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Abstract The cellular DNA mismatch repair (MMR)

pathway, involving the DNA mismatch repair genes

MLH1 and MSH2, detects and repairs DNA replica-

tion errors. Defects in MSH2 and MLH1 account for

most cases of hereditary non-polyposis colorectal can-

cer as well as for sporadic colorectal tumors. Addi-

tionally, increased expression of MSH2 RNA and/or

protein has been reported in various malignancies.

Loss of DNA MMR in mammalian cells has been

linked to resistance to certain DNA damaging agents

including clinically important cytotoxic chemothera-

peutics. Due to other functions besides its role in DNA

repair, that include regulation of cell proliferation and

apoptosis, MSH2 has recently been shown to be of

importance for pathogenesis and progression of cancer.

This review summarizes our present understanding of

the function of MSH2 for DNA repair, cell cycle con-

trol, and apoptosis and discusses its importance for

pathogenesis, progression and therapy of cancer.
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MSH2 and DNA mismatch repair

The MSH2 gene is a component of the highly con-

served post-replicative DNA mismatch repair system.

DNA mismatch repair (MMR) proteins contribute to

DNA replication fidelity by removing insertion/dele-

tion loops that result from template primer slippage at

repetitive DNA sequences, and by correcting single

base mismatches that escape polymerase proofreading,

thereby preventing the accumulation of spontaneous

mutations and ensuring the integrity and stability of

the genome (Quinn et al. 1995; Charames and Bapat

2003; Muller and Fishel 2002).

The MMR-System is best described in Escherichia

coli. It consists of the proteins MutS, MutL, MutH and

Uvr. MutS detects mismatches in DNA duplexes and

initiates the MMR machinery (Wagner and Meselson

1976; Cox et al. 1972). It makes a connection between

the recognition of a mismatch and the excision of the

mismatch from the strand within which it is contained

(Sancar and Hearst 1993). This is done by the inter-

action of a MutL homodimer with MutS (Galio et al.

1999) where it stimulates the endonuclease activity of

MutH (Hall and Matson 1999). MutL also loads UvrD,

a DNA helicase II that unwinds the DNA duplex from

the nick generated by MutH (Dao and Modrich 1998;

Hall et al. 1998) onto the DNA. In eukaryotes, MutS

and MutL are represented by multiple orthologs. The

MutS homodimer is represented by two heterodimers

consisting of MSH2/MSH6 and MSH2/MSH3. The

MSH2/MSH6 heterodimer recognizes single base mis-

matches and short insertion–deletion loops in the

DNA. On the other hand the MSH2/MSH3 heterodi-

mer recognizes larger loops. (Genschel et al. 1998;

Umar et al. 1998). MutL is also represented in the

eukaryotes by several heterodimers. There are four

homologs of MutL in both yeast and mammals, MLH1

and Pms2 bind to form a MutL heterodimer. In

addition, MLH3 and Pms1 dimerize with MLH1,

however little is known about their role in response to
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DNA-damage (Kramer et al. 1989; Prolla et al. 1994;

Wang et al. 1999a, b; Hafe et al. 2000a). Extensive

genetic studies in yeast have failed to find orthologs of

MutH and UvrD in the MMR system, and there may

be no homolog of these two proteins in the eukaryotic

genome (Hafe and Robertson 2000b).

MSH2 and cancer

The implication of MSH2 in the pathogenesis of cancer

is well recognized. MSH2 and MLH1 are the most

frequently impaired genes in hereditary non-polyposis

colorectal cancer (HNPCC) (Quinn et al. 1995; Cha-

rames et al. 2003; Muller and Fishel 2002), a familial

condition with a predisposition to cancers of the colon,

endometrium, stomach, ovary, and biliary tracts

(Lynch et al. 1998). Additionally, MSH2 mutations

have been detected in sporadic tumors of the colon

(Lothe et al. 1993), endometrium (Caduff et al. 1996),

stomach (Renault et al. 1996), head and neck (Field

et al. 1995), and prostate (Watanabe et al. 1996).

It has been shown that approximately 30–70% of

patients with a clinical diagnosis of HNPCC have a

germline mutation in one of the MMR genes, most

commonly in MLH1 or MSH2, less often in PMS1,

PMS2, or MSH6 (Aaltonen et al. 1998; Bapat et al.

1999; Leach et al. 1993; Liu et al. 1996; Wheeler et al.

2000). Carriers of mutations in MLH1 or MSH2 have

up to a 70–80% lifetime risk of developing colorectal

cancer (Aarnio et al. 1999; Boland 2000; Vasen et al.

1996). Tumors with MMR abnormalities have a com-

mon phenotype charcterized by microsatellite insta-

bility (MSI). MSI is a genetic mechanism important in

the development of various human cancers that is

characterized by length changes at repetitive loci

scattered throughout the genome (Loeb 1994; Fishel

et al. 1993).

It has been demonstrated that the majority of inac-

tivating mutations in the MSH2 gene leads to a lack of

expression or the expression of a truncated protein not

detectable by the antibody (clone FE11) used in many

studies (Thibodeau et al. 1996; Leach et al. 1996; Ka-

tabuchi et al. 1995; Shia et al. 2004). Therefore, it has

been suggested that the immunohistochemical analysis

of MSH2 protein in tumor tissues may be a useful

screen for the detection of defective MSH2 mediated

mismatch repair. Due to the fact that antibody staining

is more available as compared to DNA analysis in a

clinical setting, it has been speculated that the use of

immunohistochemistry (IHC) may offer a relatively

convenient and rapid technique for prescreening

tumors for defects in the expression of mismatch repair

genes (Thibodeau et al. 1996; Leach et al. 1996; Shia

et al. 2004). In conclusion, it has been shown that

malignancies with inactivating mutations in the MSH2

gene may lack MSH expression.

Increased expression of MSH2 in malignancies

On the other hand, findings reported in the literature

indicate that MSH2 expression is elevated at least in a

part of neoplasm that have no inactivating mutation in

the MSH2 gene. Increased expression of MSH2 RNA

and/or protein has been reported in various malig-

nancies (Srivastava et al. 2004; Leach et al. 2000; Ha-

mid et al. 2002; Hussein et al. 2002, 2006; Aubry et al.

2001; Castrilli et al. 2002; Rass et al. 2001). However,

the underlying mechanisms that cause increased levels

of MSH2 in malignancies are still unknown. It has been

hypothesized that the up-regulation of MSH2 levels

may be related to the genomic instability in malignant

tumors or may be related to an increased cell prolif-

eration rate. Elevated levels for MSH2 have been

shown to be associated with increased proliferation

both in malignant and benign tissues (Srivastava et al.

2004; Leach et al. 2000; Hamid et al. 2002; Aubry et al.

2001; Castrilli et al. 2002; Rass et al. 2001). IHC

staining of Glioblastoma shows an increased number of

cells staining positively for MSH2 in highly proliferat-

ing Grade IV glioblastoma multiforme (GBM) as

compared with Grade II astrocytoma (AS) (Srivastava

et al. 2004). Leach et al. (2000) reported that MSH2

expression was increased in both high- and low-grade

urothelial neoplasms, as compared to normal tissues. In

other studies, 24 cases of endometrial cancer (70.8%)

showed strong immunopositivity for hMSH2 (Hamid

et al. 2002) and positive immunostaining of MLH1 and

MSH2 was detected in all 33 bronchioalveolar carci-

nomas investigated (Aubry et al. 2001). IHC in salivary

gland tumors for the expression of MSH2 and MLH1

revealed immunopositivity in all primary tumor sam-

ples studied, with the carcinomas showing a much

higher proportion of MSH2 and MLH1 positive cells as

compared with low-grade pleomorphic adenomas

(Castrilli et al. 2002). In malignant melanoma and its

metastases, Rass et al. (2001) observed a much higher

protein and mRNA expression of MSH2, as compared

to benign acquired melanocytic nevi.

In prostate cancer a higher Gleason score signifi-

cantly correlated with higher MSH2 expression. Low

MSH2 expression correlated with increased overall,

disease free survival (Prtilo et al. 2005).
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MSH2, growth stimulation, cell cycle progression

and apoptosis

As mentioned before, it has been speculated that the

elevated expression of MSH2 in malignancies may be

associated with a higher rate of cell proliferation. An

increased expression of MSH2 during cell proliferation

was documented by Marra et al. (1996). This increase

was, overall constant throughout the cell cycle,

decreasing slightly in G1 and early S phase, but

increasing in replicative and post-replicative cells.

Additionally, MSH2 protein expression varies in the

normal endometrium throughout the menstrual cycle

and is positively correlated to protein expression of the

proliferation marker proliferating cell nuclear antigen

(PCNA) (Hamid et al. 2002). In the normal endome-

trium, both glandular cells and stromal cells in the

functional layer enter the cell cycle actively during the

proliferative phase of the menstrual cycle. In the

secretory phase, only stromal cells maintain cell pro-

liferation. The expression of MSH2 protein in the

glandular cells of the functional layer was obviously

positive in the proliferative phase. In contrast, weak to

negative expression of this protein was found in the

glandular cells in the secretory phase. In normal

endometrium, expression of MSH2 protein in the

glandular cells of the functional layer changes during

the menstrual cycle. In summary, these findings indi-

cate that the MSH2 protein is induced in association

with cell proliferation. Leach et al. (1996) reported

consistent findings in the normal digestive tract. In

their study, they reported that MSH2 expression was

confined to the replicative compartment in the epi-

thelium of the digestive mucosa, namely, the basal

zone, in the esophagus of the bottom half of the crypts

in the small or large intestinal mucosa. Taken together,

it is possible to speculate that MSH2 protein expres-

sion is controlled under the influence of cell cycle

regulation. In tissues with high proliferative activity,

such as digestive mucosa or endometrium, the increase

in MSH2 protein expression may be required to pro-

tect cells from DNA replication errors. Other authors

speculated that the elevated expression of MSH2 in

malignancies may be due to an induction of MSH2

expression by the p53 protein. In malignant melano-

cytic tumors, an increased MSH2 expression was

shown to be associated with high levels of p53 protein.

DNA damage through UV irradiation has been shown

to cause p53 dependent activation of MSH2 tran-

scription (Scherer et al. 1996).

Since DNA is continuously exposed to genotoxic

stresses, the DNA repair systems must continuously

monitor and repair damaged DNA. Findings published

previously indicate that the association of MSH2

expression with proliferation may be related to MSH2-

induced cell cycle progression or growth stimulation. It

has been demonstrated that MSH2 is induced by

overexpression of the transcription factor E2F, which

plays crucial roles in cell growth control (Iwanaga et al.

2004). Moreover, MSH2 is markedly induced by

growth stimulation in fibroblasts that were rendered

quiescent by serum starvation and then stimulated to

re-enter into the cell cycle synchronously by the addi-

tion of serum (Iwanaga et al. 2004). Additionally,

MSH2 protein expression is increased in normal

peripheral blood lymphocytes when cell proliferation is

induced by mitogen stimulation (Iwanaga et al. 2004).

The induction of MLH1, MSH2 and Rad51 genes by

growth stimulation is conceivable because the lesions

to be repaired are produced more frequently during

DNA replication. It is expected that a higher MMR

gene expression than needed for mismatch correction

is required for checkpoint activation to stop the cell

cycle in case of DNA damage during cell growth (Claij

and Te Riele 2002). This may explain the induction of

MSH2 and MLH1 gene expression by growth stimu-

lation. In contrast, Meyers et al. (1997) reported that

the expression of MSH2, MLH1 and PMS2 showed

only slight (within 50%) changes during the cell cycle.

This discrepancy is likely due to the difference between

cycling cells and cells entering the cell cycle from

quiescence. Several lines of evidence indicate that in

addition to repairing replicative errors within the

genome, the MMR system is a component in signalling

events that activate cell cycle checkpoint or apoptosis

(Zhang et al. 1999; Goldmacher et al. 1986; Kat et al.

1993). Zhang et al. (1999) showed that the overex-

pression of MSH2 and MLH1 but not PMS1 induced

apoptosis in vitro. Additionally, MMR proteins medi-

ate apoptosis in response to exogenous substances or to

UV-B. Cell lines are defective in MMR or MMR

deficient show increased mutation rates and increased

resistance to the genotoxic effects of DNA damaging

agents. Loss of expression of MMR leads to tolerance

of alkylated DNA and may lead to reduced compe-

tence for activation of apoptotic pathways. As shown

for alkylating agents, loss of MMR decreases the cel-

lular response to UV-induced damage. Primary mouse

embryonic fibroblasts (MEFs) from MSH2-null and

MSH6-null mice are less susceptible to the cytotoxic

effects of UVB than wild type MEFs (Peters et al.

2003; Young et al. 2003). Furthermore MMR-defi-

ciency was associated with reduced levels of apoptosis

and increased residual of UVB-induced DNA adducts

in the epidermis and MSH2-null mice developed UVB-

induced skin tumors at lower dosages UVB than wild
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type mice (Young et al. 2004). Furthermore, the ab-

sence of MSH2 also resulted in a reduction in the

phosphorylation of p53.

MSH2-deficient cells are resistant to DNA damag-

ing agents, including methylation agents, cisplatin and

UV radiation (Fink et al. 1998; Wang and Lippard

2005). Studies on the roles of MSH2 in response to

DNA damage permit the assumption, that the MMR

system is believed to trigger a process of DNA

metabolism that activates cell-cycle checkpoints.

MSH2 binds to CHK1 and CHK2 in vivo and in vitro

(Adamson et al. 2005) and this interaction is enhanced

after N-methyl-N¢-nitro-N-nitrosoguanidine (MNNG)

exposure, supporting the assumption that the MMR

system functions as a molecular scaffold at the sites of

DNA damage that facilitates the activation of these

kinases. MNNG exposure results in activation of the

cell cycle checkpoint kinases, ATM (ataxia-telangiec-

tasia-mutated kinase), CHK1, and CHK2, each of

which has been implicated in the triggering of the G2/

M checkpoint response (reviewed in O’Brien and

Brown 2006). The G2/M checkpoint prevents cells

from initiating mitosis when they experience DNA

damage during G2, or when they progress into G2 with

unrepaired damage incurred during the previous S or

G1 phase (Cejka et al. 2003). In addition, MSH2

physically interacts with ATR (ATM- and Rad3-re-

lated kinase) in response to DNA methylating agents

and their interaction is required for the phosphoryla-

tion of CHK1 (Wang and Qin 2003).

MMR is required for the activation of the S-phase

checkpoint in response to ionizing radiation (Brown

et al. 2003). Cells deficient in MMR proteins MLH1

and MSH2 showed ‘‘radioresistant DNA synthesis’’

(RDS), a phentotypic hallmark of ataxia-telangiecta-

sia, and a cancer-prone disorder caused by mutations in

ATM (Painter 1981). Restoration of mismatch repair

function restored normal S-phase checkpoint function

in vitro. In vitro and in vivo studies both show that

MSH2 binds to CHK2 and the association of MLH1

with ATM indicates that the MMR complex formed at

the site of DNA damage facilitates the phosphoryla-

tion of CHK2 by ATM (Brown et al. 2003).

XPC(–/–)MSH2(–/–) mice and derived keratino-

cytes show that the MMR protein MSH2 plays a role in

the generation of the UVB-induced arrested cells: a

MSH2-deficiency lowered the percentage of arrested

cells in vivo (40–50%) and in vitro (30–40%). UV-B-

induced apoptosis is reduced in MSH2-deficient cells,

and it correlates with decreased activation of p53,

which suggests that MSH2 may act upstream of p53 to

induce post UV-B apoptosis (van Oosten et al. 2005).

When cells are exposed to DNA-damaging agents, p53

products accumulate in the nuclei and cause cell cycle

arrest in the G1 phase, preventing the cells from rep-

licating their DNA. After UV exposure, a transient G1

arrest is observed in cells with wild type-p53 (wt-p53),

while cells lacking p53 did not stop in the G1 phase,

suggesting the importance of the wt-p53 function in G1

arrest after UV irradiation (Iwamoto et al. 1999).

Following UV irradiation, p53 activates transcription

of the human MMR gene MSH2. Interestingly, this up-

regulation critically depends on the functional inter-

action with c-Jun (Scherer et al. 2000). However, it

seems that MSH2 and p53 may act as a kind of positive

feedback regulation for the DNA damage response

after UV irradiation and MSH2 have probably also

meaning in UV induced G1 arrest.

MSH2, DNA repair and UV-induced skin cancer

Epidemiologic and in vitro studies have shown that

sunlight exposure is an etiologic agent for the devel-

opment of malignant melanoma (MM) (Fears et al.

1977; Setlow et al. 1993). The important role of the

DNA repair system in the multistep process of MM

tumorigenesis is demonstrated in the autosomal

recessive disease xeroderma pigmentosum, where the

development of multiple skin tumours including

malignant melanoma early in life is associated with

deficient nucleotide excision repair (NER) of pyrimi-

dine dimers induced by UV irradiation (Cleaver 1968,

1969; Sato et al. 1993). The fact that this mechanism

underlies skin cancer in general is supported by the

evidence that UV-fingerprint mutations such as C/T or

CC/TT are frequently found in skin tumours from pa-

tients with and without xeroderma pigmentosum.

Interestingly, disruptions of the DNA MMR genes

mutS and mutL were found to reduce transcription-

coupled NER of the lactose operon in E. coli; and

human cells with mutations in particular MMR genes

were likewise found to have a deficiency in transcrip-

tion-coupled repair of UV-induced pyrimidine dimers

(Mellon and Champe 1996a; Mellon et al. 1996b).

Thus, defective mismatch repair may be a risk factor

involved in the multistep tumorogenesis of MM.

Analysis of MLH1 and MSH2 in malignant melanoma

using various techniques, including polymerase chain

reaction (PCR) assays, in situ hybridization and

immunohistochemistry, demonstrated that it is not

mutation in MLH1 and MSH2, but rather the loss of

expression of these genes (both the RNA and protein

level), that affects tumor progression (Korabiowska

et al. 2000, 2004). Loss of the MMR gene expression

correlated with high aneuploidy ratio (Korabiowska
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et al. 1999) and increased Clark levels (Korabiowska

et al. 2000), observed in negative cases of MM. Dele-

tions in DNA mismatch repair proteins, MSH2 and

MLH1, were present in both lentigo maligna and in

MM and correlated with DNA ploidy-related param-

eters, prognosis and protein expression levels (Kor-

abiowska et al. 2001). Conversely, other studies have

found that MMR levels are increased in the skin tu-

mour as compared to the adjacent normal tissue (Rass

et al. 2000). UVB irradiation can induce apoptosis,

morphologic changes, and altered expression of p53,

Bcl-2, and MSH2 in radial growth phase melanoma cell

lines. While up-regulation of p53, Bcl-2, and MSH2

suggests that these factors are involved in the altered

balance between survival and apoptosis induced by

UVB (Hussein et al. 2006). Furthermore, UVB irra-

diation induces additional mutations in the MMR re-

pair genes MSH2 and MLH1 (Hussein and Wood

2003).

In summary, UV-induced DNA damage is primarily

removed by NER. There is some evidence that MMR

proteins interact with UV-induced DNA damage but

the role of MMR in post UV response has been con-

troversial. MMR proteins interact with NER proteins

(Bertrand et al. 1998) and MSH2/MSH6 heterodimers

bind oligoduplexes containing cyclobutane pyrimidine

dimers (CPD) (Mu et al. 1997; Wang et al. 1999a, b).

Conclusions, future outlook

In conclusion, there is overwhelming evidence for an

important role of MSH2 in various types of cancers.

Interestingly, we know today that the importance of

MSH2 for pathogenesis, progression, and therapy of

these malignancies is not exclusively related to its

function in DNA repair, but is at least in part related to

other, independent mechanisms that include regulation

of cell cycle progression and apoptosis. These newly

recognized functions of MSH2 may in the future not

only lead to a better understanding of cancer patho-

genesis and progression, but may also lead to the

introduction of new cancer therapies that target MSH2

or MSH2-antagonists (e.g. via siRNA or antisense

technology), most likely in combination with cytotoxic

agents.
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