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Summary

Many receptor-level processes involve the diffusion and reaction of receptors with other membrane-localized mole-
cules. Monte Carlo simulation is a powerful technique that allows us to track the motions and discrete reactions
of individual receptors, thus simulating receptor dynamics and the early events of signal transduction. In this
paper, we discuss simulations of two receptor processes, receptor dimerization and G-protein activation. Our first
set of simulations demonstrates how receptor dimerization can create clusters of receptors via partner switching
and the relevance of this clustering for receptor cross-talk and integrin signaling. Our second set of simulations
investigates the activation and desensitization of G-protein coupled receptors when either a single agonist or both
an agonist and an antagonist are present. For G-protein coupled receptor systems in the presence of an agonist
alone, the dissociation rate constant of agonist is predicted to affect the ratio of G-protein activation to receptor
phosphorylation. Similarly, this ratio is affected by the antagonist dissociation rate constant when both agonist
and antagonist are present. The relationship of simulation predictions to experimental findings and potential
applications of our findings are also discussed.

Introduction

Ligand binding to cell surface receptors initiates a sig-
nal transduction cascade. Early models of signaling
correlated cell responses with the number of ligand
bound receptors by calculating the number of bound
receptors at equilibrium, i.e.

Rbound

Rtotal
¼ ½L�

KD þ ½L� ; ð1Þ

where KD is the equilibrium dissociation constant, [L]
is the concentration of free ligand, Rtotal is the total
number of surface receptors, and Rbound is the number
of ligand bound surface receptors. Other models used
a function based on the quantity Rbound/Rtotal

(Stephenson 1956, Furchgott 1966, Kenakin 1993,
Linderman 2000). In other words, the number of
receptors bound at equilibrium is taken as the key
input the cell detects. More recent studies have sug-
gested that responses may be related to the time course
of receptor binding (especially for responses that occur
long before equilibrium binding is reached) and that
the relationship between bound receptors and
responses may be complicated by the dynamics of
receptor transitions between active, desensitized, or
internalized states (Hoffman et al. 1996, Haugh et al.
1998, Waller et al. 2004).

We believe that receptor dynamics play a key role in
signal transduction. Receptor dynamics are loosely
defined here as dynamic events that the receptors may
participate in, including interactions with other mole-
cules and transitions between various receptor states
(e.g., active, inactive, desensitized, internalized) that
evolve with time. In other words, a quantitative pre-
diction of cell responses elicited by ligand binding may
require knowledge of the timing of events including
and in addition to ligand/receptor binding. In this
paper, we focus particularly on quantitative models
that describe receptor–receptor interactions, receptor–
ligand interaction, receptor-G-protein interactions,
and/or receptor–receptor kinase interactions.

We use mathematical models of receptor dynamics
because the system of interactions between receptors
and between receptors and other molecules is often
too complicated to understand with intuition alone.
These models of receptor dynamics allow us to quan-
titatively assess the response of the system as key
physical parameters are changed. Predictions of the
models give insights into signal transduction mecha-
nisms and can be compared with results from experi-
mental systems to suggest new areas for investigation.
This iterative process using models and experiments
together can help enhance our understanding of cell
signaling.
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Receptor dynamics can be described with several
different mathematical techniques (Lauffenburger &
Linderman 1993, Kholodenko et al. 2000, Woolf &
Linderman 2000, Woolf et al. 2001, Haugh 2002,
Resat et al. 2003). Two common methods are ordinary
differential equations (Hoffman et al. 1996, Bhalla &
Iyengar 1999, Riccobene et al. 1999, Faeder et al.
2003) and Monte Carlo simulations (Shea et al. 1997,
Irvine et al. 2002, Saxton 2002, Shimizu et al. 2003,
Woolf & Linderman 2003a). For example, ordinary
differential equations can be written to describe the
change in concentrations of various molecular species
as a function of time or position. However, in this
mathematical framework individual members of a spe-
cies are indistinguishable, which does not allow them
to adequately simulate discrete processes. In contrast,
the Monte Carlo techniques we describe here can be
used to track the spatial location of individual
molecules as a function of time.

Monte Carlo methods for tracking receptor diffusion

and reaction

Monte Carlo is the name for the technique of solving
mathematical problems with random events (Fishman
1996). A random event has more than one possible
outcome, while a certain event has only one possible
outcome. An example of a random process is diffusion.
A molecule will travel in a random direction that can-
not be predicted in advance.

Cell surface receptors diffuse in the two dimensional
plane of the membrane with a diffusivity of 10)11–10)9

cm2/s (Gennis 1989). Because interactions between
molecules on the cell surface (between receptors or
between receptors and other membrane molecules) pre-
sumably require first the diffusion of the molecules to
adjacent locations, our models will require a descrip-
tion of diffusion. The Monte Carlo implementation of
diffusion is shown schematically in Figure 1. A single
molecule is allowed to move in a random direction;
the molecule moves a distance determined by the diffu-

sivity and simulation time step (Figure 1a). This pro-
cess of picking directions and moving repeats many
times for many different molecules and results in a
sample of possible paths the molecules could take
while diffusing in the cell membrane (Figure 1b). The
simulation collects the positions of molecules for many
different possible paths and gathers statistics on the
movement of molecules.

Monte Carlo models can also simulate reactions
between membrane molecules (Figure 1c). Monte Carlo
models are particularly useful for modeling reactions in
which diffusion plays an important role in determining
the overall rate of reaction (termed ‘‘diffusion-con-
trolled’’ or ‘‘partially diffusion-controlled’’ reactions)
because of the ability to track the spatial location of
molecules. Monte Carlo models are also useful for
modeling events in which the stochastic (probabilistic)
nature of reactions has an impact on the outcome. In
other words, when the number of reaction events per
time is small, the events must be modeled discretely.
Many conditions can cause the number of reaction
events to be small; two examples are when the concen-
trations of reactants are small (e.g., G-protein activa-
tion and receptor phosphorylation) and when the
reaction between molecules lasts for relatively long
periods of time, thus blocking the binding sites from
interacting with other molecules (e.g., receptor dimer-
ization). Stochastic reactions can only be adequately
simulated with discrete methods (Sander 2000). The
four key reactions of interest in this paper – receptor
dimerization, receptor binding to immobilized ligand,
receptor activation of G-proteins, and receptor phos-
phorylation – contain stochastic elements (Shea et al.
1997, Woolf & Linderman 2003) and it is likely that
they are diffusion-controlled or partially diffusion-
controlled (Lauffenburger & Linderman 1993, Mahama
& Linderman 1994, Broday 2000). In fact, our interest
in accurately describing these discrete, diffusion-con-
trolled reactions contributed greatly to our decision to
use the simulation techniques described here.

We note that reactions between membrane receptors
and molecules in solution also occur and could be

Figure 1. Monte Carlo simulation of molecules diffusing and reacting on a two dimensional surface. (a) Molecules are randomly placed on a

lattice. Then one molecule is randomly chosen and a direction for movement is randomly chosen, with each direction given an equal probabil-

ity of being chosen. The molecule moves to the new location unless it is occupied. (b) After a molecule has moved many times, one path that

the molecule could take will be described. One possible outcome for a system with five molecules is shown. The simulation result is an aggre-

gate of many possible paths. (c) Reactions between two molecules are allowed if the chosen molecule is close enough to a molecule of the

appropriate species. Here, black and gray molecules can react and molecules have a non-zero probability of reacting when they are within an

interaction radius (black dotted line), typically equal to the radius of a molecule. For example, the black molecule can react with molecule 1,

but not molecule 2.
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described by Monte Carlo or other probabilistic tech-
niques (Franks et al. 2002, Lee et al. 2003). However,
in most cases the rates of these reactions are expected
to be dominated by intrinsic reaction kinetics and not
diffusion (Lauffenburger & Linderman 1993) and thus
there is less need to track the motions of individual
molecules; simply using the measured association and
dissociation rate constants should be sufficient.

Monte Carlo simulations can be more intuitive to
understand than other modeling methods. As the diffu-
sion example illustrates, Monte Carlo simulations
mimic events at the molecular level by tracking each
molecule’s position and state as a function of time.
The simulation copies the processes that occur in vivo
according to the probability of the event, which is
based on experimental observations. The inputs and
model parameters are molecular properties such as the
diffusivity and binding rate constants and other quan-
tities such as the number of molecules of a particular
species, quantities that have been measured (or pre-
sumably could be) and have a direct connection to the
physical system. Simulation outputs can include the
fraction of molecules in a particular state or the spatial
distribution of molecules (e.g., mean separation dis-
tance or average cluster size). Comparing these results
to experimental observations can be straight-forward
when experimental data are available because these
quantities have an intuitive meaning for the system.

In this paper, we show examples of how Monte
Carlo simulations can be used to examine two different
aspects of receptor dynamics (Figure 2). First, a model
of receptor dimerization is described and the applica-
tion of this model to receptor cross-talk and cell adhe-
sion is discussed. Second, a model of activation and
desensitization of G-protein coupled receptors (GPCR)
is described and then applied to a system with a single
agonist and a system with an agonist and an antago-
nist.

Receptor dimerization: models and results

Receptor dimerization and cross-talk

Many receptors are known to dimerize, and dimeriza-
tion has been suggested to influence cell signaling
although the mechanisms for this are not clear (Hebert
& Bourier 1998, Gomes et al. 2001, Li et al. 2001, Rios
et al. 2001, Laplantine et al. 2002, Myou et al. 2002,
Li et al. 2003). Such dimerization is likely to be at
least partly diffusion-controlled (Broday 2000, Woolf
& Linderman 2003) in other words, the ability of
receptors to diffuse toward (or away) from each other
will be critical in determining the dynamics of dimer
formation.

We have recently used Monte Carlo simulations to
follow receptor dimerization on the cell membrane
(Brinkerhoff & Linderman 2004, Woolf & Linderman
2003). In these simulations, receptors are free to dif-
fuse on a two dimensional surface representing the
cell membrane. When two receptors are close to each
other, they are allowed to form a dimer with a prob-
ability related to the dimerization rate constant kdimer.
Once a receptor dimer is formed, it may diffuse as
such or may dissociate to form two individual recep-
tors with a probability related to the monomerization
rate constant kmono. Receptor dimers are not allowed
to bind to additional receptors; there is a specific
protein–protein interaction between two monomers to
form the dimer and additional binding is not possi-
ble. In the cases we will discuss here, simulations
start as a random arrangement of monomers. Once
the simulations reach equilibrium, data in the form of
snapshots of the molecules are collected over a time
period much greater than the time to reach equilib-
rium. From these snapshots the average cluster size is
measured. Receptors are counted as members of a
cluster if they are separated by less than one receptor
radius (termed the interaction radius, 3 nm for
GPCRs and 6 nm for integrin receptors) from
another receptor in the cluster; note then that clusters
may in general be a mix of nearby dimers and mono-
mers. The simulation results are the combination of
the equilibrium data from many different random
starting configurations.

A key prediction of these simulations is that under
appropriate conditions, receptor dimerization can drive
the formation of larger clusters of receptors on the cell
membrane. In other words, the receptors are able to
self-organize when dimerization is allowed. This clus-
tering uses a partner switching mechanism (Figure 3a).
Partner switching allows multiple molecules to effec-
tively share a single bond and occurs when the pro-
teins diffuse slowly but form and break dimerization
bonds quickly. Under these conditions, multiple pro-
teins can form a cluster of proteins larger than a dimer
pair. The clustering of molecules can be directly

Figure 2. The two systems we will focus on in this paper; (1) recep-

tor dimerization applied to receptor cross-talk and cell adhesion, (2)

GPCR activation and desensitization following the binding of an

agonist in the absence or presence of an antagonist.
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observed from a snapshot of the simulation results.
This snapshot can give an intuitive understanding of
the system. When dimerization is not allowed, the
receptors are spread randomly on the surface (Fig-
ure 3b). When dimerization is heavily favored, the for-
mation of bonds occurs quickly, but the breakage of
bonds occurs slowly and the receptors form many
tightly bound dimers (Figure 3c). Clustering due to
partner switching only takes place when the rates of
dimerization and monomerization are fast and rela-
tively balanced (Figure 3d).

While snapshots of simulation results are illuminat-
ing, it is also useful to obtain more quantitative mea-
sures of clustering by calculating various quantities
from the snapshots and then averaging over thou-
sands of snapshots. For the parameter sets used in
Figure 3, the average cluster size and the cluster size
distribution were calculated. When no dimerization
occurs, the average cluster size is 1.9 receptors per
cluster. This quantity is greater than 1 because some
receptors by chance alone are close enough to be
considered a cluster. Analysis of the cluster size dis-
tribution shows that more than 85% of molecules are
in clusters of size 5 or smaller. When simulation
parameters are changed to strongly favor dimerization
(large kdimer, small kmono), the average cluster size is
increased to 3.2 receptors per cluster. The molecules

are able to dimerize and occasionally two dimer pairs
will be close enough to be considered a cluster,
increasing the average cluster size above 2.0. The
cluster size distribution shows that 65% of the clus-
ters are of size 5 or smaller. Most interestingly, when
weak dimerization is allowed, partner switching is
likely and the average cluster size is increased still
further to 4.2 receptors per cluster, and only 50% of
the receptors are now found in clusters of size 5 or
smaller. While the rate constants for dimerization and
monomerization of GPCRs have not been directly
measured, our estimates (Woolf & Linderman 2003,
Brinkerhoff & Linderman 2004) indicate that GPCR
dimerization occurs at rates that allow significant
partner switching and can create large clusters of
receptors in the cell.

The role of such clustering in GPCR signaling is
unknown. One possibility is that dimerization may
dramatically affect receptor crosstalk, and our simula-
tions can be used to investigate that possibility. One
type of cross-talk occurs when two receptor species
share a common effector (e.g., a G-protein). This type
of cross-talk is presumably a function of the distance
separating the receptor species. In other words, if the
two species are found in close proximity to each
other, sharing a common effector is more likely than
if the two species are spatially segregated (shown

Figure 3. Protein dimerization can generate larger clusters via diffusion-limited partner switching. (a) A schematic of partner switching allows

molecules to effectively share a single dimer bond and form a cluster. The rates of dimerization and monomerization must be fast relative to

the rate of diffusion for partner switching to be significant. (b–d) Single snapshots of receptor clustering from Monte Carlo simulations show

the effect of different values of the dimerization and monomerization rate constants. The receptor is shown as a solid circle for dimers and as

an open circle for monomers; two receptors cannot overlap this radius. The interaction radius is shown by the outer circle, when two receptors

overlap at this distance they are within the same cluster and can form a dimer, but may also remain as monomers. The average cluster size, cal-

culated from many snapshots, is also shown. (b) When no dimerization allowed, the receptors are randomly distributed and the average cluster

size is only 1.9. (c) When dimerization is strongly favored, the receptors are primarily found as dimer pairs and these pairs are randomly dis-

tributed (kdimer = 106/s, kmono = 103/s, diffusivity = 10)9 cm2/s), increasing the average cluster size to 3.2. (d) Only when dimerization is weak

can larger clusters form from an intermingling of dimers and monomers (kdimer = 106/s, kmono = 105/s, diffusivity = 10)9 cm2/s), further

increasing the cluster size to 4.2.
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schematically in Figure 4a). To examine this possibil-
ity, we have performed Monte Carlo simulations of
receptor dimerization with two receptor species pres-
ent (Woolf & Linderman 2003, Woolf & Linderman
2004). Snapshots of these simulations are shown in
Figure 4. The degree of segregation of the two recep-
tor species is quantified by calculating the average
shortest separation distance between receptors of dif-
ferent types. In other words, for each receptor of spe-
cies A the distance to the nearest receptor of species
B is calculated, and these distances are averaged over
all receptors of species A; the same calculation is also
done with the species identities reversed. When recep-
tors cannot dimerize at all, the two receptor species
appear well-mixed (Figure 4b) and the average short-
est separation distance is 8.5 nm (for the simulation
using parameter values given in the legend to Fig-
ure 4). When receptors can homodimerize, large
homogenous clusters form (Figure 4c) and the aver-
age shortest separation distance is increased (11 nm).
In this case, each receptor species is colocalized in a
homogeneous cluster and because diffusion is slow,
each cluster would only have access to the local pool
of G-proteins. This association of receptor clusters
with spatially segregated pools of G-proteins would
reduce cross-talk because receptors would be unable
to deplete another receptor’s pool of G-proteins. Such

a lack of cross-talk has been reported in one system
(Graeser & Neubig 1993). Finally, receptor heterodi-
merization (Figure 4d) reduces the average separation
distance to 5 nm. In this case, cross-talk would be
expected because the receptor species share common
pools of G-proteins. Thus, receptor homo- and hete-
rodimerization are predicted to modulate receptor
crosstalk and influence cell signaling. Further, because
for some receptor types ligand binding is known to
influence a receptor’s ability to dimerize (Rodriguez-
Frade et al. 1999, Rocheville et al. 2000), this modu-
lation may be ligand-dependent.

The predictions from simulations of receptor dimer-
ization are, as described above, snapshots of receptor
positions, average cluster sizes and cluster distribu-
tions, and distances between molecules. It will be
important to compare these predictions with experi-
mental measurements. Although such numbers are not
now readily available from experiment, it is likely that
these will be in the not too distant future. For exam-
ple, techniques such as fluorescence energy transfer
(FRET) or cryo-AFM might be used to gain informa-
tion on receptor clustering and distances between
receptors (Angers et al. 2000, Cornea et al. 2001,
Liang et al. 2003). In addition, experiments examining
crosstalk in the presence of various ligands can be
interpreted through this new lens of dimerization

Figure 4. Protein dimerization can influence cross-talk between two receptor species. (a) Homo-dimerization of two species (one black, the

other gray) of receptors can change the organization of receptors on the surface. When the receptors are clustered into different regions of the

cell, the species are isolated from each other and cross-talk between the receptors can be reduced. (b) When no dimerization is allowed, the

two species are well-mixed and the separation distance is 8.5 nm. (c) When homo-dimerization is allowed, large homogeneous receptor clusters

are created. The separation distance between the two species is increased to 11 nm, minimizing cross-talk. This effect is also shown in Fig 4a.

(d) When receptors can hetero-dimerize, large heterogeneous clusters are created. The separation distance between the two species is only 5 nm,

the two species are closer together than when no dimerization is allowed. By minimizing the separation distance between the two different types

of receptors, cross-talk is presumably increased. Parameters: diffusivity = 10)11 cm2/s, concentration of species A = species B = 100/lm2, for

dimerizing species kdimer = 106/s, kmono = 103/s.
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interactions (Woolf & Linderman 2004), and new sim-
ulations and experiments suggested. Thus we expect
that an interplay between modeling and experimental
work will be used to determine the role that receptor
dimerization plays in signaling.

Receptor dimerization and cell adhesion

Cell adhesion is mediated by adhesion receptors, par-
ticularly integrins. Integrins bound to immobilized
ligands form a mechanical attachment between the cel-
lular cytoskeleton and the cell’s external environment,
and clustering of integrins is necessary to initiate the
signaling cascade that creates this attachment (Miyam-
oto et al. 1995). Integrin clustering can be caused by
binding to multivalent ligands (Koo et al. 2002,
Rowley et al. 2002). An additional physiological mech-
anism for generating integrin clusters (>2 integrins) is
integrin dimerization. Integrin dimerization has been
observed, but, as in the previous example, the role of
dimerization in integrin function is unclear (Li et al.
2001, Laplantine et al. 2002, Myou et al. 2002, Li
et al. 2003). However, based on the results described
above, we suspect that integrin dimerization may play
an important role in organizing integrin receptors dur-
ing adhesion.

We have developed Monte Carlo simulations to
follow both the dimerization of integrins and the
binding of integrins to immobilized ligands in order
to elucidate the interplay between integrin dimeriza-
tion and specific arrangements of ligands on integrin
clustering (Brinkerhoff & Linderman 2004). Our
results are shown schematically in Figure 5. We first
investigated the effects of dimerization and ligand
binding separately. Monte Carlo simulations of inte-
grin dimerization without ligand binding show that
clusters of integrins can form (similar to the clusters
in Figure 3). For the parameters representative of in-
tegrin receptors and used in our simulations, the
calculated average cluster size is 3.1 integrins per
cluster. To assess the impact of ligand organization,
we simulated integrin binding to immobilized ligand
in the absence of dimerization. When integrins bind
to randomly arranged ligands the integrins are also
randomly distributed and the average cluster size is
1.5 integrins per cluster, similar to the cluster size
when integrins diffuse freely without ligand binding
or dimerization. When integrins bind to ligands
arranged into ‘‘islands’’ (to mimic a multivalent
ligand by creating regions of high ligand concentra-
tion separated by regions devoid of ligand), the aver-
age cluster size is increased to 4.4.

Finally, we simulated integrins that both dimerize
and bind to ligand. When dimerizing integrins bind
to randomly arranged ligand the average cluster size
is 4.8 integrins per cluster. The cluster size is limited

by the competition of two effects: dimerization acts
to cluster the integrins but the randomly spread
ligand acts to spread the integrins over the surface.
In contrast, when ligands are placed in islands with
an optimal spacing of ligands, dimerization and
ligand binding effects are synergistic and the average
cluster size is increased further to 9.7 integrins per
cluster. This optimal spacing is approximately equal
to 15 nm, an intermediate distance between the maxi-
mum distance at which dimerization can occur
(21 nm) and the minimum distance between two
ligands that are both available to bind integrins
(9 nm). Thus, the simulations can be used to predict
optimal ligand arrangements to increase integrin clus-
tering, possibly affecting cell adhesion/signaling.
Experiments to test these predictions can be done by
patterning ligand surfaces with a technique such as
soft lithography (Shim et al. 2003), or by covering a
surface with a controlled mixture of polymer mole-
cules containing a specific density of ligand and unli-
gated polymer molecules (Koo et al. 2002, Rowley
et al. 2002).

Figure 5. The dimerization of integrins and arrangement of ligand

can compete or cooperate for integrin clustering and ligand binding.

This is a schematic representation of integrin clustering and ligand

binding for combinations of integrin dimerization and ligand

arrangement. Each combination of dimerization and ligand condi-

tions shows a schematic description of simulation results and the

average cluster size calculated from simulations. The largest integrin

clusters are formed when the integrins can dimerize and the ligand is

arranged into islands. Parameters: diffusivity = 10)11 cm2/s, kdimer

= 105/s, kmono = 103/s, kbind = 10)7 cm2/s, kunbind = 1/s, ligand

density 1047/lm2, 9 ligands/island.

672 C. J. Brinkerhoff et al.



Activation and desensitization of G-Protein coupled

receptors: models and results

Agonist-induced Activation and Desensitization

Agonist–receptor binding can trigger both activation
and desensitization. For GPCRs, the initial phases of
the activation and desensitization pathways occur pri-
marily at the cell membrane and are shown in
Figure 6. Agonist binding is associated with the active
receptor conformation and leads to G-protein activa-
tion. The active G-protein initiates intracellular path-
ways leading to responses (e.g., via Ca2+ or cAMP)
but, importantly, also initiates a desensitization path-
way (Krupnick & Benoric 1998). The Gbc subunit
recruits a receptor kinase to the membrane. Once
attached to the membrane, the receptor kinase can
phosphorylate receptors and in doing so target them
for arrestin binding and eventual internalization.

G-protein activation and receptor phosphorylation
processes stem from the same initial event (agonist–
receptor binding) and therefore might be expected to
be linearly related. However, experimental evidence
from the l-opioid and dopamine D1A receptor systems
suggest that G-protein activation and receptor phos-
phorylation are not linearly related (Yu et al. 1997,
Lewis et al. 1998, Zhang et al. 1998), while data from
the b2-adrenergic system show such a linear relation-
ship (Benovic et al. 1988). If one could identify ligand-
specific parameters that influence the relationship
between activation and desensitization, this might
allow the design of agonists that maximize activation
and minimize desensitization.

Mathematical models of the GPCR activation and

desensitization processes can be used to decipher the
relationship between activation and desensitization in
different systems. To first study the activation process
alone, we developed Monte Carlo simulations that
included agonist binding, G-protein activation, hydro-
lysis of GTP by the Ga subunit, and recombination of
the Ga-GDP and Gbc subunits (Mahama & Linderman
1994). Our simulations demonstrated that the agonist
dissociation rate constant koff-ag can significantly affect
the amount of G-protein activation when cases of
equal receptor occupancy are compared. At one
extreme, a very tightly binding agonist (very small dis-
sociation rate constant koff-ag) binds receptors. The
resulting agonist–receptor complex is long-lived and
thus activates nearly all the nearby ‘‘local’’
G-proteins. In other words, diffusion of receptors and
G-proteins is slow enough (D ¼ 10)10 cm2/sec) that
the supply of ‘‘activate-able’’ G-proteins is depleted
near these agonist–receptor complexes. As koff-ag is
increased, the agonist–receptor complex produces more
activation per bound receptor than when koff-ag is small.
This is because the agonist–receptor complex lifetime
is decreased, agonists rapidly move among free recep-
tors on the cell surface, and the depletion of ‘‘activate-
able’’ G-proteins near any one receptor is decreased.
For example, if 25% of the receptors are bound by
agonist, our Monte Carlo simulations predict that
G-protein activation can be increased up to 2.5-fold
when koff-ag is large compared to when koff-ag is small
(Mahama & Linderman 1994). This prediction is con-
sistent with data in the a1-adrenergic and b-adrenergic
receptor systems (Mahama & Linderman 1995, 1993).

With an understanding of how agonist properties
(in particular the agonist–receptor dissociation rate
constant koff-ag) may influence G-protein activation,
we next turned to receptor phosphorylation, an early
step in the desensitization pathway. Because receptor
phosphorylation is initiated by receptor activation, it
should be affected by koff-ag as well. We assume that
unoccupied receptors cannot be phosphorylated
(Bunemann et al. 1999). We also included in our
Monte Carlo simulations the ability of different agon-
ists to bias the receptor into the active state, an effect
captured in the ligand-specific conformational selectiv-
ity factor a (Woolf & Linderman 2003a). In
Figure 7a, the increase in activation with increasing
values of koff-ag is shown, as described above. Also
shown is the increase in receptor phosphorylation,
expected because activated G-proteins recruit the kin-
ases that perform the phosphorylation. However,
increasing koff-ag does not increase G-protein acti-
vation and receptor phosphorylation proportionally;
this is best seen by calculating the ratio of G-protein
activation to receptor phosphorylation (termed
GARP). At an intermediate value of koff-ag the
GARP value is a maximum (Figure 7b). The explana-
tion for this result involves the interplay between

Figure 6. Processes that affect G-protein activation and receptor

desensitization. (a) Receptors bind to agonist or antagonist accord-

ing to the concentration and binding kinetics of each ligand. Antago-

nist-bound receptors are blocked from any further action (G-protein

activation or receptor phosphorylation) agonist-bound receptors can

assume an active conformation. (b) Receptors in an active state bind

to and activate a G-protein, splitting it into Ga and Gbc subunits.

The Gbc subunit can recruit receptor kinase to the membrane, lead-

ing to receptor phosphorylation and ultimately desensitization.
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receptor occupancy by agonist and the arrival of
receptor kinases (for the same number of agonist–
receptor complexes). In a possible scenario, agonist
may bind to receptor, cause G-protein activation, and
dissociate before the arrival of a receptor kinase,
leaving the receptor unable to be phosphorylated.
Thus activation of G-protein occurs without receptor
phosphorylation. This event is most likely to occur
when koff-ag is at an intermediate value: if koff-ag is
small, the agonist is likely still bound when the
kinase arrives, and if koff-ag is large, agonist may not
only dissociate but also rebind before the kinase
arrives. The surprising implication of these calcula-
tions is that drugs might be designed not only to
enhance activation but also to minimize desensitiza-
tion (i.e. to maximize the GARP value), and that this
could be accomplished by altering the agonist-recep-
tor dissociation rate constant koff-ag.

Effect of antagonist on agonist-induced activation and
desensitization

In the previous section, we described how a single ago-
nist ligand can influence activation and desensitization.

However, in vivo multiple ligands can compete for
receptor binding. How would competition between an
antagonist drug and an endogenous agonist ligand
affect receptor activation and desensitization? To
address this question, we performed simulations using
the model described above with both an agonist and
antagonist present.

Note first that in previous Monte Carlo simulations
of G-protein activation alone, we have shown that a
slowly dissociating antagonist has two effects on ago-
nist-induced activation (Mahama & Linderman 1995).
First, and obviously, the antagonist competes with the
agonist for receptor binding sites. Second, and less
obviously, the amount of activation produced per ago-
nist-occupied receptor is reduced. This is because diffu-
sion of G-proteins in the membrane is slow, and thus
G-proteins near antagonist-bound receptors are not
readily accessible to agonist-bound receptors. For
example, for parameters representative of the a1-adren-
ergic receptor system, when 25% of receptors are occu-
pied by agonist and no antagonist is present, G-protein
activation is 20% higher than when 25% are bound to
agonist and 60% are bound to antagonist and 40%
higher than when 25% are bound to agonist and 75%
are bound to antagonist (Mahama & Linderman 1995).

We now turn to simulations that include both G-
protein activation and receptor phosphorylation, in
order to predict the GARP value when both an ago-
nist and an antagonist are present. In particular, we
have begun to explore the effect of the antagonist dis-
sociation rate constant, koff-antag. We assume that
antagonist-occupied receptors, unlike agonist-occupied
receptors, cannot be phosphorylated by receptor kinas-
es (see Figure 6). The agonist association and dissocia-
tion rate constants are held fixed, and the antagonist
dissociation rate constant, koff-ag is varied (but the
antagonist association rate constant, kon-antag is held
fixed by varying the concentration of the antagonist).
In these simulations, antagonist occupies 59% of the
receptors, agonist occupies 2.5%, and the remaining
38.5% of the receptors are unbound when equilibrium
binding is reached. G-protein activation increases for
increasing values of koff-antag, when cases of equal
receptor occupancy by agonist are compared. As koff-
antag is increased, antagonist dissociates from receptors
more frequently, so agonist has more opportunities to
access those previously antagonist-bound receptors
and their nearby G-proteins. Receptor phosphoryla-
tion also increases with increasing values of koff-antag,
because the presence of increasing numbers of acti-
vated G-proteins allows for increased membrane
recruitment of receptor kinase.

Interestingly, our simulations again show that G-pro-
tein activation and receptor phosphorylation do not
increase proportionally with changes in koff-antag, as can
been seen from the GARP value (Figure 8b). The
GARP value has a maximum for intermediate values of
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Figure 7. Predicted effects of the agonist dissociation rate constant,

koff-ag, on the initial rates of G-protein activation and receptor phos-

phorylation (or their ratio, termed GARP) when a single agonist

ligand is present. (a) Increasing the koff-ag , the agonist dissociation

rate constant, increases both the rate of G-protein activation and

receptor phosphorylation when cases of equal receptor occupancy are

compared. (b) The GARP value is calculated by taking the ratio of

data in (a) to show the relationship between the GARP value and

the koff-ag. GARP is a maximum at intermediate values of koff-ag.

Parameters: diffusivity =10)11 cm2/s, receptor concentration =

1000/cell, G-protein concentration = 33,000/cell, kon-ag = 107/M.sec,

2.5% of receptors occupied by agonist and active 10% of the time.
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koff-antag. Again, the explanation for this result involves
the interplay between receptor occupancy and arrival of
receptor kinases. The presence of an antagonist reduces
the ability of agonist to rebind to a receptor, especially
for the case shown (much higher occupancy of recep-
tors by antagonist than agonist). In a possible scenario,
agonist binds to receptor, and G-proteins nearby are
activated. Agonist then dissociates, but by the time
receptor kinase arrives the receptor is either antagonist-
bound or unoccupied and the receptor cannot be phos-
phorylated. Under these conditions, the amount of G-
protein activation is high and receptor phosphorylation
is low, so the GARP ratio is a maximum. At small val-
ues of koff-antag, the antagonist dissociates from recep-
tors only infrequently, the agonist is not able to move
among receptors, and the GARP ratio is low. At large
values of koff-antag, antagonist dissociates from the
receptor many times during the lifetime of the receptor
kinase and thus increases the number of opportunities
an agonist has to bind that receptor and allow receptor

phosphorylation. Under these conditions, both the
amount of G-protein activation and receptor phosphor-
ylation are high and the GARP ratio is low. Similar to
the case of a single agonist alone, when an agonist and
antagonist are present intermediate values of koff-antag
allow maximal GARP ratios.

A better understanding of the effect of competition
between ligands on receptor activation and phosphory-
lation may have application to the dopamine D2 recep-
tor. In this system, the endogenous agonist is
dopamine and antagonists for the receptor are admin-
istered as antipsychotic drugs (Kapur & Seeman 2001).
It has recently been observed that the actions of two
classes of such drugs, termed ‘‘typical’’ and ‘‘atypical’’
antipsychotics, correlate with the affinity of the antag-
onist for the receptor and the antagonist dissociation
constant, koff-antag (Seeman 2002). Atypical drugs
(which have fewer extrapyramidal signs and symp-
toms) have a lower affinity and larger koff-antag for the
receptor than dopamine, while the typical drugs have a
higher affinity and smaller koff-antag than dopamine.
Our simulations show that differences in koff-antag could
result in different values of GARP, which may contrib-
ute to the differences seen clinically.

Thus, it is important to understand the consequence
of competition between multiple ligands to understand
the impact a drug will have in vivo. Monte Carlo mod-
eling may help to direct the search for an antagonist
that can minimize agonist-induced receptor desensitiza-
tion while maximizing signaling or efficacy. Typically,
antagonist drugs are designed with a high affinity for
receptor (low koff-antag). However, these simulations
predict that an intermediate value of the antagonist
dissociation rate constant koff-antag may produce more
desirable antagonists.

Discussion

Here we have described several models of signal trans-
duction systems to demonstrate the usefulness of
Monte Carlo simulations in modeling receptor dynam-
ics with an eye toward understanding cell signaling.
We chose to use Monte Carlo simulations because the
events we modeled rely on diffusion-controlled, dis-
crete reactions. One of the systems we investigated was
receptor dimerization. Our method can also be used to
analyze more complicated dimerization interactions in
larger systems and to guide the interpretation of exper-
imental measures of signaling (Woolf & Linderman
2004). These simulations can also predict ligand pat-
terns that could be used in designing biomimetic
materials to manipulate cell adhesion. In addition, we
also used Monte Carlo simulations to predict the effect
of agonist and antagonist dissociate rate constants,
koff-ag and koff-antag, on two cell signaling events,
G-protein activation and receptor phosphorylation.
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Figure 8. Predicted effects of antagonist dissociation rate constant,

koff-antag, on the initial rates of G-protein activation and receptor

phosphorylation produced by an agonist. The agonist’s properties

are held constant at the same conditions as Figure 7, with koff-ag =

1000/s, shown here for comparison as ‘‘No antag’’. (a) The initial

rates of G-protein activation and receptor phosphorylation increase

with increases in koff-antag. (b) The GARP value is calculated by tak-

ing the ratio of data in (a). The GARP value is a maximum at inter-

mediate values of koff-antag. Parameters: diffusivity = 10)11 cm2/s,

receptor concentration = 1000/cell, G-protein concentration =

33,000/cell, kon-ag = 107/M.s, 2.5% of receptors occupied by agonist

and active 10% of the time, kon-antag = 108/M.s, 59% receptors

occupied by antagonist.
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The predictions of our simulations may find applica-
tion in drug design for many GPCR systems.

Other receptor dynamics systems that have diffu-
sion-limited and/or stochastic reactions could be mod-
eled using Monte Carlo simulations. One example is
the assembly of signaling complexes. The formation of
signaling complexes provides a level of organization of
signal transduction molecules (receptors, effectors and
second messengers) that can provide a dynamic system
to concentrate reactants and allow integration and
cross-talk of cellular signals (Bray 1998). Signaling
complexes have important roles in bacterial chemo-
taxis (Stock & Surette 1996), T-cell activation
(Berridge 1997) and the formation of focal contacts in
cell adhesion (Jockusch et al. 1995).

Finally, although not the focus of this paper, model
validation through experiment is essential. With the
growing capabilities of molecular biologists to alter the
structures of receptors, ligands, and effectors, there is
the opportunity to directly test many of our models by
intentionally modifying key kinetic rate constants and
other system parameters. New methods for studying
the locations of molecules on the cell surface, together
with kinetic analysis of receptor systems, will create
more situations where models will be useful and even
essential to understanding the role that receptor
dynamics play in cell signaling processes.
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