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IFN-γ, ICAM-1, CXCL1, MPO, NF-κB p65, ERK, JNK, 
and MAPK P38, expression in serum or liver homogenate 
were greater after CCl4 treatment but comparatively less 
after MS treatment. Only IL-10 increased after MS treat-
ment. Anti-IL10 blockade (1.5 mg/kg) restored MS-medi-
ated attenuated phosphorylation of NF-ĸbB/MAPK and the 
protective effect of MS was abolished for all indices exam-
ined. The PI3K inhibitor, wortmannin had the same effects 
on MS as anti-IL-10 antibody. MS also induced phospho-
rylation of GSK-3β and AKT in CCl4-treated mice. After 
pre-treatment with wortmannin (0.7  mg/kg), phospho-
rylation of GSK-3β and AKT proteins were reduced com-
pared to its solvent control group-DMSO-treated animals. 
Thus, the data provide evidence that MS may activate the 
PI3K–AKT–GSK-3β pathway to induce IL-10 expression 
and produce anti-inflammatory effects via the NF-κB and 
MAPK pathways. The findings provide a new pharmaco-
logical strategy for management of inflammatory response 
after acute liver injury.

Abstract  The inflammatory response plays an impor-
tant role in carbon tetrachloride (CCl4)-induced acute 
liver injury and methane has been shown to exert benefi-
cial effects on inflammation-associated diseases. Thus, we 
investigated the potential protective effects of methane-
rich saline (MS) on CCl4-induced acute liver injury and 
explored the underlying mechanism. A CCl4-induced acute 
liver injury model was established by injection of CCl4 
(0.6  ml/kg, ip) in mice followed by treatment with MS 
(16 ml/kg, ip), 24 h later. All groups of mice were sacrificed 
and blood and liver tissues were collected. Serum ami-
notransferase, necrotic areas, and inflammatory cell infil-
tration in liver slices were enhanced after CCl4 treatment 
but decreased with MS treatment. IL-6, TNF-α, IL-1β, 
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Introduction

Carbon tetrachloride (CCl4) is a hepatotoxicant that induces 
acute liver injury via generation of oxidative stress and 
recruitment of inflammatory cells (Mizuoka et  al. 1999). 
CCl4-induced hepatotoxicity is characterized by sinusoidal 
congestion, neutrophil invasion, and ballooning degenera-
tion and features abnormal serum alanine aminotransferase 
(ALT) and aspartate aminotransferase (AST) enzyme 
activity. Several pro-inflammatory cytokines including 
tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) 
contribute to hepatic fibrosis (Abdel-Moneim et  al. 2015; 
Peng et  al. 2009), indicating that inflammation is central 
to CCl4-induced liver injury. CCl4-induced liver injury 
differs from other drug-induced liver injury such as Con 
A-induced hepatotoxicity which resembles autoimmune 
liver disease.

Interleukin-10 (IL-10) is an anti-inflammatory pleio-
tropic cytokine which suppresses effector cells and medi-
ates release of multiple cytokines (Si et  al. 2010) to 
decrease T lymphocyte activity (Martin et al. 2010; Doug-
las et  al. 2010) and strengthen immune tolerance. Previ-
ous work indicated that IL-10 can suppress ConA-induced 
liver injury (Erhardt et  al. 2007; Shao et  al. 2013) and 
ischemia–reperfusion injury (Ren et  al. 2011). Dysregu-
lated IL-10 production also contributes to inflammatory 
diseases (Ouyang et al. 2011; Yao et al. 2013).

The mechanism that controls IL-10 production in 
response to specific stimuli has been shown to include 
MAPK (Hovsepian et  al. 2013) and several transcription 
factors. Nuclear factor ĸB (NF-ĸB) and MAPK regulate 
expression of many genes critical to the regulation of apop-
tosis, viral replication, tumorigenesis, inflammation, and 
various autoimmune diseases. Activation of NF-ĸB and 
MAPK may be a component of the stress response because 
they were activated by diverse stimuli including growth fac-
tors, cytokines, lymphokines, UV, pharmacological agents, 
and stress. Our work suggests that MS reduced phospho-
rylation of NF-ĸB, JNK, ERK and p38 in LPS-stimulated 
macrophages in an IL-10 dependent manner via enhanced 
activation of PI3K/AKT signal which involved activated 
GSK-3β (Zhang et  al. 2016). Inhibition of GSK-3β was 
reported to reduce liver ischemia reperfusion injury via 
an IL-10-mediated immunoregulatory mechanism (Ren 
et  al. 2011). Thus, we studied the relationship between 
PI3K–AKT–GSK-3β pathways and mechanisms of IL-10 
production.

Methane is the most common organic atmospheric gas 
and fuel source (Montano-Loza et  al. 2017). Previous 

studies focused on biological characteristics of methane 
in the gastrointestinal tract (Ghoshal et  al. 2016), specifi-
cally finding that exogenously applied methane has protec-
tive effects on the intestine (Varga et al. 2012; Boros et al. 
2012), heart (Chen et al. 2015), abdominal skin flaps (Song 
et  al. 2015), retina (Liu et  al. 2016; Wu et  al. 2015), and 
nervous system (Fan et al. 2016; Wang et al. 2016). Hepato-
protection is also reported to be conferred by methane (Stri-
fler et al. 2016; Ye et al. 2015; He et al. 2016). Methane has 
been shown to inhibit the inflammatory response via modu-
lating various pathways. Studies of methane include physi-
ological saline for gas dissolution to reduce flammabil-
ity and explosiveness of methane gas (Zhang et al. 2016). 
Methane gas is relatively stable for 1 month (Roccarina 
et al. 2010; Chen et al. 2015) and as such may have thera-
peutic use. Therefore, we studied the anti-inflammatory and 
protective effects of methane in a CCl4-induced acute liver 
injury model by measuring cytokine IL-10 and associated 
intracellular signaling pathways.

Materials and methods

Animals and reagents

C57BL/6 mice (6–8 weeks-of-age; 18–22  g; male), were 
purchased from the Animal Experimentation Center of 
the Second Military Medical University. All animals were 
housed under specific pathogen-free conditions and were 
provided with Rodent Lab Chow and water ad libitum. CCl4 
was purchased from Sinopharm Chemical Reagent Co., Ltd 
(China) and was dissolved in olive oil. All other chemicals 
and reagents used were standard analytical grade.

Methane‑rich saline production

Methane was stored in a gas canister and was dissolved in 
normal saline under high pressure (0.4 MPa) for 3 h to a 
saturated level. The saturated MS was stored under atmos-
pheric pressure at 4 °C and was freshly prepared 1 day prior 
to the animal experiments to ensure stability. Gas chroma-
tography (gas chromatography-9860, Qiyang Co., Shang-
hai, China) was used to measure methane in the saline solu-
tion according to published methods (Ren et al. 2011).

CCl4‑induced acute liver injury in mice

Mice were pretreated with DMSO, anti-IL10 antibody 
(1.5  mg/kg) or wortmannin (0.7  mg/kg) for 24  h. Acute 
liver injury was induced by injecting CCl4 (0.6 ml/kg, ip, 
12 μl:400 µl olive oil). MS (16 ml/kg) was administered 1 h 
after CCl4 injection, and sham mice were treated with olive 



303J Mol Hist (2017) 48:301–310	

1 3

oil (16 ml/kg). Serum and liver specimens were collected at 
the indicated time points.

Measurement of liver enzymes and cytokine production

Mice were anesthetized 24 h after CCl4 treatment and blood 
was collected via heart puncture. Plasma was separated fol-
lowing centrifugation at 300×g for 10 min. Serum ALT and 
AST were measured as described by Magaye et al. (2016) 
with an automatic dry biochemical analyzer (Hitachi Auto 
Analyzer 7170, Japan). Serum IL-6, TNF-α, IL-1β, IFN-γ 
and IL-10 and myeloperoxidase (MPO), chemokine ligand 
1 (CXCL1), Intercellular adhesion molecule-1 (ICAM-1) 
in liver homogenates were measured using ELISA (eBio-
science, San Diego, CA) according to the manufacturer’s 
instructions.

Histopathological assessment

Liver tissues were harvested in 24  h after CCl4 adminis-
tration. Liver samples were preserved in 4% paraform-
aldehyde for a minimum period of 72 h. Specimens were 
embedded in paraffin and cut into 4–5 µm sections for 
hematoxylin and eosin (H&E) staining. Inflammation and 
tissue damage were observed using light microscopy.

Real‑time PCR

Total RNA was extracted from liver tissue using Tri-
zol reagent (Takara, Japan). Concentration and purity of 
total RNA was measured using the absorbance ratios at 
260/280  nm. Complementary DNA (cDNA) was reverse-
transcribed using a Prime Script RT Reagent Kit (Takara). 
Quantification of IL-6, TNF-α, IL-1β, IFN-γ, CXCL1, 
ICAM-1 and IL-10 mRNA was conducted using Step 
One Plus Real Time PCR System (Applied Biosystems, 
CA). Murine primers were synthesized by Invitrogen and 
sequences were as follows:

I L - 6 : F 5 ′ - T A C ​C A C ​T C C ​C A A ​C A G ​A C C​
TG-3 ′(forward),5 ′-GGT​ACT​CCA​GAA​ACC​AGA​
GG-3′(reverse);TNF-α:5′-CAC​CAT​GAG​CAC​AGA​
AAG​CA-3′(forward), 5′-TAG​ACA​GAA​GAG​CGT​
GGT​GG-3′(reverse);IL-1β:5′-ACT​CAT​TGT​GGC​TGT​
GGA​GA-3′(forward),5′-TTG​TTC​ATC​TCG​GAG​CCT​
GT-3′(reverse);IFN-γ:5′-CCT​CAA​ACT​TGG​CAA​
TAC​TCA-3′(forward);5′-CTC​AAG​TGG​CAT​AGA​
TGT​GGA-3′(reverse);CXCL1:5′-GCT​TGA​AGG​TGT​
TGC​CCT​CAG-3′(forward),5′-AGA​AGC​CAG​CGT​
TCA​CCA​GAC-3′(reverse);ICAM-1:5′-TTC​ACA​CTG​
AAT​GCC​AGC​CC-3′(forward);5′-GTC​TGC​TGA​GAC​
CCC​TCT​TG-3′(reverse);IL-10:5′-TGC​CAC​TCA​GAA​
GACTGYGG-3′(forward),5′-GTC​CTC​AGT​GTA​GCC​
CAG​GA-3′(reverse);GAPDH:5′-ATG​GTG​AAG​GTC​

GGT​GTG​AA-3′(forward),5′-TGG​AAG​ATG​GTG​ATG​
GGC​TT-3′(reverse).

Western blotting

Liver tissues from experimental animals were homogenized 
in protein lysis buffer (Thermo Fisher Scientific, location 
missing) with protease inhibitor (Gibco, location missing). 
After centrifugation (13,000×g, 4 °C, 10 min), protein was 
measured using a BCA protein assay kit (Thermo Fisher 
Scientific). Equal amounts of protein were loaded in each 
well and separated using 10% SDS-PAGE (Life Technolo-
gies, Carlsbad, CA). Gels were subsequently transferred to 
nitrocellulose membranes (Life Technologies) and mem-
branes were blocked for 1 h in 5% non-fat dried milk and 
then incubated overnight at 4 °C with primary antibodies 
(Cell Signaling Technology). Membranes were washed 
with TBST and incubated with secondary antibody for 2 h 
at room temperature. Finally, protein bands were visual-
ized using an ECL kit (Thermo Fisher Scientific, Waltham, 
MA). Band intensity was quantified using Image J soft-
ware and protein expression was normalized according to 
expression of GAPDH protein.

Statistical analysis

Data are presented as means ± standard deviation (SD). Sig-
nificant differences were confirmed with one-way ANOVA, 
followed by Turkey’s test and two-way ANOVA. Prism 5 
software package (GraphPad) was used to calculate p val-
ues and p < 0.05 was considered statistically significant.

Results

MS protects mice from CCl4‑induced liver injury 
and inhibits CCl4‑induced liver inflammation

Serum ALT and AST activity significantly increased after 
CCl4 treatment and MS prevented this elevation (Fig. 1C, 
D). Histopathological studies supporting the biochemi-
cal data (Fig. 1A). Liver sections obtained from sham and 
treatment (sham + MS) groups had normal liver archi-
tecture (a, b, g, h) and no necrosis (Fig. 1B). CCl4 caused 
large areas of extensive pericentral necrosis (Fig. 1B) with 
hepatic sinus congestion, neutrophil infiltration, ballooning 
degeneration, and loss of hepatic architecture (c, i). After 
MS administration to mice, the development of histopatho-
logical alterations induced by CCl4 were inhibited (d, j), 
and necrosis was decreased (Fig. 1B). Data suggested that 
MS protected mice against CCl4-induced liver injury.
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Serum cytokines were measured after treatment with 
CCl4 and IL-6, TNF-α, IL-1β and IFN-γ were elevated and 
MS treatment reduced these elevations (Fig.  2a–d). Rela-
tive IL-6, TNF-α, IL-1β and IFN-γ mRNA was signifi-
cantly increased after CCl4 treatment but decreased after MS 
treatment (Fig.  2e–h). Thus, MS protects liver function by 
inhibiting expression of inflammatory cytokines. We also 
measured neutrophils such as CXCL1, MPO and ICAM-1. 
Serum CXCL1, ICAM-1 and MPO activity and mRNA were 
increased in CCl4-treated mice and decreased after treat-
ment with MS (Fig.  2i–m). IL-10 expression and mRNA 
was not significantly changed after CCl4 treatment but it 
was increased with CCl4 and MS administration (Fig. 2n, o). 
Thus, anti-inflammatory effects of MS may be tied to IL-10.

Anti‑IL‑10 antibody and wortmannin reversed 
protective effects of MS in CCl4‑induced acute liver 
injury

To study the contribution of IL-10 to the hepatoprotec-
tive effect of MS, we used an anti-IL-10 antibody and 

measured liver function. After CCl4 and MS treatment 
with the antibody, serum ALT and AST were restored to 
normal (Fig.  1C, D). Similarly, histopathological stud-
ies indicated that the inhibitory effect of MS was partially 
reduced in mice in the presence of the anti-IL-10 antibody 
(Fig.  1A, B). Serum inflammatory cytokines (Fig.  2a–h) 
and neutrophil chemokines (Fig.  2i–m) and their mRNA 
were increased with concomitant administration of the anti-
IL-10 antibody and MS. Thus, MS produced anti-inflam-
matory effects and restored liver function in CCl4-treated 
mice via increased production of IL-10. GSK-3β is associ-
ated with IL-10 secretion via modulation of the PI3K–AKT 
pathway, so we inhibited GSK-3β with wortmannin and 
data show that the protective effect of MS was blocked.

MS reduces activation of NF‑κB and MAPK 
in CCl4‑induced liver injury

The NF-κB and MAPK pathways are responsible for 
inflammatory cytokine production in mammals so 
whether MS influenced expression of NF-κB p65, ERK, 

Fig. 1   MS protects mice from CCl4-induced liver injury. Liver tis-
sues were stained with H&E after collection from mice sacrificed 
24 h after treatment with sham (a, g), sham + MS (b, h), CCl4 (c, i), 
CCl4 + MS (d, j), CCl4 + MS + anti-IL10 (e, k), CCl4 + MS + wort-
mannin (f, l) (Scale bar 100 µm, 50 µm), Arrow indicates preserved 
hepatic sinus congestion and ballooning degeneration; squares indi-

cate areas of neutrophil infiltration and loss of hepatic architecture 
(A), necrotic areas were analyzed (B). Serum ALT and AST for each 
group (C, D). Data are as means ± SD (n = 6). *p < 0.05, **p < 0.01 
vs. sham group, #p < 0.05, ##p < 0.01 vs. CCl4 group, Δp < 0.05, 
ΔΔp < 0.01 vs. CCl4 + MS group
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JNK and MAPK P38 proteins was investigated and data 
show that NF-κB, ERK, JNK and p38 signaling pathways 
were activated by CCl4. MS treatment inhibited phos-
phorylation of NF-κB P65, ERK, JNK and p38 proteins 
(Fig.  3a) and these results were statistically significant 
(Fig. 3c–f).

Anti‑IL‑10 and wortmannin reverses reduced NF‑κB 
protein and MAPK phosphorylation in MS‑treated 
mice

Studies suggest that GSK-3 acts on IL-10 and influ-
ences the NF-κB pathway. To explore anti-inflammatory 

Fig. 2   MS inhibits inflammation in CCl4-induced acute liver injury 
in mice. Serum IL-6, TNF-α, IL-1β, IFN-γ, IL-10 (a–d, n) and liver 
homogenate ICAM-1 (i), CXCL1 (k) were measured using ELISA. 
IL-6, TNF-α, IL-1β, IFN-γ (e–h), ICAM-1 (j), CXCL1 (l) and IL-10 

(o) mRNA were measured using RT-PCR. MPO activity quanti-
fication in liver homogenates (m). Data are means ± SD (n = 6), 
*p < 0.05, **p < 0.01 vs. sham group, #p < 0.05, ##p < 0.01 vs. CCl4 
group, Δp < 0.05, ΔΔp < 0.01 vs. CCl4 + MS group
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mechanism of MS, mice were pretreated with an anti-
IL-10 antibody and wortmannin as previously described. 
NF-κB and MAPK protein expression was measured 
before and after inhibition of PI3K enzyme and IL-10 
(Fig.  3b). Pretreatment anti-IL-10 antibody and wort-
mannin increased the ratio of phosphorylated to total the 

NF-κB and MAPK proteins (Fig.  3g–n) in MS-treated 
mice, suggesting that these proteins regulate anti-inflam-
matory processes in CCl4-treated mice. So, anti-IL-10 
antibody and wortmannin abolished the inhibitory effect 
of MS via increased phosphorylation of MAPK proteins 
and NF-κB.

Fig. 3   Anti-IL-10 antibody and wortmannin reversed NF-κB and 
MAPK protein phosphorylation in MS-treated mice according to 
Western blot of liver homogenates (a, b). Band intensities were quan-

tified as ratios of phosphorylated signaling molecules to total mole-
cules (c–n). *p < 0.05, **p < 0.01
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IL‑10 expression was mediated by the PI3K–AKT–
GSK‑3β pathway in MS‑treated mice

MS diminished expression of pro-inflammatory factors 
and protected livers against injury induced by CCl4. MS 
augmented expression of IL-10 and inhibited the phos-
phorylation of NF-κB, ERK, JNK, and p38 (Figs.  1, 
2, 3). Anti-IL-10 antibody and wortmannin treatment 
reversed hepatoprotection offered by MS. Thus, an 
association between IL-10 and PI3K was investigated 
(Fig.  4) and treatment with MS increased phospho-
rylation of GSK-3β and AKT after CCl4-induced liver 
injury and wortmannin treatment inhibited activation 
of GSK-3β and AKT (Fig.  4). Wortmannin treatment 
decreased IL-10 (Fig.  2n, o), suggesting that GSK-3β 
was essential for IL-10 expression. This, data suggest 
that MS activates the PI3K–AKT pathway and promotes 
IL-10 expression via activation of GSK-3β which then 
produces an anti-inflammatory effect via the NF-κB and 
MAPK pathways.

Discussion

Methane is one of the simplest organic compounds (Zhang 
et  al. 2016) and it is increasingly being studied for medi-
cal applications. We reported that MS protected against 
LPS-induced inflammation and ConA-induced liver injury 
in several animal models (Zhang et  al. 2016; He et  al. 
2016) and here we report that MS was protective against 
CCl4-induced acute liver injury. CCl4 caused extensive 
necrotic areas and inflammatory infiltration in mouse liver 
sections. Serum ALT and AST were used to establish the 
severity of liver injury (Maes et  al. 2016; Szabo and Pet-
rasek 2015). Treatment with MS significantly decreased 
necrotic areas and inflammatory infiltration and reduced 
serum ALT and AST. Thus, MS reduced liver damage 
induced by CCl4.

Tissue inflammation contributes to liver pathology 
and pro-inflammatory cytokines such as IL-6, TNF-α, 
IL-1β, IFN-γ are associated with the pathogenesis of drug-
induced liver injury (Mackenzie et  al. 2013; Juhaszova 
et  al. 2004). We hypothesized that MS exerted effects by 
reducing inflammation so we measured IL-6, TNF-α, 
IL-1β and IFN-γ mRNA and protein and found that they 

Fig. 4   GSK-3β-mediated IL-10 expression in MS-treated mice is 
promoted via the activation of PI3K–AKT. Mice were pre-treated 
with DMSO or wortmannin (0.7  mg/kg) for 24  h and Western blot 

was used to quantify protein (a, c). Band intensities were quantified 
as ratios of phosphorylated signaling proteins to total proteins (b, d). 
**p < 0.01 vs. sham group, ΔΔp < 0.01 vs. CCl4 + MS group
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were increased in CCl4-treated mice. Treatment with MS 
after CCl4 administration reduced elevations IL-6, TNF-α, 
IL-1β and IFN-γ. CXCL1, MPO and ICAM-1 expression 
are key to the migration of neutrophils (Özdemir-Kumral 
et al. 2016; Zhao et al. 2016) and MS treatment decreased 
chemokines protein and mRNA, confirming anti-inflamma-
tory effects of MS in our mouse model.

IL-10 blocks the inflammatory response (Bekker et  al. 
2016; Yao et al. 2013a, b) and may protect against hepatic 
injury (Peng et  al. 2009; Rood et  al. 2016). MS treat-
ment increased IL-10 protein and mRNA expression and 
inhibition of IL-10 expression with an anti-IL-10 anti-
body reduced elevated ALT and AST, pro-inflammatory 
cytokines and neutrophilic chemotactic factor. Thus, IL-10 
may protect the liver from injury.

IL-10 is reported to modulate the inflammatory response 
by inhibiting NF-κB, ERK/MAPK pathways (Peng et  al. 
2009; Mittal and Roche 2015; Gabrysova et al. 2014), and 
transcription factors such as CREB, NF-κB p50 homodi-
mers, and C/EBPb (Ananieva et al. 2008; Cao et al. 2006; 
Nandan et  al. 2012; MacKenzie et  al. 2013; Sanin et  al. 
2015). However, we did not observe upregulation of activa-
tion of p38MAPK in MS-treated mice. To investigate the 
down-stream mechanism of IL-10, we neutralized IL-10 
expression with an anti-IL-10 antibody and measured phos-
phorylation of proteins activated by NF-κB transcription 
factor and MAPK. Data show that neutralization of IL-10 
partially reversed MS-induced decreased NF-κB p65, 
ERK, JNK and P38 protein phosphorylation. Thus, IL-10 
may inhibit pro-inflammatory cytokine expression via the 
NF-κB and MAPK pathway in MS-treated mice.

The PI3K–AKT–GSK-3β pathway is thought to be a sig-
nificant producer of IL-10 (Beurel et  al. 2010, 2015) and 
the PI3K inhibitor wortmannin inhibited protective and 
anti-inflammatory effects of MS after liver injury induced 
by CCl4. MS treatment increased IL-10 and wortmannin 
decreased them. MS increased and prolonged expression of 
p-GSK-3β and p-AKT, and PI3K inhibition reduced these 
effects indicating involvement of the PI3K–AKT–GSK-3β 
pathway in MS-induced IL-10 production.

Akt is activated by phosphorylation of various enzymes, 
kinases, transcription factors and other downstream factors 
and this downregulates IL-10. The mammalian target of 
rapamycin (mTOR), activation of GSK-3β, and phospho-
rylation of Foxo138-40, so mTOR and Foxo1 may also act 
upstream to mediate p-GSK-3β-induced IL-10 production 
in MS-treated mice.

IκB kinase (IKK) is activated by Akt and this leads 
to the degradation of NF-κβ inhibitor, Iκβ, and enhances 
expression of NF-κB and promotes cell survival. As 
NF-κB was not upregulated in MS-treated mice, how MS 
exerts effects on the PI3K–AKT pathway is unclear, but it 
may act on membrane channels of G-proteins, membrane 

receptor-mediated signaling, or acetylcholine-activated 
ion channel kinetics (Kai et al. 1998; Sokoll et al. 1989; 
Puig et  al. 1988). Alternatively, MS may accumulate at 
interfaces of cell membranes to modulate the function 
of membrane-bound enzymes (Ghyczy et  al. 2008). MS 
easily penetrates membranes and diffuses into organelles 
(Pimentel et  al. 2006; Venardos et  al. 2007), so it may 
penetrate and activate PI3K–AKT, a hypothesis that sup-
ports our observation MS peaked in the circulation of 
mice in 10 min.

The molecular mechanism underlying GSK-3β regu-
lation of anti-inflammatory cytokine expression in our 
study is poorly characterized. Active GSK-3β may reduce 
NF-κΒ activation by enhancing interactions of CREB 
with the CBP, which leads to reduced CBP binding with 
NF-κΒ (53). Alternatively, GSK-3β may facilitate NF-κΒ 
activity by activation of NF-κΒ p65 (Viatour et al. 2004) 
and limitation of NF-κΒ activation in unidentified path-
ways (Schwabe et al. 2002). It is more likely that reduced 
activation of NF-κΒ and p38 MAPK contributes to GSK-
3β-mediated IL-10 production in our study, because 
neutralization of IL-10 partially reversed decreased acti-
vation of NF-κΒ and MAPK. Because the intracellu-
lar signaling pathways controlling IL-10 production are 
complex, how p-GSK-3β regulates IL-10 expression in 
our study was not resolved.

In conclusion, MS protected against CCl4-induced 
acute liver injury as evidenced by liver function enzymes 
and reduced liver injury. MS treatment significantly 
inhibited inflammatory responses likely via activation of 
the PI3K–AKT–GSK-3β pathway and increased produc-
tion of IL-10 and suppressed NF-κB and MAPK sign-
aling in CCl4-treated mice. Furthermore, inhibition of 
IL-10 and GSK-3β reduced the protective effects of MS 
in CCl4-treated mice, suggesting a requirement of IL-10 
for this signaling pathway and the contribution of IL-10 
production to the protective effect of MS.

Our study has some limitations. CCl4-induced liver 
injury has been confirmed in neutrophils and Kupffer 
cells so in future studies, we will focus on IL-10 activ-
ity in different cell types. Also, different time points and 
a MS concentration gradient are needed to understand 
dose and time-responses of MS for hepatic protection 
against acute injury. We must clarify whether hepatopro-
tective effect is restricted to CCl4 hepatotoxicity as well. 
Despite the aforementioned limitations, MS offers a new 
therapeutic strategy for clinical application and our data 
suggest a rationale for developing new pharmacological 
strategies to treat acute liver injury.
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