MI mice were offset by AAV-miR-467a-5p, 
indicating that miR-467a-5p regulates MI in mice by ZEB1 
(Fig. 7b–i).

Fig. 6   MiR-467a-5p promotes MCM cell apoptosis by modulating 
ZEB1 expression. a–b MCM cell apoptosis induced by 100 μM H2O2 
or hypoxia treatment for 24 h among different groups was tested by 
flow cytometry analysis. #P < 0.01 compared with Mock/si-NC and 
φP < 0.01 compared with anti-miR-467a-5p/si-NC. ΔP < 0.01 com-

pared with anti-miR-467a-5p/si-ZEB1. c–e Western blot analysis was 
utilized to supervise the protein levels of Bax, Bcl-2 and cleaved cas-
pase-3 in MCMs. #P < 0.01 compared with Mock/si-NC and φP < 0.01 
compared with anti-miR-467a-5p/si-NC. Δ P< 0.01 compared with 
anti-miR-467a-5p/si-ZEB1

Fig. 7   ZEB1 inhibits MI in mice and miR-467a-5p rescued the 
effects of ZEB1 in MI mice. a Relative ZEB1 levels in MI mice 
injected with AAV-Mock, AAV-ZEB1, AAV-miR-467a-5p + AAV-
ZEB1. b Heart rates of MI mice in the AAV-Mock, AAV-ZEB1, 
AAV-miR-467a-5p + AAV-ZEB1 groups. c Ratio of heart weight to 
body weight of MI mice in the AAV-Mock, AAV-ZEB1, AAV-miR-
467a-5p + AAV-ZEB1 groups. d Western blotting of cardiac tro-
ponin T (cTnT) and cardiac troponin I (cTnI) protein levels of MI 
mice in the AAV-Mock, AAV-ZEB1, AAV-miR-467a-5p + AAV-
ZEB1 groups. e The changes of serum concentrations of LDH, CK, 
SOD and MDA were determined by myocardial enzyme assay (n = 8 
in each group). #P < 0.01 compared with Sham/AAV-Mock and 
φP < 0.01 compared with MI/AAV-Mock. f LVEED, LVESD, LVEF 
and LVES of MI mice in the AAV-Mock, AAV-ZEB1, AAV-miR-
467a-5p + AAV-ZEB1 groups (n = 8 in each group). g H&E staining 
images of mice cardiac tissues in AAV-Mock, AAV-ZEB1, AAV-
miR-467a-5p + AAV-ZEB1 groups. h–i Relative levels of Bax, Bcl-
2, Cleaved Caspase-3 proteins in mice cardiac tissues in AAV-Mock, 
AAV-ZEB1, AAV-miR-467a-5p + AAV-ZEB1 groups. #P < 0.01 com-
pared with AAV-Mock and φP < 0.01 compared with AAV-ZEB1
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Discussion

Cardiovascular diseases are regarded as the leading causes 
of mortality in all death cases globally (Van Camp 2014). 
Additionally, the most mortality of patients with cardiovas-
cular diseases were caused by MI (Fredman and Spite 2017). 
Modern therapies like reperfusion treatment and medical 
(aspirin and clopidogrel) treatment have been widely applied 
to treat MI patients(Lewis et al. 1983; Yu et al. 2018), while 
the prognosis of MI patients remains unfavorable (Lisowska 
et al. 2016). Yet, the molecular mechanisms underlying MI 
need a thorough investigation.

MiRNAs, a group of small, non-coding RNA molecules, 
have been identified to be differentially expressed in diverse 
diseases (Lu and Rothenberg 2018). Upregulation of miR-
183 represses neuropathic pain by inhibiting MAP3K4 level 
in CCI rat models (Huang and Wang 2019). MiRNA-126 
knockdown suppresses IL-23R mediated TNF-α or IFN-γ 
production in collagen-induced rheumatoid arthritis mice 
model (Gao et al. 2018). A multitude of biomarkers such 
as miR-498, miRNA-181a and miR-16b have been identi-
fied to be dysregulated in MI (Zhu et al. 2016). Recently, 
miR-467a-5p was discovered to present high expression in 
MI mice model (Zhang et al. 2019a, b). Similarly, in our 
research, miR-467a-5p was also up-regulated in MI mice 
tissues and MCMs treated by hypoxia or H2O2. A previous 
study proposed that miR-221-3p results in cardiomyocyte 
injury by targeting p57 in MI rat model and H2O2-treated 
H9c2 cells (Meng et al. 2018). Our findings revealed that 
miR-467a-5p exacerbated the progression of MI by regu-
lating myocardial enzyme activity and cardiac function. In 
detail, knockdown of miR-467a-5p triggered a decrease on 
LDH, CK, MDA, LVEDD and LVESD, but an increase of 
SOD, LVEF and LVFS. Importantly, miR-467a-5p suppres-
sion mitigated cardiomyocyte apoptosis, histological change, 
myocardial infract size of heart tissues in MI mice.

ZEB1 has been reported to act as a transcription factor 
and play an oncogenic role in a variety of tumors (Llorens 
et al. 2016). In addition, ZEB1 modulates several diseases 
including diabetic kidney disease, arthritis and cardiac 
hypertrophy (Tang et al. 2018; Ye et al. 2015). Most recently, 
ZEB1 has been indicated to be targeted by miR-34a-5p, and 
activate the JAK/STAT and PI3K/AKT pathways to allevi-
ate the damage of hypoxia-induced H9C2 cells (Shi et al. 
2019). In addition, ZEB1 was reported to facilitate cell pro-
liferation, cell migration and collagen production in cardiac 
fibroblast (Yuan et al. 2020). In our research, we confirmed 
that ZEB1 was directly targeted and negatively regulated by 
miR-467a-5p in MI mice and MCMs. ZEB1 overexpression 
limited cell apoptosis and rescue assays revealed that ectopic 
ZEB1 neutralized the promoting effect of miR-467a-5p over-
expression on MCM apoptosis. A previous study proposed 

that ZEB1 exerts effects on extracellular matrix remodeling 
and myocardial fibrosis by interacting with LOX1 (He et al. 
2018). ZEB1 is involved in the regulation of endothelial-to-
mesenchymal transition and cardiac fibrosis in H5V cells 
(Xu et al. 2019). Importantly, ZEB1 functions as a transcrip-
tion factor to activate the transcription of a variety of genes 
including rs7692387, and thereby modulates atherosclerosis 
(Kessler et al. 2017). However, all these potential down-
stream mechanisms of ZEB1 have not been fully explored in 
MI. We will further investigate the downstream mechanism 
of ZEB1 in the future.

In summary, for the first time, we explored the role of 
miR-467a-5p in MI and validated that miR-467a-5p aggra-
vated MI by promoting apoptosis via modulating ZEB1 
expression in mice, which implied a potential biomarker for 
MI treatment. However, our research had limitations. For 
instance, the effects of ZEB1 on MI and oxidative stress 
have not been fully investigated. In addition, the pathology 
of MI is complicated and other regulatory mechanisms of 
miR-467a-5p remain to be investigated in the future.
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