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Abstract 
Diabetic nephropathy (DN), a serious complication of hyperglycemia, is one of the most common causes of end-stage renal 
disease (ESRD). Glomerular podocyte injury is a major mechanism that leads to DN. However, the mechanisms underlying 
podocyte injury are ambiguous. In this study, we sought to investigate the contribution of SET domain-containing protein 6 
(SETD6) to the pathogenesis of podocyte injury induced by glucose (GLU) and palmitic acid (PA), as well as the underlying 
mechanisms. Our results showed that GLU and PA treatment significantly decreased SETD6 expression in mouse podocytes. 
Besides, Cell Counting Kit-8 (CCK-8) and flow cytometry assay demonstrated that silencing of SETD6 silence obviously 
enhanced cell viability, and suppressed apoptosis in GLU and PA-induced podocytes. We also discovered that downregula-
tion of SETD6 suppressed GLU and PA-induced ROS generation and podocyte mitochondrial dysfunction. Nrf2-Keap1 
signaling pathway was involved in the effect of SETD6 on mitochondrial dysfunction. Taken together, silencing of SETD6 
protected mouse podocyte against apoptosis and mitochondrial dysfunction through activating Nrf2-Keap1 signaling pathway. 
Therefore these data provide new insights into new potential therapeutic targets for DN treatment.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s1073​5-020-09904​-6) contains 
supplementary material, which is available to authorized users.
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Introduction

Diabetic nephropathy (DN) is one of the major chronic com-
plications of diabetes (Cao and Cooper 2011). It is widely 
acknowledged that DN is the leading cause of end-stage 
renal disease (ESRD) (Bommer 2001). Hyperglycemia and 
hyperlipidemia can cause glomerular basement membrane 
thickening, mesangial expansion, and extracellular matrix 
hyperplasia in DN patients, further leading to glomerular 
hyperfiltration, proteinuria, and finally progressing to ESRD 
(Ahmad 2015). Podocytes are terminally differentiated glo-
merular visceral epithelial cells that maintains the integrity 
of the glomerular filtration barrier (GFB) and prevents uri-
nary protein loss (Belinda et al. 2012). Glucose (GLU) and 
palmitic acid (PA)-induced podocyte injury, such as podo-
cyte apoptosis and mitochondrial dysfunction, has been 
demonstrated to intimately associated with GFB destruc-
tion and proteinuria in DN (Michele et al. 2003; Katalin 
et al. 2006; Siu et al. 2006). Thus, Searching the target to 
preventing podocyte injury will provide a novel target for 
DN therapy.

SET domain-containing protein 6 (SETD6), an important 
member of the lysine methyltransferase family (Chang et al. 
2011), was recently identified as an important regulator of 
multiple signaling pathways through methylating protein 
substrates (Vershinin et al. 2016; Mukherjee et al. 2017). 

On the other hand, it can also interact with nuclear receptor 
signaling factors and transcriptional regulators to stimulate 
transcriptional activity, affecting cell proliferation, inflam-
mation, and oxidative stress response (Chen et al. 2016; 
Binda et al. 2013). Notably, several studies demonstrated 
that SETD protein was abnormally expressed in mice with 
high-carbonhydrate diet (Villeneuve et al. 2010), which was 
closely related to occurrence and development of diabetes 
(Adamska-Patruno et al. 2019; Korsmo-Haugen et al. 2019). 
Nevertheless, there is no related studies focused on the role 
of SETD6 in DN.

Nuclear factor-erythroid-2-related factor 2 (Nrf2) is 
universally involved in diabetic renal injury (Cheng et al. 
2019), mainly expressed in mesangial cell (Lin et al. 2006), 
renal tubular epithelial cell (Du et al. 2018), and podo-
cyte injury (Wang et al. 2011, 2014). These cell damage 
can further cause glomerular sclerosis and renal interstitial 
fibrosis, which were the pathological features of DN (Bose 
et al. 2017). Aberrant expression of Nrf2 was found in mice 
with diabetic retinopathy (Xu et al. 2014). Induction of 
Nrf2 enhanced the antioxidant response during mitochon-
drial stress (Shih et al. 2005). Recently, Nrf2 was revealed 
to be regulated by SETD6, and enhance the expression of 
antioxidant genes under oxidative stress (Chen et al. 2016). 
In our research, we investigated the function of SETD6 in 
GLU and PA-induced podocyte apoptosis and mitochondrial 
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dysfunction. And we further explored whether Nrf2-Keap1 
pathway was involved in the mediation of GLU and PA-
induced podocyte injury. Our findings are expected to pro-
vide some theoretical basis to search for a new solution for 
the DN treatment.

Materials and methods

Cell culture and treatments

High glucose and high fatty acids was widely used to mimic 
a pathological state of early podocyte injury in human DN 
(Sanjay et al. 2011; Hou-Yong et al. 2011; Wang et al. 2019), 
and the injury of mouse podocytes was induced by GLU 
and PA in this study. Mouse podocytes,which were previ-
ously reported to express podocytes-specific markers(Liu 
et al. 2018), were purchased from the Institute of Biochem-
istry and Cell Biology (Shanghai, China). Briefly, podocytes 
were incubated at humidified incubator (33 °C, 5% CO2) in 
RPMI-1640 (Sigma, St. Louis, MO, USA) medium which 
consisted of 10% Fetal bovine serum (FBS, Gibco, Rock-
ville, MD, USA), 100 U/mL penicillin, 100 µg/mL strep-
tomycin and 1× insulin transferrin-selenium (ITS) (Sigma, 
St. Louis, MO, USA). When podocytes reached 70–80% 
confluence, the cells were induced to differentiate using 
ITS-free medium for 10–14 days. Then the podocytes were 
treated with normal-gulcose(5.5 mmol/L) or high-glucose 
(30 mmol/L, GLU) (Ha et al. 2013) and different concentra-
tions of palmitic acid (50, 100, 200, 300 and 400 µmol/L, 
PA) for various periods of time (12, 24, and 48 h).

Plasmids

Plasmids used for suppression in podocytes were SETD6 
siRNA (si-SETD6). The siRNAs with sequences that do 
not target any gene productwas a negative control (Vector, 
1 µg/mL). The si-SETD6 (1 µg/mL) was transfected into 
immortalized mouse podocytes (6-well plate, 1.0 × 106/cm2). 
After transfection for 24 h, the podocytes were treated with 
30 mmol/L GLU and 200 µmol/L PA for 24 h.

Western blot analysis

At the end of experiments, podocytes were lysed on ice for 
15 min in RIPA lysis buffer (Sigma, St. Louis, MO, USA). 
The supernatants were collected after centrifugation at 
12,000×g at 4 °C for 20 min. Total protein concentration 
from podocyte lysate was detected by BCA protein con-
centration detection kit (Solarbio, Beijing, China). Then 
total protein was separated by 8% SDS polyacrylamide gel 
electrophoresis and then transferred to PVDF membranes 
(Millipore, Bedford, MA, USA). The membranes were 

blocked with 5% zero fat milk powder and incubated with 
corresponding target protein antibodies and rabbit anti-
β-actin monoclonal antibody. Then, the membranes were 
incubated with a goat anti-rabbit HRP antibody (Sigma, St. 
Louis, MO, USA). The protein complexes were detected 
by the enhanced chemiluminescence reagents (Abcam, 
Cambridge, UK). Primary antibodies used were as Table 1.

CCK‑8 proliferation vitality assay

Mouse podocyte proliferation was measured using the Cell 
Counting Kit 8 (CCK-8, Dojindo Laboratories, Kuma-
moto, Japan). The cell viability was measured at speci-
fied time points using microplate reader (Thermo Fisher 
Scientific, Massachusetts, USA) by spectrophotometry at 
450 nm.

Apoptosis assay

Mouse podocyte apoptosis was detected using the Cell 
Apoptosis Detection Kit (Qiagen, Valencia, CA, USA). 
After 24 h cultured with 30 mmol/L GLU and 200 µmol/L 
PA, si-SETD6-infected podocytes were incubated with 
10 µL FITC Annexin-V and propidiumiodide (Becton, 
Heidelberg, Germany) at room temperature for 15 min. 
Then, flow cytometry was performed according to the 
manufacturer’s instructions.

Table 1   Antibodies information

Antibody name Company and item number Dilution 
concen-
tration

SETD6 GeneTex, SC, USA; GTX629891 1:1000
caspase 3 CST, Boston, MA, USA; cat. no.9662 1:1000
BAX CST, Boston, MA, USA; cat. no.2774 1:2000
BCL-2 Abcam, Cambridge, UK; cat. abno.

ab185002
1:1500

SOD1 CST, Boston, MA, USA; cat. no.2770 1:1000
SOD2 CST, Boston, MA, USA; cat. no.13,141 1:1000
GPX1 Abcam, Cambridge, UK; cat. 

no.ab22604
1:1000

GCLC Abcam, Cambridge, UK; cat. 
no.ab207777

1:1000

Wnt1 Abcam, Cambridge, UK; cat. 
no.ab15251

1:1000

β-catenin CST, Boston, MA, USA; cat. no.8480 1:1000
c-myc CST, Boston, MA, USA; cat. no.5605 1:1000
cyclin D1 CST, Boston, MA, USA; cat. no.2978 1:1000
β-actin Abcam, Cambridge, UK; cat. 

no.ab3280
1:2000
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Mitochondrial membrane potential (MMP) 
and reactive oxygen species (ROS) measurement

The MMP of podocytes was monitored using Tetrechloro-
tetraethylbenzimidazol carbocyanine iodide (JC-1, Beyotime 
Biotechnology, Shanghai, China). And the generation of 
ROS in podocytes was evaluated by 2′,7′-dichlorofluorescein 
diacetate (DCFH-DA) fluorescent probe. Briefly, podocytes 
were washed twice with PBS, and incubated in the dark with 
JC-1 (2 µmol/L, 30 min at 37 °C) or DCFH-DA (10 µM, 
20 min at 37 °C). Then, the cells were fixed using 4% poly-
formaldehyde (Beyotime Biotechnology, Shanghai, China) 
for 10 min. JC-1 (590/520 nm) and DCFH-DA (520 nm) 
fluorescence levels were detected by confocal microscopy 
and flow cytometry.

Statistical analysis

The data were represented as means ± SEM (standard error 
of mean) and each experiment was performed in triplicate 
in this study. One-way ANOVA (analysis of variance) and 
Student’s unpaired t test were used to analyze statistical 
significance. p value < 0.05 were considered statistically 
significant.

Results

SETD6 was downregulated in GLU and PA‑induced 
mouse podocytes

Podocytes were treated with GLU (30 mmol/L) and PA 
(50, 100, 200, 300 and 400 µmol/L) to establish a podocyte 
injury model. CCK-8 assay evidenced that GLU and PA 
decreased the viability of podocytes in a dose-dependent 
and time-dependent manner (Fig. 1a–c). What’s more, the 
result showed that SETD6 protein level was reduced by GLU 
and PA treatment (Fig. 1d).

Downregulation of SETD6 inhibited GLU 
and PA‑induced podocyte apoptosis

To investigate the effect of SETD6 on the cell growth in 
GLU and PA-induced podocytes, podocytes were transfected 
with SETD6 siRNA (si-SETD6) or negative control (Vec-
tor) for 24 h and then the cells were treated with or without 
30 mmol/L GLU and 200 µmol/L PA for 24 h. Our West-
ern blotting results displayed the efficiency of si-SETD6 
(Fig. 2a, b). As expected, CCK-8 and flow cytometry analy-
sis respectively demonstrated that transfection of si-SETD6 
obviously enhanced cell viability and suppressed apoptosis 
of podocytes (Fig. 2c, d). Meanwhile, the results evidenced 
that SETD6 silence significantly reduced caspase-3 and 

Bax (Bcl-2 Assaciated X protein) expression and enhanced 
BCL-2 (B-cell lymphoma-2) expression in GLU and PA-
induced podocytes (Fig. 2e–h).

Downregulation of SETD6 suppressed GLU 
and PA‑induced ROS generation and podocyte 
mitochondrial dysfunction

Several studies have indicated podocyte apoptosis usually 
manifests mitochondrial dysfunction and abundant gen-
eration of ROS (reactive oxygen species) (Herrera et al. 
2001; Fan et al. 2019). Thus we then investigate the effect 
of SETD6 on mitochondrial dysfunction in GLU and PA-
induced podocyte. As shown in Fig. 3a, the level of MMP 
was reduced in the presence of GLU and PA, which was 
strongly reversed by SETD6 downregulation. Strikingly, our 
findings also revealed that silencing of SETD6 markedly 
decreased ROS generation (Fig. 3b). Consistent with this 
result, SETD6 deletion significantly facilitated the expres-
sion of SOD1/2, GPX1, and GCLC in GLU and PA-induced 
podocytes (Fig. 3c–g).

Downregulation of SETD6 protected 
against podocyte apoptosis and mitochondrial 
dysfunction through activating Nrf2‑Keap1 
signaling pathway

Considering that Nrf2 signaling alleviates podocyte injury 
(Shen et al. 2019), and SETD6 has a negative effect on 
Nrf2 expression (Chen et al. 2016). We wonder that Nrf2 
signaling pathway maybe participate in the mediation of 
SETD6-induced podocyte injury. The results showed that 
GLU and PA treatment decreased the expression of Nrf2, 
and increased the expression of Keap-1, which were inversed 
by silencing of SETD6 (Fig. 4a–c). Then we study the effect 
of Nrf2 signaling pathway blockage on podocyte apoptosis 
and mitochondrial dysfunction. The deactivating of Nrf2-
Keap1 pathway was established by brusatol (Selleck, USA) 
treatment. Strikingly, it was observed that Nrf2 blockage 
strongly attenuated the protection effect of SETD6 on GLU 
and PA-induced podocyte apoptosis (Fig. 4d, e). At the same 
time, ROS reduction and MMP elevation induced by SETD6 
downregulation were damaged through Nrf2 inhibitor co-
treatment (Fig. 4f, g).

Discussion

Podocytes serve as a pivotal role in the DN progression and 
the development of proteinuria (Mundel and Reiser 2010). 
Both basic and clinical findings indicated that DN patients 
presented with long-term hyperglycemia (Tagawa et al. 
2016). High glucose resulted in glomerular podocyte injury, 
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and the apoptosis and detachment of podocytes eventually 
led to the appearance of proteinuria (Khaled et al. 2012; 
Eid et al. 2009; Choel et al. 2009). Reducing or blocking 
the apoptosis of podocytes that involved in the DN develop-
ment (Zhang et al. 2019) is an effective treatment strategy 
for DN. In this study, we reported that SETD6 was signifi-
cantly downregulated in podocytes treated with GLU and 
PA treatment, and down-regulation of SETD6 rescued the 
podocyte apoptosis.

SETD6, a lysine methyltransferase, express a high level 
in liver and kidney (Chen et al. 2015). Previous studies 
report that SETD6 was a negative regulator of antioxidant 
stress response (Chen et al. 2016), and dysfunction of redox 
homeostasis may lead to mitochondria damage. Our further 
study demonstrated that SETD6 prevents podocytes against 
mitochondrial dysfunction by inhibiting the accumulation 

of ROS. As a critical factor in apoptosis, Mitochondrial 
oxidative stress and ROS are increased in HG-treated 
podocytes(Qiao et al. 2018). Maintaining the balance of 
MMP and suppressing intracellular ROS production is ben-
eficial to prevent podocyte against apoptosis, and thus have 
protective effects on DN (Fan et al. 2019; Cai et al. 2016). 
Thus SETD6 may protect podocytes against apoptosis via 
mediating mitochondrial dysfunction.

SETD proteins usually function as a methyltransferase 
to monomethylated H2AZ at lysine 7 (H2AZK7me1) and 
finally maintained embryonic stem cell self-renewal (Binda 
et al. 2013). Similarly, inhibition of SET domain–contain-
ing lysine methyltransferase 7/9, two other members of the 
lysine methyltransferase family, suppressed methylation 
of lysine 4 of histone H3 (H3K4) and finally ameliorated 
renal fibrosis (Sasaki et al. 2016). SETD6 also methylated 

Fig. 1   SETD6 was downregulated in GLU and PA-induced mouse 
podocytes. Mouse podocytes were treated with 30  mmol/L glucose 
(GLU) and different concentrations of palmitic acid (50, 100, 200, 
300 and 400 µmol/L, PA) for the indicated time points (12 h, 24 or 
48 h). a–c The vibility of podocytes was measured by CCK-8 assay. 

*p < 0.05 (vs. Control). d Western blot analysis was used to detect 
the SETD6 expression in podocytes treated with 30  mmol/L GLU 
and 200 µmol/L PA for 24 h. β-actin was used as an internal control. 
*p < 0.05 (vs. 0 h). *#p < 0.05 (vs. 12 h). The columns were presented 
as the mean ± SEM (n ≥ 03)
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the lysine at position 310 of RelA (p65) protein, which 
restrained p65 phosphorylation. Recently, Nrf2 was revealed 
to be regulated by SETD6, and SETD6 down-regulation 
increased the Nrf2 protein expression (Chen et al. 2016). 
Consistent with previous reports, we uncovered novel find-
ings that the Nrf2-Keap1 pathway were activated by GLU 
and PA in podocytes. The Nrf2-Keap1 pathway plays a 
vital role in regulation of nephron development, glomerular 
podocyte motility, adhesion, as well as apoptosis. In normal 

conditions, actin binding repressor protein-Keap1 make sure 
that Nrf2 located in the cytoplasm. Once oxidative stress 
occurs, Nrf2 easily unwinds bound with Keap1, translocates 
into the nucleus, combine with antioxidant response genes 
(Palsamy and Subramanian 2011; Nakai et al. 2013). Our 
further study confirmed that silencing of SETD6 induced 
the activation of Nrf2 signaling pathway, preventing the 
over-accumulation of ROS and mitochondrial dysfunction, 
eventually inhibiting apoptosis.

Fig. 2   Down-regulation of SETD6 inhibited GLU and PA-induced 
podocyte apoptosis. Mouse podocytes (1.0 × 106/cm2) were trans-
fected with SETD6 siRNA (si-SETD6, 1 µg/mL) or negative control 
(Vector, 1  µg/mL) for 24  h and then the cells were treated with or 
without 30 mmol/L GLU and 200 µmol/L PA for 24 h. a and b West-
ern blot analysis of SETD6 expression in podocytes. c The viabil-

ity of podocytes was evaluated by CCK-8 assay. d The apoptosis of 
podocytes was detected by flow cytometry analysis. e–h The expres-
sion of caspase-3, Bax, and BCL2 were assayed by Western blot anal-
ysis. β-actin was used as an internal control. *p < 0.05 (vs. vector). 
#p < 0.05 (vs. vector + GLU + PA). The columns were presented as the 
mean ± SEM (n ≥ 03)
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In conclusion, we showed that SETD6 expression was 
decreased in mouse podocytes treated with GLU and PA. 
SETD6 silencing obviously suppressed apoptosis of GLU 
and PA-induced mouse podocytes. Meanwhile, down-reg-
ulation of SETD6 suppressed GLU and PA-induced mouse 

podocyte mitochondrial dysfunction and ROS generation. 
Additionally, Down-regulation of SETD6 protected against 
GLU and PA-induced mouse podocyte apoptosis and mito-
chondrial dysfunction through activating the Nrf2-Keap1 
pathway.

Fig. 3   Down-regulation of SETD6 suppressed GLU and PA-induced 
podocyte mitochondrial dysfunction and ROS generation. Mouse 
podocytes (1.0 × 106/cm2) were transfected with SETD6 siRNA (si-
SETD6, 1  µg/mL) or negative control (Vector, 1  µg/mL) for 24  h 
and then the cells were treated with or not 30  mmol/L GLU and 
200 µmol/L PA for 24 h. a Manifests mitochondrial membrane poten-
tial was measured by JC-1 using fluorescence microscope (origi-

nal magnification, ×400). b Endogenous ROS content was assayed 
via DCFH-DA fluorescent probe. c–g Western blot analysis of the 
SOD1/2, GPX1 and GCLC expression in podocytes. β-actin was 
used as an internal control. *p < 0.05 (vs. vector). #p < 0.05 (vs. vec-
tor + GLU + PA). The columns were presented as the mean ± SEM 
(n ≥ 03).
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