
Abstract DNA damage checkpoint is one of the

surveillance systems to maintain genomic integrity.

Checkpoint systems sense the DNA damage and exe-

cute cell cycle arrest through inhibiting the activity of

cell cycle regulators. This pathway is essential for the

maintenance of genome stability and prevention of

tumor development. Recent studies have showed that

the cellular responses towards DNA damage, such as

cell cycle arrest, DNA repair, chromatin remodeling,

and apoptosis are well coordinated. Here we describe

the molecular mechanisms of checkpoint activation in

response to DNA damage and the correlation between

checkpoint gene mutation and genomic instability.
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Abbreviations

Mammals

ATM Ataxia-telangiectasia-mutated

ATR AT and Rad3-related

NBS Nimegen breakage syndrome

ATRIP ATR-interacting protein

MRN Mre11(Meiotic recombination

protein)-Rad50(Radiation-

sensitive)-Nbs1(Nijmegen breakage

syndrome) complex

Dot1L Disruptor of telomeric silencing-1

large protein

Tip60 Tat-interactive protein, 60 kDa

BRCA1 Breast cancer susceptibility gene 1

53BP1 p53-binding protein 1

MDC1 Mediator of DNA damage

checkpoint protein 1

Gamma-H2AX Phosphorylated H2AX

DNA-PK DNA-dependent protein kinase

Fission yeast

Set9 su(var), e (z), trithorax domain protein 9

Crb2 cut5 repeat binding protein 2

Budding yeast

Esa1 Essential SAS2-related acetyltransferase

NuA4 Nucleosomal acetylation of histone H4

Ino80 Inositol 1-phosphate synthase 80

Swr1 Swi2/Snf2-related

Introduction

In the life of a cell, DNA damage poses a great threat

to genome stability, potentially leading to a loss or

amplification of chromosome activity, which may result

in cellular senescence, cancer or cell death. Among the

many types of damage, double strand breaks (DSBs)

are the most deleterious to cell survival. To maintain

genomic integrity, eukaryotic cells are equipped with

coordinated systems to contend with DNA damage,

including chromatin remodeling, cell cycle arrest,

DNA repair and programmed cell death processes
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(Fig. 1). Numerous key players have been identified

over the years, but their coordination and intercon-

nectedness in damage control have only recently be-

come evident. Two of these in particular, namely ATM

and ATR, function in combination with MRN com-

plexes to recognize damaged DNA and transmit sig-

nals to downstream effectors, thereby eliciting several

events. These cellular mechanisms are important for

determining the potential effects of current cancer

therapies in terms of toxicity and efficacy. Recent

studies have begun to elucidate the molecular events

that lead to cell cycle arrest as coordinated with other

responses. In this review, we discuss cellular responses

to DNA damage in mammals.

Histone modification and chromatin remodeling

Eukaryotic genomic DNA is packaged with histone

and nonhistone proteins into highly condensed chro-

matin structures. Therefore, repair of DNA damage

should include modification and remodeling that would

render chromatin more accessible to DNA repair en-

zymes (Fig. 2). Alteration of the chromatin structure

can be achieved by covalent modification of histone

tails through ATP-dependent chromatin remodeling

(Marmorstein 2001), or by altering the histone com-

position (Lusser and Kadonaga 2003). Recent studies

have shown that modulation of the chromatin structure

also plays a role in the DNA repair process (van

Attikum and Gasser 2005; Hassa and Hottiger 2005) as

well as in transcription and cell cycle checkpoint

activation. One of the earliest modifications of chro-

matin in the damage response is phosphorylation of

histone H2AX at Ser139 by members of the PI3 family

of kinases, PI3KK, ATM, ATR and DNA-PK (Stiff

et al. 2004; Burma et al. 2001; Ward and Chen 2001).

Phosphorylated H2AX, referred to as gamma-H2AX,

covers a region that may extend up to megabases away

from the break sites (Shroff et al. 2004) retaining

the regions for mediator proteins such as MDC1

(Goldberg et al. 2003; Lou et al. 2003; Stewart et al.

2003), 53BP1, BRCA1 and the MRN complex (Paull

et al. 2000).

Recent studies in yeast have revealed that gam-

ma-H2A functions in the recruitment of histone

acetyltransferase, NuA4, and the ATP-dependent

chromatin-remodeling complexes, INO80 and SWR1,

to a region within two kilobases of a break site

(Downs et al. 2004; Morrison et al. 2004; van Atti-

kum et al. 2004; Kobor et al. 2004). The NuA4

complex has histone acetyltransferase activity and

mutants of its catalytic subunit, esa1, are defective in

DNA repair (Bird et al. 2002). INO80 and SWR1 are

conserved members of the family of SWI2/SNF2-like

ATP-dependent chromatin remodeling complexes

and share several subunits with each other. Muta-

tions in subunits of INO80 are less effective in

converting double-stranded DNA into single-stranded

Ino80, Esa1, Tip60, Set9, Dot1L

Rad9/Rad1/Hus1, Rfc/Rad17,  
Chk1, Chk2, Cdc25

Bax, Fas, Noxa, Puma

DNA damage

DNA repairATM/ATR/DNAPKChromatin remodeling

Cell cycle arrest Apoptosis

Mre11/Rad50/Nbs1, 
Ku70/80

Fig. 1 Schematic model of
the cellular response to DNA
damage. DNA damage
activates PI3KKs, such as
ATM, ATR, and DNAPK.
The activated PI3KKs
transmit the signal to several
downstream targets

ATM, ATR, DNAPK Dot1 Set9Enzyme

Function

Localization of 
53BP1, BRCA1, 
Nbs1, Crb2, 
SMC1, NuA4, 
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H4-K20 
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Fig. 2 Histone modification
after DNA damage. DNA
damage induces several types
of histone modifications.
These modifications are
mediated by distinct enzymes
and have unique functions as
shown in the figure
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DNA at DSB ends, resulting in hypersensitivity to

DNA damage (Shen et al. 2000). The SWR1

complex causes chromatin remodeling by exchanging

H2A–H2B histone dimers with histone variant Htz1

(referred to as H2AZ in mammals)—H2B dimers in

nucleosomes (Mizuguchi et al. 2004). Based on the

fact that chromatin remodeling complexes are

recruited near the break site, these complexes likely

unravel the packed chromatin, allowing repair

enzymes to access the DNA. As yet, however, little

is known about the changes in histone acetylation at

near the break sites that trigger the DNA repair

process in mammalian cells. Interestingly, the Tip60

HAT complex, virtually identical to the Esa1 subunit

of the yeast NuA4 complex, is also required for DSB

repair and exchange of gamma-H2AX. Exogenous

expression of Tip60 lacking histone acetylase activity

rendered cells defective in double-strand break

repair. In Drosophila, Tip60 acetylates the phos-

phorylated histone variant, H2Av, and replaces it

with unmodified H2Av. Therefore, histone modifica-

tion and remodeling likely facilitates restoration to

the undamaged chromatin state.

Histone methylation has also been shown to be

linked to the recruitment of checkpoint proteins.

Methylation of lysine 79 on histone H3 which is carried

out by Dot1L is important for the recruitment of

53BP1 to sites of DNA damage (Huyen et al. 2004). In

fission yeast, methylation of lysine 20 on histone H4 is

required for recruitment of the 53BP1 homologue Crb2

to sites of damage, allowing full activation of a DNA

damage checkpoint (Sanders et al. 2004). Thus, histone

modification and chromatin remodeling likely change

the higher order chromatin structure and recruit DNA

repair and checkpoint proteins to the damage sites.

PI3KK

The kinases PI3KK, ATM, ATR and DNA-PK, initi-

ate kinase cascades that ultimately result in DNA

repair, cell cycle checkpoint activation or induction of

cell death (Shiloh 2003).

ATM is mainly activated as a damage sensor in

response to DNA double-strand breaks. Patients

bearing an ATM mutation suffer from a devastating

syndrome called ataxia telangiectasia (AT) that causes

immunodeficiency, genome instability, clinical radio-

sensitivity and a predisposition to cancer (Shiloh 1997;

McKinnon 2004). Although ATM is not essential for

normal cell cycle progression and differentiation, its

kinase activity is stimulated by DSBs (Banin et al.

1998). New insights into the molecular mechanism

responsible for the initial activation of ATM have

recently emerged. Upon DNA damage, ATM is

phosphorylated at Ser-1981 and then dissociates from

an inactive multimer into active monomers (Bakkenist

and Kastan 2003). NBS1 that forms a conserved com-

plex with Mre11 and Rad50 (the MRN complex)

associates with ATM, thereby recruiting it to damage

sites and enhancing its activity (Lee and Paul 2004).

Thus, ATM is likely to be activated through homodi-

mer dissociation via autophosphorylation and recruit-

ment to the site of DNA damage by interaction with

NBS1. However, the mechanism involved in ATM

autophosphorylation is not yet known in detail.

Recently, PP2A has been reported to regulate ATM

autophosphorylation (Goodarzi et al. 2004). In the

absence of DNA damage, ATM associates constitu-

tively with PP2A. DNA damage causes a rapid disso-

ciation of the ATM–PP2A complex, leading to its

autophosphorylation. In addition, ATM is acetylated

by Tip60 histone acetylase and this modification is

important for ATM kinase activity (Sun et al. 2005).

ATR was discovered from its sequence similarity to

ATM and Rad3 (Cimprich et al. 1996) and was shown

to play an essential role in DNA damage repair and

DNA replication checkpoint activation (Abraham

2001). Mutations in ATR have been reported in a

subset of patients with Seckel syndrome, which is a

human autosomal recessive disorder (O’Driscoll et al.

2003). Mice lacking ATR succumb to early embryonic

death, indicating that ATR is essential for cell viability

(Brown and Baltimore 2000; de Klein et al. 2000). ATR

regulates the timing of DNA replication origin firing

(Shechter et al. 2004) and initiation of mitotic events on

centrosomes through phosphorylation of Chk1 (Kra-

mer et al. 2004). Although ATR kinase activity appears

not to be stimulated by damaged DNA or an inappro-

priate replication fork, its subcellular localization is

likely to be regulated by DNA damage or replication

blocks. As a result of processing damaged lesions or in

replication fork stalling, ATR forms a heterodimer with

ATRIP that binds to UV damaged DNA or to RPA-

coated ssDNA (Zou and Elledge 2003), and the affinity

is higher than to undamaged double-stranded DNA. In

in vitro experiments, RPA was shown to stimulate the

binding of ATRIP to ssDNA (Zou and Elledge 2003).

Therefore, the active ATR kinase is localized to the

ssDNA region through the interaction of ATRIP and

RPA, leading to phosphorylation of critical substrates

such as Rad17 and Chk1.

ATR is thought to be unresponsive to DNA double-

stranded breaks, however, it plays a role in the

response to IR-induced DNA damage. Irradiation
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induces the formation of RPA-coated ssDNA gener-

ated by nuclease resection or stalled replication forks

caused by unrepaired SSB/DSB, and this triggers ATR

activation. Consistent with this observation, ATM

regulates the recruitment of ATR to sites of DNA

damage, leading to DSB-induced Chk1 phosphoryla-

tion (Jazayeri et al. 2005).

DNA-PK is also a member of the PI3KK family, and

is composed of a catalytic subunit termed DNA-PKcs

and DNA-binding Ku heterodimer consisting of Ku70/

80 subunits (Lee and Kim 2002). DNA-PK is activated

by DNA damage, recruited rapidly to DSBs and

phosphorylated at multiple sites. Mice deficient in

functional DNA-PKcs show hypersensitivity to IR,

undergo accelerated aging, harbor shorter telomeres

and have defective NHEJ (Espejel et al. 2004).

The principal step in activation of these PI3KKs is

considered to be their recruitment to damage sites. A

conserved motif was identified in C-terminal regions of

NBS1, ATRIP and Ku80, which are required for

interaction with ATM, ATR and DNA-PKcs respec-

tively, and common mechanisms involving this motif

allow these PI3KK partners to function in the recruit-

ment of PI3KKs to the damage sites (Falck et al. 2005).

Once the activated PI3KKs are recruited to the

DNA break sites, they can then phosphorylate their

critical targets. In the case of ATM, the substrates are

NBS1 (Lim et al. 2000; Zhao et al. 2000; Gatei et al.

2000; Wu et al. 2000), BRCA1, SMC1 (Kim et al. 2002;

Yazdi et al. 2002), MDC1 (Goldberg et al. 2003; Lou

et al. 2003; Stewart et al. 2003), 53BP1 (DiTullio et al.

2002), Chk2 (McGowan 2002; Bartek et al. 2001), p53

(Banin et al. 1998; Canman et al. 1998; Khanna et al.

1998). Mammalian cells lacking any of these genes

show decreased viability and impairment at cell cycle

checkpoints. ATR phosphorylates Rad17 (Zou et al.

2002), ATRIP (Cortez et al. 2001), Chk1 (Zhao and

Piwnica-Worms 2001; Guo et al. 2000), and p53

(Tibbetts et al. 1999). Of the many potential substrates

of DNA-PKs reported, phosphorylation of WRN

(Werner protein) appears to be physiologically

important (Karmakar et al. 2002).

Checkpoint signaling

G1/S checkpoint

In the presence of DNA damage, the G1/S checkpoint

prevents replication of damaged DNA through two

distinct signal transduction pathways (Fig. 3). One

involves the degradation of Cdc25A phosphatase that

induces rapid G1/S arrest. Chk2 and Chk1 activated by

ATM and ATR phosphorylate Cdc25A, which is in

turn degraded by the ubiquitin proteasome pathway

(Mailand et al. 2000; Falck et al. 2001). Degradation of

Cdc25A results in the inactivation of Cdk2 and pre-

vents Cdc45 from loading onto chromatin (Arata et al.

2000). Because Cdc45 is essential for the recruitment

of DNA polymerase alpha, lack of Cdc45 in corpora-

tion into the chromatin structure inhibits new origin

firing. This pathway appears to play a role in the initial

G1/S checkpoint arrest. In order to maintain this

arrest, transcriptional responses are mediated by p53,

which is the most frequently mutated tumor suppressor

gene in human cancers (Hollstein et al. 1991; Hickman

et al. 2002; Michael and Oren 2002). Phosphorylation

of p53 on Ser15 by ATM/ATR and on Ser20 by Chk1/

Chk2 inhibits its nuclear export and degradation,

resulting in the accumulation of p53 in the nucleus.

The ubiquitin ligase Mdm2 binds to p53 and promotes

its ubiquitination and degradation, thereby maintain-

ing a low level of p53 protein. ATM also phosphory-

lates Mdm2 on Ser395 and decreases the possibility of

an interaction between Mdm2 and p53, which results in

a p53 accumulation (Khosravi et al. 1999; Maya et al.

2001). Chk2 likely helps to stabilize p53 protein after

DNA damage, although there have been conflicting

(Hirao et al. 2000; Jack et al. 2002; Takai et al. 2002;

Ahn et al. 2003; Jallepalli et al. 2003). The key tran-

scriptional target of p53 is Cdk inhibitor p21, which

inactivates G1/S-promoting cyclinE/Cdk2 kinase. p21

also prevents entry into S phase by RB-mediated

sequestration of transcription factor E2F, thereby

inducing a variety of genes which are required for

entry into S phase (Bartek and Lukas 2001; Lin et al.

2001).

Intra-S checkpoint

During the S-phase, damaged DNA inhibits replica-

tive DNA synthesis, which is referred to as an intra S-

checkpoint. The intra-S checkpoint is regulated by two

distinct pathways, namely ATM/ATR–Chk1/Chk2–

CDC25A and ATM–NBS1–SMC1 (Falck et al. 2002).

Depending on the type of DNA damage, ATM or

ATR phosphorylates Chk2 or Chk1, respectively,

resulting in the phosphorylation and degradation of

Cdc25A (Falck et al. 2002; Zhao et al. 2002; Sorensen

et al. 2003). Downregulation of Cdc25A subsequently

causes inactivation of the S-phase-promoting cyclin E/

Cdk2 and prevents loading of Cdc45 on replication

origins. The phosphorylation of Nbs1 on S343 by

ATM is required for activation of the Nbs1–Mre11–

Rad50 complex and the intra-S checkpoint (Lim et al.
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2000; Zhao et al. 2000). Depending on the phosphor-

ylation state of Nbs1, one of the components of the

cohesion complex, SMC1, is phosphorylated on Ser-

957 and Ser-966 by ATM and this phosphorylation is

required for the intra-S checkpoint (Kim et al. 2002;

Yazdi et al. 2002). Mediator-adaptor proteins, such as

53BP1, BRCA1, and MDC1, also contribute to the

intra-S checkpoint by regulating the phosphorylation

of downstream proteins such as Chk1, Chk2, and

NBS1.

G2/M checkpoint

The G2/M checkpoint prevents cells from entry into

mitosis through the inhibition of cyclinB/Cdc2 kinase

by Chk1/Chk2, p38-mediated subcellular sequestra-

tion, degradation, and inhibition of the Cdc25 family of

phosphatases (Fig. 4). The initiation of G2/M arrest is

also achieved independently with p53. Following DNA

damage, the ATM–Chk2–Cdc25A and/or the ATR–

Chk1–Cdc25A pathways are activated. BRCT motif

ATM ATR 
ATRIP

Rad9 
Rad1 
Hus1

RFC 
Rad17

Mre11 
Rad50 
Nbs1

Chk1Chk1 P

Cdc25A  P Cdc25A

Proteolysis

p53

p21

Cdk4/CyclinD

RB  P

E2F
E2F

Mdc1 BRCA1 53BP1

p53  P

p21

RB

Cdk2/CyclinE,A

Cdc45

Pol α

Initiation of G1/S arrest

Maintenance of G1/S arrest

transcription of S phase genes 

Chk1 P

Cdc25A  P

DNA replication

Fig. 3 Schematic model of
checkpoint signaling
pathways at G1/S in response
to DNA damage. DNA
damage activates ATM and
ATR. The activated ATM
and ATR then phosphorylate
mediator proteins including
MDC1, BRCA1, and 53BP1.
Collaboration of the activated
ATM and ATR, and the
phosphorylated mediators
activate Chk1. The activated
Chk1 ultimately transmits
signals via two distinct
pathways as shown in the
figure
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Fig. 4 Schematic model of
checkpoint signaling at G2/M
upon DNA damage.
Activated Chk1
phosphorylates Cdc25A. The
phosphorylated Cdc25A is
then degradated through the
ubiquitin-proteasome
pathway, resulting in the
inhibition of Cdc2/cyclin B.
The activated Chk1 also
phosphorylates and stabilizes
p53, leading to the induction
of several downstream target
genes including p21, Gadd45,
and 14-3-3 sigma
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proteins, such as 53BP1, MDC1, BRCA1, play roles in

the activation of Chk1 and Chk2. Phosphorylated

Cdc25A leads to its degradation and subsequent inac-

tivation of cyclinB/Cdc2. The roles of WEE1 and

MYT1 kinases in the mammalian G2/M damage

checkpoint control are not yet clear, but it is known

that p53-dependent mechanisms are important for the

maintenance of G2 arrest. The critical targets of p53

are the Cdk inhibitor p21, GADD45 that causes the

dissociation of the Cdc2 and cyclin complex and 14-3-3

sigma, which sequesters the cyclinB/Cdc2 complex in

the cytoplasm (Chan et al. 1999). Cells lacking these

genes exhibit a G2/M checkpoint defect. In addition,

p53 represses the transcription of cdc2 and cyclinB.

Two isoforms of MAP kinase, p38 alpha and p38

gamma, are also implicated in the G2/M damage

checkpoint through the regulation of Cdc25B and

Chk2, respectively (Wang et al. 2000; Bulavin et al.

2001)

Conclusions

The coordinated activation of cell cycle checkpoints,

DNA repair and apoptosis are essential for the main-

tenance of genome integrity and tumor suppression.

Given that mutations or decreased expression of the

genes implicated in checkpoint control are detected in

the most of cancers, proper checkpoint signaling is

essential for preventing cancer. Mutations in Chk1 or

Chk2 have been reported in sporadic or familial can-

cers (Bell et al. 1999). Since abrogation of the G2

checkpoint might be more detrimental in cancer cells

lacking p53 than in normal cells, new anticancer drugs

targeting the G2 checkpoint inhibitor appear to be

important for the development of therapies with fewer

side effects. Currently, Chk1 and Chk2 are considered

potential targets. An approach that combines conven-

tional anticancer treatments such as radiation and

chemotherapy with the use of new small molecule

inhibitors of Chk1 and Chk2 should prove to be

effective in eliminating cancer cells.
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