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Summary

In this paper we take the view that computational models of biological systems should satisfy two conditions –
they should be able to predict function at a systems biology level, and robust techniques of validation against bio-
logical models must be available. A modelling paradigm for developing a predictive computational model of cellu-
lar interaction is described, and methods of providing robust validation against biological models are explored,
followed by a consideration of software issues.

Introduction

In this paper we take the view that computational
models of biological systems should satisfy two condi-
tions – they should be able to predict function at a
systems biology level, and robust techniques of valida-
tion against biological models must be available.

Cell biology, molecular biology, genomics, proteo-
mics are providing, in a qualitative, reductive manner,
an enormous volume of data on biological mechanisms.
To understand these mechanisms in a predictive manner
requires the integration of this data through computa-
tional models. This integration can take place at many
levels from the molecular up to the whole body. We are
principally concerned with how cells interact to form a
tissue, and in particular, epithelial tissue. This is a
‘grand challenge’ project which aims to integrate com-
putational and biological models of the social behaviour
of cells within epithelial tissue. The aim is to develop a
computational model of cell behaviour within the con-
text of tissue architecture, differentiation, wound repair
and malignancy. We are developing a novel computa-
tional paradigm for modelling the social behaviour of
cells, closely coupled to biological models which will
provide both experimental data and validation. The
modelling paradigm is to model individual autonomous
cells as software agents, with structural and functional
complexity an emergent property of cell assemblies.

Tissue structure does not exist in advance of its
growth – there is no ‘hidden structure’ that is popu-
lated by dividing cells – the structure is an emergent
property of the interaction of large numbers (107–108)
of cells. The emergence of order from highly complex
systems without an over-arching plan is a fundamental
feature of biological processes. The hypothesis under-
lying our modelling paradigm is that the histioarchitec-
ture is determined by the equivalent of biological rule

sets for cells (normal rule sets leading to normal tissue
structure and abnormal ones leading to a pathologi-
cally abnormal structure – of which there are a num-
ber of benign and malignant examples in epithelial
tissues). The emergent property of epithelial histioar-
chitecture is a consequence of the rule set of that cell
type, and determines the consequences of cell to cell
and cell to matrix interactions. If our hypothesis is
correct than assigning rule-sets to our software agents
should lead to predictive modelling of epithelial tissue
structure.

Computational models of epithelial tissue at cellular and

tissue level

We concentrate on the interaction of individual cells to
form fully differentiated tissue, so need to be able to
model both the physical properties of individual cells
and how the cells interact through the physical forces
acting on the cells. Models of the behaviour of individ-
ual cells and tissue can be divided into two classes: those
which use postulated mechanisms in order to mimic cell
growth (illustrative models) and those which build on
known properties of the cells (explanatory models). The
last three decades have seen the development of a num-
ber of models examining various aspects of cell culture
and tissue behaviour. Models have varied considerably
in terms of implementation and underlying concepts
and assumptions, but have tended to increase in size
and complexity in parallel with improvements in com-
puter processing speed and capacity. Individual biologi-
cal cells in a tissue or cell culture can be modelled as
cellular automata, thus enabling the execution of rule
sets according to the internal properties or parameters
of each cell, and possibly its environment. Lim and
Davies (1990) used a combination of cellular automata
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and Voronoi graphs to examine the growth rate and
shape of cell clusters, with stochastic cell growth and
division and cell death. Both Zygourakis et al. (1991a,b)
and Forestell et al. (1992) used a purely automaton-
based approach allowing stochastic selection of division.
An important rule incorporated into these early autom-
aton-type models is that of contact inhibition. Ruaan
et al. (1993) introduced an extra element of complexity
in considering the tendency of cells to spread if sufficient
space is available, and regain a spherical shape and
hence generate additional space for growth and division
at higher cell densities. Cells were given the ability to
migrate in order to find space for growth and division.
The idea of random migration was further developed by
Lee et al. (1995).

In addition to providing an insight into patterns
observed in tissue culture growth, modelling has been
used as a tool to simulate the formation of more com-
plex tissue structures. Ryder et al. (1999) simulated the
development of the human cerebral cortex based on
random migration, and the difference in cell cycle
characteristics observed in cells of different ages. Stekel
et al. (1995) developed a model of the morphogenesis
and homeostasis of the human epidermis. This is an
illustrative model, with rules formulated to simulate
observed behaviour, and not on the basis of well
understood mechanistic behaviour of individual cells.
For instance, one of the rules stipulates that stem cells
emit a substance called ‘stem cell factor’, the concen-
tration of which can be sensed by other cells in the
model. Morel et al. (2001) incorporated two distinct
hierarchies in their model of epithelial tissue: a kine-
matic model of cell cycle regulation, incorporating
both intracellular components (e.g., cyclins) and
response to extracellular stimuli (e.g., growth factors)
and a Voronoi graph-based tissue architecture model,
with individual cells represented by polygons. In addi-
tion to models of development and behaviour associ-
ated with specific tissues such as epithelium or cortex,
general embryonic morphogenesis has continued to be
a field of active research. Hogeweg (2000) built on a
more basic earlier model (Savill & Hogeweg 1997) to
construct a two level hierarchical simulation of the
effect of morphogenic evolution on cell differentiation
and differential adhesion.

One major factor absent in all the models discussed
so far is the explicit consideration of forces acting on
cells, and the resulting deformation and movement. In
general, models that attempt to simulate the effect of
physical forces are continuum, rather than automaton
or agent based. Examples include the work of Brod-
land and Chen (2000) and Chen and Brodland (2000)
who used finite element models to simulate various
morphogenic process, such as stretching and engulf-
ment, for confluent sheets consisting of a pre-deter-
mined number of cells. Interestingly, in contrast with
the earlier energy-based models of Glazier and Graner

(1993), the results of these simulations suggested that
differential adhesion alone is not sufficient to result in
the sorting of a heterotypic cell population.

Palsson (2001) proposed a model which simulates
three-dimensional morphogenic processes using an
automaton rather than continuum based approach.
Cells in this model are considered as individual entities
that can respond to the environment according to the
values of their internal parameters, and physically
interact via contact forces. Each cell has viscoelastic
properties, and moves and deforms according to the
equations of motions and deformation. The capacity
exists to assign different properties or parameters
according to designated cell type. Simulations pro-
duced using this model suggest that tissue structure
and cell sorting can arise from differences in cell adhe-
sion properties, and movement in response to a
chemotactic gradient. Three-dimensional embryonic
models have been produced consisting of up to 10,000
‘cells’, each representing 4–16 actual biological cells. In
common with many of the previous simulations of
morphogenic behaviour, this model does not include
the capacity for cell division and differentiation.

Linking external forces applied to the cell(s) to inter-
nal events (mechanotransduction) is essential, so simple
continuum models comprising a continuous elastic shell
surrounding a continuous viscous or visco-elastic core
can be discounted. There is a considerable literature on
the mechanical properties of erythrocytes and the
erythrocyte skeleton (e.g., Boey et al. 1998, Discher
et al. 1998) at a level of detail which is far too great for
a tissue model, but which could provide starting points
for a hierarchical model of the cell. Shafrir and Forgacs
(2002) developed a model cytoskeleton consisting of
rigid rods connected through springs, and examined
the energy transfer properties of the model. Tensegrity
has been proposed as a structural framework for cell
mechanics (Ingber 1993, 2003, Stamenovic et al. 1996),
and has generated some controversy (Ingber et al.
2000). At a simpler level, Brodland and Veldhuis
(2002) have used a finite element model with edge ten-
sion applied using linked struts to study mitosis, and
Palsson (2001) used orthogonal non-linear elements
with constant volume constraint in a model which was
able to demonstrate cell sorting due to differential
adhesion. To the best of our knowledge, this is the only
model which attempts to simulate three-dimensional
morphogenic processes using an automaton rather than
continuum based approach. Cells in this model are con-
sidered as individual entities that can respond to the
environment according to the values of their internal
parameters, and physically interact via contact forces.
Each cell has viscoelastic properties, and moves and
deforms according to the equations of motions and
deformation. The capacity exists to assign different
properties or parameters according to designated cell
type.
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An agent model of cellular interaction

The agent model of cellular interaction has been
described in detail elsewhere (Walker et al. 2004a,
Smallwood et al. 2004). A brief description of
the model is given to inform discussion of validation
methods.

Many biological systems seem to be based on local
processing capabilities from which the overall system
behaviour emerges rather than being organised as
some high level control system which determines what
each component, a cell in this case, is to do under the
specific circumstances pertaining at that moment. The
concept of an ‘‘autonomous’’ agent is one which is
useful in this respect. A number of types of biological
systems have been modelled in this way (Gheorghe
et al. 2001, Fisher et al. 1999), including communities
of various social insects such as species of ants and
bees. Each insect is considered as one of these agents
and can behave independently of any explicit external
instructions. The agents seem to contain a set of
behavioural rules which determine what they do under
all realistic circumstances. Key aspects of such systems
is the mechanisms of communication that must exist,
this provides ways of sharing information upon which
their behaviour is predicated. Thus we can model and
perhaps explain the way in which a community of
insects can exploit food resources by the mechanisms
of individual exploration of the community’s environ-
ment and the transmission of information about the
location of food sources through mechanisms includ-
ing direct contact, pheromone trails and physical
behaviour such as dancing etc. The overall behaviour
of the insect community is thus an emergent property
derived from the interaction and communication
between large numbers of autonomous agents operat-
ing concurrently. Such systems are inherently robust
and fault tolerant having evolved under millions of
years to survive in an highly dynamic and uncertain
environment.

If societies of individual insects can be modelled in
this way then it is worth considering how societies of
cells might fare under a similar modelling paradigm.
The metaphor that we are investigating is based
around the concept of a cell as an agent. In order to
do this in a way that can be exploited both in terms of
simulation but also using promising approaches to the
automated analysis of complex models we need to con-
ceptualise the agent model suitably.

We base our approach on the language of computa-
tional models. Rather than using cellular automata,
for example, we exploit a more powerful computa-
tional approach called communicating X-machines
(Balenescu et al. 1999). Firstly, we identify an X-
machine (Holcombe & Ipate 1998, Kefelas et al. 2003)
as a system which has internal states and an internal
memory. The state transition functions will respond to

events on the basis of both the environmental input as
well as the current internal state. The system is in
some state, an input a is received, the initial contents
of the memory are m and, depending on both a and
m, the system changes state and produces an output x
and updates the memory to m1. This provides a much
more general modelling mechanism and one which
enables many of the problems associated with state
explosion, which bedevil many efforts at modelling
complex biological systems, to be dealt with sensibly.
The memory can be used to abstract away detail in a
way that does not prevent us from utilising it when-
ever necessary.

The X-machine makes a natural candidate for mod-
elling an agent (Kefelas et al. 2004). We start with a
simple set of rules which describe what the agent
must/could do under various different circumstances.
The set of rules may be defined with an explicit priori-
tisation that determines which rule is to be used under
which environmental and internal conditions. Thus,
perhaps, the top rule provides a general metabolic pro-
cessing activity typical of the cell’s normal state of
activity but on the receipt of some event in the cell’s
immediate environment such as a signal from a neigh-
bouring cell or some external process the cell under-
goes a change in activity which is reflected in a new set
of metabolic processing activities captured in a new set
of rules.

The starting point for modelling a single cell as an
agent is the cell cycle. For a single cell, provided with
adequate nutrients, a rule set can be developed and
combined with typical times for each phase of the cell
cycle, to give the top level in a hierarchical model of
the cell. If the cells can differentiate (e.g., in skin, stem
cells can produce transit amplifying cells), then a dif-
ferentiation rule is also required – differentiation will
change the rule set for the cell in some way. A basic
rule set has been presented by Walker et al. (2004a).
This is, of course, a qualitative description of the cell
cycle, but the rules are the result of the operation of a
mechanism. For instance, underlying the rule {if nutri-
tional conditions adequate, then ..., else …} are the
biochemical pathways which produce the required pro-
teins; diffusion of nutrients through the surrounding
medium; transport across the cell membrane; etc. So,
in principle, it is possible to model the mechanisms
which determine the output state of the rules. Mecha-
nisms will be known to a greater or lesser extent, and
can replace qualitative rules as more knowledge of the
system becomes available. For instance, establishing
adequate nutritional conditions may require a rule {if
[substrate x] > y, then ..., else ...}, where the mecha-
nism of manufacturing x, or the method by which its
concentration y is measured, are both unknown. If this
proves to be a critical path in the model, then the
mechanism will have to be determined experimentally.
The model thus acts as a driver for experiment.
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The effect of adhesion forces, cell growth, and strain
applied to the tissue, have to be calculated in the con-
text of the whole tissue, for which a continuum model
is appropriate. Individual agents are associated with
appropriate spatial nodes within the continuum model,
and information is exchanged between agents and con-
tinuum at each time step. The continuum model is cen-
tral to the organisation of the cells. Palsson (2001)
uses a physical model in which the cells are modelled
as a trio of viscoelastic elements, and both tension and
cell sorting resulting from differential cell–cell adhesion
forces, and compression (due to growth), can be han-
dled. Walker’s model includes the effect of cell–cell
adhesion in the rule set, but does not incorporate the
cell-sorting effects of differential adhesion.

Validating computational models against biological

models

Does similar behaviour imply similar systems? Conver-
gent evolution suggests not. How do we define similar?
What properties need to be measured in order to con-
firm similarity? In modelling in the physical domain, it
is widely assumed that the acid test of the relevance of
a model is not its ability to describe the system being
modelled, but the ability to predict the behaviour of
the system. Provision of an adequate description of
‘reality’ is necessary but not sufficient. We explore how
this view could be applied to our model.

There is a one-to-one mapping between the in vitro
epithelial models and our computational model, with
each cell in the biological model having an identical
corresponding cell in the computational modelling at
the initial seeding stage. Cell growth and division is a
stochastic process, so the two models would not be
expected to yield identical outcomes after a period of
growth under identical conditions – indeed, this would
not be expected for a pair of in vitro models. Neverthe-
less, it is reasonable to assume strong similarity, and
suitable metrics to compare in vitro and in virtuo devel-
opment need to be developed. To date, validation of
the simple in virtuo model has been confined to com-
parison of real and simulated growth rates for urothe-
lial tissue in normal and low Ca2+ environments
(Walker et al. 2004a) and wound healing in a
urothelial model (Walker et al. 2004b).

The obvious next stage is to be able to track cell
division and tissue morphology in vitro – in principle,
it is easy to do this in virtuo. Tracking cell division is
of more general interest, and is generally known as cell
lineage tracking. Sulston et al. (1983) described the
complete cell lineage of the embryo of the nematode
worm Caenorhabditis elegans, in which exactly 671
cells are generated. Nomarski interference contrast
microscopy was used to follow development of the
embryo. Attempts have been made to automate the

process by Kitano’s group at Keio University, using
4D-Nomarski DIC microscopy (Onami et al. 2002).
They can capture 50 images a minute with focal plane
changes of 50 lm. This gives one 3d image/min. for
2 h. They believe the limit on their system is about 60
cells e.g., about 8 cell divisions. There are <20 divi-
sions in C. elegans development (all cells do not divide
throughout the development of the embryo). Labelling
the nuclei with fluorescent proteins may enable the
nuclei to be tracked through sufficient number of
cell divisions to give the complete cell lineage of
C. elegans, and this would certainly be sufficient to
characterise the cell lineage of epithelial tissue grown
in vitro. Noting which cells continue to divide is also
the only current method for unequivocally identifying
stem cells.

Assuming that the position of the nuclei and the cell
lineage (i.e. the history of nuclear division) can be
tracked in vitro, we could then generate virtual cells
based on the real nuclei using Voronoi tessalation with
a waterfall algorithm (some means of handling non-
contiguous cells and unbounded edges – the epithelial
surface – would be required). We then have two sto-
chastic processes to compare – the cell lineage (a tree
structure) and the tissue morphology – a 3D graph.
How do we test the null hypothesis that these arise
from the same population? The comparison of phylo-
genetic tree structures has been extensively explored,
and some statistical comparisons have been made (e.g.,
Steel & Penny 1993). As far as we know, no statistical
comparisons of 3D graphs have been attempted. In
principle, both of these could be approached by using
Monte Carlo techniques to generate the distributions,
but this might not be practicable for a problem of this
size.

What is probably needed is a new philosophy of in
virtuo modelling and in vitro validation. The discussion
above considers the issue of relating the population
growth (and decay) of the two systems, and looking
for similar behaviour under similar initial configura-
tions and environmental conditions. This is a useful
guide but as mentioned above the superficial appear-
ance of similar populations may not be based on simi-
lar underlying processes. We need to look at the
individual agents, their behaviour and their communi-
cation to validate the model. This is likely to be a diffi-
cult and on-going process. We will not be able to
reach a definitive conclusion and say ‘‘the model is
completely validated’’ and there is nothing further to
do. All modelling is an iterative process whereby the
simple models are tested against the reality, refined
and expanded in a symbiotic way with the biological
experiments.

One possible way forward is to try to construct in
tandem experiments where we identify all the control
parameters that can be manipulated in the culture
samples and build an in virtuo model which incorpo-
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rates the same parameters. By carrying out a system-
atic series of tandem experiments with corresponding
treatments/parameter values we will seek to establish
the hypothesis that the in virtuo model is an accurate
representation of the in vitro situation. If we think of
both the in vitro model and the in virtuo model as sys-
tems which behave with the same underlying process
characteristics namely – internal state of some sort,
external inputs that influence the way the system will
behave, resulting external behaviours and abstract
away all other factors into some hypothesised frame-
work then it might be possible to relate the two mod-
els better in some way and use this as a basis for some
validation procedures.

Let us consider how this might work. We have a
proposed model of the biological system. It is
expressed as a computational model and thus con-
forms to our overall framework of an interacting col-
lection of agents presented as generalised state
machines which might have some hybrid features
which allow for continuous processing to be modelled
in states and to asynchronous communication to occur
between the component agents.

We assume a 1–1 relationship between the compo-
nents of the biological system and the components of
the model. These will be the agents described above.
We must also assume that the agents can interact with
each other through a number of mechanisms that we
will regard as channels, primarily these will be con-
strained by the geometry – agents only being able to
communicate directly with those agents that are physi-
cally nearby.

Now we must look at the agents themselves. These
are models of some plausible biological system, here
cells. We have to abstract away much of the complex-
ity to be found in a real cell if we are to make a sensi-
ble model. Cells can exist in many different internal
states and it is important to identify what these might
be. It is tempting to try to include all of the likely
parameters that can be thought of but only those that
are known to have a significant effect on the aspect of
the model that we are developing should be consid-
ered. In the work described above the main structure
of the internal state that has been considered is the
basic cell cycle. This is a good starting point since it is
easily identified in experimental work. At the other
extreme is the identification of the active gene’s and
the species of proteins currently expressed. This is
likely, at present, to be too fine grained although it
may be possible to incorporate some of this informa-
tion into the memory of the X-machines so that its
value can be used to influence the functional behaviour
of the model. In many cases the model will progress in
such a way that new factors are identified during the
course of the modelling. These will then be either
incorporated as new states – perhaps a compound
state is decomposed into a set of individual substates –
or new factors incorporated into the memory struc-
ture.

Validation will consist of identifying the equivalent
states in the model and the culture and defining
practical protocols for identifying them. The next
stage is to consider what is being communicated
down the channels. This may be chemical informa-
tion, signals for example, or physical information
such as the contact between two adjacent cells. We
need to define what these communication events are
and to relate them to the biological experiments. We
can observe cells that touch visually but the detec-
tion of signals or the movement of molecules
between agents may require the intervention of mar-
ker techniques and sensing technology.

The next stage is to try to define the sort of inputs
to the systems, this may simply be the provision of
adequate nutrients distributed in some way in the envi-
ronment or there may be specific direct inputs that we
can apply to individuals or groups of agents. It is
fairly straightforward to apply inputs to the virtual
model but less so in biological systems. It may be that
we can only do this successfully in a proportion of the
trials and so this needs to be taken care of by invoking
suitable statistical treatments to the results.

Finally, using our systems metaphor, we need to
identify the observable outputs that can be obtained
from the in tandem experiments. It is the ease with
which we can make definitive observations from the
biology that will drive any validation conclusions.

Finally we need to relate what we have obtained
with the usual qualifications that the results obtained
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may have been due to chance rather than the correct-
ness of the model. There is usually little difficulty in
repeating observations of the virtual model–these will
not always be the same since the model will have sto-
chastic rules – but the repetition of the biological
experiments will be constrained by cost and practical
difficulties. It is therefore vital that the experimental
set up is done in tandem, that clear objectives are set
and that the relationship between the model and the
culture is set out precisely.

Software issues

Building models and carrying out simulation can pro-
vide a great deal of information and inspiration for
further experimental investigations. It can also offer a
platform within which in virtuo analysis and reasoning
can take place. The first question to answer is whether
the model accurately and usefully represents the bio-
logical reality. This can not be answered simply, we
have to integrate the model building and the experi-
mental validation into as seamless and constructive a
framework as possible with the model posing questions
about the biology and the biology posing questions
about the model. We have certainly found that a sys-
tems view of the phenomena helps to formulate
hypothesis, questions and experiments that might not
arise otherwise. Similarly, the models are challenged
by the experimental data that is collected during this
process and in our case this leads to the refinement of
the underlying rules and processing functions, thus
improving the model. It is an iterative process and so
there is no real concept of a correct model. We aim to
produce useful models and how this is judged is deter-
mined by the use to which they are put.

One aspect of any computational model, whether of
a biological system or of any other type of system is
that it needs to be both consistent and as complete as
it is practical to aspire to. Methods exist for testing
models by developing scenarios (e.g., changing from
physiologically relevant levels of calcium to low cal-
cium media which markedly affects epithelial cell biol-
ogy) – essentially sets of events and environmental
conditions which can be applied to the model to see if
the resultant behaviour fits with what we expect. It is
quite common for models to exhibit unforeseen behav-
iour, perhaps under some conditions the model either
behaves in unpredictable ways or simply fails in some
sense. To build a robust model therefore requires an
extensive period of validation. Techniques exist (e.g.,
Holcombe & Ipate 1998) which can guide this process,
although no theory exists for a complex communicat-
ing hybrid model as yet.

What can we do with a model apart from simulation?
One potential approach is to apply ideas from model
checking (Clarke et al. 1999). This process involves cod-

ing up the model in a suitable logic and using powerful
software to analyse the model. The models are usually
based on state machines and the process involves posing
a question which is written in a logic style language and
then using the model checker to determine whether it is
possible to answer the question. Typically the question
might involve statements along the lines of: is it always
the case that when the quantity of a critical substance
exceeds a particular critical value then a given action
occurs or a given state is entered, is there a state in
which a particular property of the model holds, is there
a path of behaviour in the model such that every state in
that path has a certain property and so on. Model
checkers have successfully explored models with very
large numbers (billions) of states. Model checking for
communicating X-machines has been developed by
Eleftherakis et al. (2001) using the XmCTL logic. This
provides an important basis for future analysis of large,
complex biological models. It is not enough that we only
rely on simulation for our understanding of the system,
it may be that some highly critical sequence of behav-
iour only occurs under conditions that we never get
round to simulate, yet this knowledge might be impor-
tant. Rather than trying things out to see what happens
we try to identify interesting or undesirable phenomena
and see whether the model can ever exhibit them (e.g.,
predicting what would happen if tissue engineered epi-
thelia were constructed with a sub-optimal percentage
of stem cells – this has been a long-standing and almost
unanswerable concern for the clinical use of tissue engi-
neered skin. Would one expect the skin to break down
over a patient’s life-time? A computational model could
be used to predict the life-time wear characteristics of
the tissue–engineered skin under both normal and
wounded (regenerative) conditions. This kind of back-
wards reasoning is relatively novel and is still at an early
stage but looking at the development of computational
models in the long term the ability to do this will be
extremely powerful. Questions such as: whether there
are wound healing advantages to enriching the skin stem
cell population or lowering the wound bed calcium for
patients with chronic wounds could be assessed initially
in virtuo. The use of the model could inform the design
of in vitro (and possibly in vivo) experiments to then test
these questions.

Conclusion

We started by taking the view that computational
models of biological systems that do not satisfy two
conditions (the ability to predict function at a systems
biology level, and the existence of robust validation
against biological models) are only of academic inter-
est, and have attempted to describe some possible
methods to provide robust validation. This is an area
which is largely unexplored, but which will become of
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increasing relevance as computational models in biol-
ogy become more useful.
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