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Abstract
Roads intersections are one of the main causes of traffic jams since vehicles need
to stop and wait for their time to go. Scenarios that only consider autonomous vehi-
cles can minimize this problem using intelligent systems that manage the time when
each vehicle will pass across the intersection. This paper proposes a mathematical
model and a heuristic that optimize this management. The efficiency of this approach
is demonstrated using traffic simulations, with scenarios of different complexities,
and metrics representing the arrival time, CO2 emission and fuel consumption. The
results show that the present approach is scalable, maintaining its performance even
in complex real scenarios. Moreover, its execution time is maintained in milliseconds,
what suggests this approach as a candidate for dealing with real-time and dynamic
scenarios.

Keywords Autonomous vehicles · Optimization · Heuristic

1 Introduction

Nowadays, traffic lights and roundabouts are the main solutions to assist drivers in
road intersections. However, these methods require that drivers stop their vehicles,
waiting for their time to continue their journeys. This behavior usually causes a delay
in the expected traffic flow, increasing fuel consumption and air pollution (Medina
et al. 2015). Moreover, the slow flow and the frequent stop-and-go traffic behavior
increase the stress of drivers, creating a prone situation for accidents (Lamouik et al.
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2017; Wu et al. 2013). The study in Kamal et al. (2014) shows other disadvantages in
terms of time wasted, fuel consumption, and total cost caused by traffic jams.

The future scenario, where the majority of the vehicles tend to have autonomous
resources (Zhu and Ukkusuri 2015), brings opportunities to the development of intel-
ligent strategies for the management of intersections. The literature already discusses
technologies related to connected vehicles such as Vehicle-to-Vehicle (V2V), Vehicle-
to-Infrastructure (V2I), and vehicle to other digital components (V2X) (Gong et al.
2016). These technologies allow individual vehicles to access online information about
the traffic, acquire the current situation of the roads, and interact with other vehicles
to obtain collaborative decisions.

This paper proposes a V2I strategy to manage traffic intersections as a solution to
mitigate the problem of traffic jams and, consequently, its related issues (e.g. higher
CO2 emission and fuel consumption). The main idea is to generate a joint global
plan that indicates the speed that each vehicle must maintain in different parts of
their routes, avoiding in such way conflicts regarding the use of intersections. The
mathematical model used to create this global plan was initially specified usingMixed
Integer Linear Programming (MILP) and the sum of arrival times as the main attribute
to be optimized, considering all the vehicles that are currently active in the scenario.
We also propose a heuristic algorithm as a strategy to support scalability, therefore
maintaining the executing time in levels that allow the future use of this model in
dynamic environments.

We conducted a set of experiments using the SUMO simulator (Lopez et al. 2018)
to evaluate this approach and show its advantages over the traditional use of traffic
lights for intersections control. Therefore, the experiments used the same scenarios
with two different configurations. The first configuration contained traffic lights to
control the flow of vehicles. These vehicles use the maximum speed limit allowed for
each lane, and only the traffic lights modify this situation. Thus, the sum of arrival
times is always as low as possible for such a configuration. The second configuration
removed all the traffic lights from the scenarios, and a global plan was used to control
the vehicles’ behavior. The results of both configurations were given in the form of (1)
sum of the arrival times of all vehicles, (2) total of CO2 emission over the simulation,
and (3) total of fuel consumed over the simulation.

We employed synthetic and real scenarios with crescent levels of complexity (num-
ber of vehicles and intersections) to show the scalability and efficiency of this approach.
Real scenarios represent regions generated using OpenStreetMaps, whose format is
compatible with SUMO. While the evaluation of previous approaches is limited to
simple domains (from 1 to 12 intersections and a few vehicles), as far we known,
this is the first approach that considers complex simulations that involve, for example,
more than one thousand intersections.

The remainder of the paper is organized as follows. Section 2 presents the related
work. Section 3 describes the mathematical formulation and the heuristic approach.
Section 4 contains the results of the computational experiments. Finally, Sect. 5 con-
cludes this study with its main remarks, limitations and research directions.
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Intersections management for autonomous... 3

2 Related work

The approaches for intersection management are divided into centralized and dis-
tributed strategies. The centralized strategy uses a central controller to coordinate the
traffic of vehicles, while the distributed strategy is based on the information sharing
among vehicles. The main examples of these two approaches are discussed consider-
ing five criteria, if they are available: (i) complexity of the map, (ii) technique applied,
(iii) limitations, (iv) simulator, and (v) use of measures.

2.1 Centralized approaches

Hausknecht and colleagues (Hausknecht et al. 2011) extended the initial work of Dres-
ner and Stone (Dresner and Stone 2014) beyond the case of an individual intersection.
Their experiments employed 4 intersections, 12 roads with 2 lanes in each direction;
and the A* algorithm was used to dynamically alter initial planned paths. This tech-
nique caused some delays that negatively affected the traffic and the vehicles could
only change their decisions outside of the limit of 300 m to the intersection. An eval-
uation environment was developed together with the project and questions related to
the reduction of fuel consumption or CO2 emission were not considered.

Zhu and Ukkusuri (2015) developed a linear programming formulation for
autonomous intersection control. Their evaluations employed a matrix 4 × 3 with
12 intersections. This approach was not accident free so they could observe some
collisions. Questions related to the reduction of fuel consumption or CO2 were also
not considered.

Sharon and Stone (2017) proposed a new protocol, called Hybrid Autonomous
Intersection Management, which is able to sense approaching vehicles and use this
information to improve the process of path reservation within the intersection. Their
evaluations employed a regionwith 1 intersection and4 roads, eachof themwith 3 lanes
in both directions. They developed their own simulating environment for autonomous
and non-autonomous vehicles. The use of non-autonomous vehicles could cause unde-
sired behaviors and the controller should be able to dealwith these situations.Questions
related to the reduction of fuel consumption or CO2 were also not considered.

Budan et al. (2018) used the concepts of vehicle-to-infrastructure (V2I) com-
munications and multi-agent systems as central to achieving a robust and reliable
traffic-light-free intersection control. Their evaluations employed amatrixwith 1 inter-
section, 4 roads with 2 lanes each in both directions. A total of 4 conventional vehicles,
with distinct behaviors, were used to generate diverse situations in the intersection. The
PTV Vissim simulator (PTV Group 2013) was used and the results show a reduction
of 42% regarding the consumption of fuel.

Zheng et al. (2017) presented a cooperative vehicle intersection control scheme,
whichwas based on thePredictiveModel Control Theory. Their simulations employed
1 intersection, and four roads with 1 lane in each direction. The experiments in the
PTV Vissim simulator showed that their model was not able to ensure the viability
of the optimal solution. In the best scenario, the evaluations returned a reduction of
58.6% of CO2 emission and 52.4% of fuel consumption.
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Ashtiani et al. (2018) formalized the intersection management as a problem of
optimization using MILP. After receiving subscription requests and the status of
approaching vehicles, the intersection control calculates an arrival schedule that
ensures safetywhile reduces the number of stops and intersection delays. Their evalua-
tions employed a 3x3matrix, where each intersection had four roads, each of themwith
1 lane in both directions. TheMILPwas used considering the exchange of information
between the neighborhood intersections. The group developed their own simulator in
Java and further measurements were not considered.

2.2 Distributed approaches

Belkhouche (2017) presented a collaborative method for collision avoidance that
expresses the collision conditions in terms of the vehicles’ speed ratios. This sce-
nario is then formulated and solved as an optimization problem with the safety
constraints represented by the speed ratios, and the cost function is defined in terms
of the deviation from the current speeds. The evaluation employed 1 intersection
and 4 roads, each of them with a lane in both directions. The author discusses the
possible scalability of the approach, but only 3 vehicles were used during the exper-
iments. Further metrics such as consumption and level of CO2 emission were not
considered.

Campos et al. (2014) proposed a solution that is based on a receding horizon
formulation with a pre-defined decision order. In this approach, local problems are
formulated for each vehicle and divided into a finite-time optimal control problem,
where collision avoidance is enforced as terminal constraints, and an infinite horizon
control problem that can be solved offline. Their evaluation employed 1 intersection
and 4 roads, each of them with 1 lane in both directions. A total of 3 vehicles were
used but the paper does not give further details about the simulator used and other
metrics.

Makarem and Gillet (2011) considered the decentralized coordination of point-
mass autonomous vehicles at intersections using navigation functions. Their main
contribution is to consider the inertia of the vehicles to enable onboard energy opti-
mization for crossing. This approach defines a limited field of visionwhere information
exchange and vehicle detection can be conducted. However, the authors did not indi-
cate the decisions that are taken in case of failures in this communication. Their
evaluation employed 1 intersection and 4 roads, but the number of lanes was not
specified. The paper does not give further details about the simulator and other
s metrics.

Lim et al. (2018) proposed a hierarchical trajectory planning based on the integra-
tion of a sampling and an optimization method for urban autonomous driving. These
algorithms were evaluated through experiments in various scenarios of an urban area
involving the presence of intersections. Their evaluation employed 3 scenarios with
a variation of a few roads with curves and 3 lanes. A real autonomous vehicle (A1 -
University of Hanyang) was used in such an evaluation and metrics of consumption
and emission were not considered.
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Isele et al. (2017) explored the Deep Reinforcement Learning technique to handle
intersection problems. The idea was to learn policies that surpass the performance
of a commonly-used heuristic approach in several metrics including task completion
time and goal success rate and have limited ability to generalize. Their evaluation
employed 1 intersection with 6 lanes. The training stage of this learning approach
was conducted using data from 10 thousand executions for each scenario. The sim-
ulator used was SUMO, but its metrics of consumption and emission were not
considered.

de Campos et al. (2017) presented a decentralized coordination approach that
combines optimal control with model-based heuristics. Their evaluation employed
1 intersection with 4 roads, with 1 lane each. Other details such as time to generate
the solutions, the simulator used, and further metrics are not given.

Fayazi et al. (2017) proposed an optimal scheduling of autonomous vehicle arrivals
at intersections, which is formulated as a MILP instance. Their evaluation employed
1 intersection with 4 roads, each of them with 1 lane in each direction. Other details
such as time to generate the solutions, the simulator used, and further metrics are not
given.

2.3 Discussion

The analysis of the centralized and distributed approaches show they are only focused
on very limited scenarios. In order, the majority of the centralized works considered 1
intersection with 4 roads, while the number of cars used during the simulations is not
well-detailed. Issues that could appear due to the use of only one central controller (e.g.
bottleneck) are mentioned, but their analysis is considered out of the scope. The main
metric is associated with the average time to conclude the routes and all approaches
show that such time is reduced when compared with the traditional approaches (use
of traffic lights and roundabouts). However, important sustainability metrics such
as fuel consumption and CO2 emission are not usually considered. The distributed
approaches also present these similar features. Moreover, their implementation seems
more complex if we consider their transition to the real world. For example, the
reliability and failure tolerance regarding the communication must be higher than the
required in centralized approaches.

In contrast to these studies, the present centralized approach considers evaluations
in complex scenarios, using a MILP approach with safety constraints that ensure the
nonexistence of collisionswhile themathematicalmodel tries to reduce the arrival time
of the vehicles. To ensure the scalability of this approach, we also proposed a heuristic
to better deal with the conflicts and allow the evaluation of this approach in scenarios
with several intersections and vehicles.While this strategy does not ensure the optimal
solution, it is conflict-free and its resolution time was maintained in milliseconds, as
better detailed in the results section. As it is not ensured that the decrease of the arrival
time reduces the fuel consumption and CO2 emission, we also considered suchmetrics
during our evaluations.
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3 Methods and tools

3.1 Premises

This study considers the next set of premises: (i) there is a central component that
receives all the requests for journeys from the vehicles, executes the schedule, and
sends the speed instructions back to the vehicles; (ii) each request is a 2-tuple<origin,
destination>; (iii) each instruction is a sequence of speed values for each lane that
composes the route of a vehicle; (iv) all vehicles of the simulation are autonomous
and strictly follow the indications of speed for each road; (v) the simulation does not
considers inertial questions so only similar vehicles are allowed rather than motor-
cycles or trucks; (vi) the scenarios are static so other vehicles do not join after the
beginning of the simulation; (vii) transit lights and roundabout were not used to con-
trol the intersections flow; (viii) each road or lane has a maximum value for speed and
the management system knows such information; and (ix) the vehicle only stops after
reaching the last intersection of its corresponding route.

Based on this information and considering that each vehicle will receive a fix speed
value for each road, the management system is able to define the time interval that
each vehicle will be in an intersection. The system also uses the First Come First Serve
approach to include the requests into the agenda and, after this definition, the time of
each journey is returned as the result of an integer linear programming formulation.

3.2 Optimization problem andmathematical formulation

The mathematical formulation that describes the optimization problem considered in
this work has the following definitions:

– V—set of nodes (intersections);
– A—set of arcs (transitions from a node to another);
– K—set of vehicles;
– K j—set of vehicles that pass across j ∈ V ;
– Ki j—set of vehicles that pass along (i, j) ∈ A.

The input data is represented as:

– I – Minimum interval between two vehicles in an arc;
– Tmin

i j —Minimum time of (i, j) ∈ A;
– Tmax

i j —Maximum time of (i, j) ∈ A;

– πk—Sequence of arcs that compose the route of a vehicle k ∈ K .

And the next following decision variables were used:

– xki j– Time that a vehicle k ∈ K spends to pass along (i, j) ∈ A;

– ykj – Arrival time of the vehicle k ∈ K and j ∈ V .

For example, πk = (1, 2, 7, 8, 9, 10) is the sequence of nodes that represent the route
illustrated in Fig. 1. Then, πk(2) = 2 is the second node that will be crossed by the
vehicle. Considering that |πk | is the cardinality of the nodes sequence, then |πk | = 6,
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Intersections management for autonomous... 7

Fig. 1 Example of a route

while πk(|πk |) = 10 represents the last node (destination) that will be reached by the
vehicle in this example.

The proposed mathematical formulation is described as follows.

min
∑

k∈K
yk
πk (|πk |) (1)

Subject to:

yk
πk (i) = yk

πk (i−1) + xk
πk (i−1)πk (i), ∀k ∈ K , i = 2, ..., |πk | (2)

|ykj − ylj | ≥ I ,∀ j ∈ V ,∀k ∈ K j , ∀l ∈ K j , k �= l (3)

Tmin
i j ≤ xki j ≤ Tmax

i j ,∀k ∈ Ki j , (i, j) ∈ A (4)

ykj ≥ 0, ∀ j ∈ V ,∀k ∈ K j (5)

The objective function (1) aims to reduce the sum of the arrival times at the last
intersection of each route. Constraints (2) ensure that the time of each intersection,
which composes a route, is scheduled considering the speed of the vehicle. To define a
safetymargin while a vehicle is crossing the intersection, constraints (3) guarantee that
the time difference between two vehicles that will cross the intersection is higher than
a predefined interval. This means that, while some vehicle is crossing the intersection,
another vehicle will only be allowed to cross this same intersection after a predefined
time.
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8 V. Silva et al.

To maintain the model as linear, constraints (3) were replaced by (6) and (7), which
use a binary variable b and a parameter M sufficiently large.

ykj − ylj + Mb ≥ I , ∀i ∈ V ,∀k ∈ K j ,∀l ∈ K j , k �= l (6)

ykj − ylj + Mb ≤ −I + M, ∀i ∈ V ,∀k ∈ K j ,∀l ∈ K j , k �= l. (7)

After defining and associating the speed of a vehicle to a road, such a vehicle
must maintain this speed while it is on this road. Thus, a vehicle can present different
speeds but only on different roads as stated by constraints (4) were imposed. Finally,
constraints (5) ensure the non-existence of negative times in the model.

3.3 Heuristic

The proposed heuristic allows for solving the problem in areas with a high amount of
intersections and vehicles, as the scenarios described in the next section. Its idea is to
schedule the early arrival time possible for each intersection that composes the route
of a vehicle, as described in Algorithm 1. The procedure receives as input the list of
routes in a predefined order and the safety time interval (sTime) (line 1). The structure
departureTime stores the departure time of vehicle (route) i at intersection j (line 2).
For each route, the heuristic tries to schedule the earliest possible departure time at
each intersection, using the procedure described in Algorithm 2, in a sequential order
(lines 3–45). The departure time of the first intersection is determined in lines 7–19.
Variables tFirst, tAux, and tAcc store the departure time of the first intersection, the
departure time of the current intersection other than the first, and the accumulated time,
respectively. Once the departure time of the first intersection is determined, then those
of the remaining intersections are computed in lines 20–40. After all intersections of a
given route have been completely scheduled, then the corresponding departure times
are added to the list of times (tScheduled) associated with each intersection (lines 41–
44). Finally, the solution (i.e., the departure time associated with every intersection of
each route) is returned.

In our solution approach, Algorithm 1 is actually called two times. In the first, we
consider the list of routes in their original form, whereas in the second we consider
the list of routes in the reverse order, as shown in the Main Algorithm 3. The objective
function of both solutions are computed using Eq. (1), and the solution that yields the
smaller value is selected. Note that because of premise (ix) described in Sect. 3.1, that
is, the vehicle only stops after reaching the last intersection, it can be assumed that
the departure and arrival times of a vehicle at a given intersection are the same, thus
allowing one to use Eq. (1) in this case.

Consider the illustration depicted in Fig. 2 as the map for an example that contains
4 vehicles with different routes. The first route is composed of the intersections π1 =
(4,5,6,7,8), the second route is π2 = (1,5,10,15,19), the third is π3 = (3,7,12,17,21),
and the fourth is π4 = (14,15,16,17,18). As a form to simplify this example, also
consider that all roads have the same length (150 m), the minimum time to go along
the road is 7 s, while the maximum time is 9 s. This means that the vehicles will have
a speed around 80 km/h and 60 km/h, respectively. The safety interval is 5 s.
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Intersections management for autonomous... 9

Algorithm 1: Heuristic for conflict resolution
1 ConflictResolution(routes[], sT ime)
2 departureTime[][] ← 0
3 for k ← 1 to routes.size() do
4 i ← routes[k]
5 tAcc ← tFirst ← 0
6 for j ← 1 to i.size() do
7 if j = 1 then
8 d ← intersection(j)
9 scheduled ← tryToSchedule(tFirst, d.tScheduled[], sTime)

10 if scheduled then
11 tAcc ← tAcc + tFirst
12 departureTime[i][j] ← tAcc
13 j ← j + 1
14 end
15 else
16 j ← 1
17 tFirst ← tFirst + 1
18 end
19 end
20 else
21 o ← intersection(j - 1)
22 d ← intersection(j)
23 for time ← tMin[o][d] to tMax[o][d] do
24 tAux ← tAcc + time
25 scheduled ← tryToSchedule(tAux, d.tScheduled[], sTime)
26 if scheduled then
27 tAcc ← tAcc + tAux
28 departureTime[i][j] ← tAcc
29 scheduled ← true
30 j ← j + 1
31 break
32 end
33 end
34 if scheduled = false then
35 j ← 1
36 tAcc ← tAux ← 0
37 tFirst ← tFirst + 1
38 end
39 end
40 end
41 for j ← 1 to Size(route) do
42 d ← intersection(j)
43 add departureTime[i][j] to d.tScheduled[]
44 end
45 end
46 return departureT ime
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Algorithm 2: Try to schedule intersection
1 tryToSchedule(timeToSchedule, t Scheduled[], sT ime)
2 if tScheduled.size() = 0 then
3 return true
4 end
5 foreach time ∈ tScheduled[] do
6 if |time − timeToSchedule| < sT ime then
7 return false
8 end
9 end

10 return true

Algorithm 3: Main
1 Main(routes, sT ime)
2 departureTime1 ← ConflictResolution(routes[], sTime)
3 routes[] ← list of routes[] in reversed order
4 departureTime2 ← ConflictResolution(routes[], sTime)
5 if departureTime1.objectiveValue() ≤ departureTime2.objectiveValue() then
6 return departureTime
7 end
8 else
9 return departureTime2

10 end

Fig. 2 Example of routes with conflicting intersections
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In this scenario, the heuristic tries to schedule the routes from the first to the fourth
vehicle, in this sequence. At the initial moment, all intersections are free so the times
in π1 are allocated considering the maximum speed, which means 7 s to go along each
road of its route. Hence, the time sequence for π1 is (0,7,14,21,28). While the first
intersection of π2 is normally scheduled, a conflict appears in π1(2) = π2(2) = 5 when
the heuristic tries to schedule the second intersection because the safety constraint
is not satisfied (line 26, Algorithm 1) since there is a vehicle there at the instant 7.
Thus, the heuristic tries to schedule the next times until the maximum value allowed
is achieved (line 23, Algorithm 1). However, the conflict persists in the instants 8 and
9.

As the heuristic was not able to schedule this intersection, all the previous times are
removed and 1 time unit (1 s) is added to the initial time (lines 34–37, Algorithm 1).
This process continues until the route is completed. In this case, the heuristic can only
complete the route considering 5 as initial time and the final sequence of times for π2

is (5,12,19,26,33). If the same process is conducted with the other routes, several other
conflicts will be identified. At the final, the sequence of times for π3 is (0,7,14,21,28),
while for π4 is (5,12,19,26,33).

Therefore, the value of objective function will be the sum of the arrival times at
the last intersection of each of the four routes, that is, 28 + 33 + 28 + 33 = 122 s. In
this case, due to the symmetry of the map in this particular example, the values of the
objective function are the same when considering the list of routes in its original and
reverse orders, respectively.

4 Results

The simulations were conducted in a notebook Intel i3 with 4Gb of RAM, and CPLEX
was used to solve the model. This restricted configuration was important to show that
the approach does not need special hardware to properly execute. The comparisons
were conducted using the SUMO resources (traffic light control). The configuration
files of these simulations are public and available1 for replications and improvements
of this approach.

4.1 SUMO setup

SUMO receives two files as input: the scenario configuration and the traffic demand.
The scenario configuration files contain the representation of every road (arc) as a
collection of lanes, including their positions, shapes, and speed limits; the connec-
tions between lanes at junctions (nodes); and the traffic lights referenced by junctions
(optional feature). Our experiments used the same five scenarios in two different sit-
uations (with traffic lights and without traffic lights).

The traffic demand files contain the identification of each vehicle, together with its
departure point, time of departure, route until the arrival point, and speed in each lane

1 http://ci.ufpb.br/docentes/clauirton/datasetav/ds.html.

123

http://ci.ufpb.br/docentes/clauirton/datasetav/ds.html


12 V. Silva et al.

Fig. 3 Map as a grid 9 × 9

that composes the route. According to the situation (with/without traffic lights), the
files are specified as follows:

– For experiments with scenarios containing traffic lights, the speed of each vehicle
always receives the speed limit of the lane where it is. Thus, we ensure that the
arrival time is always as early as possible, considering the compulsory stops (traffic
lights) along the routes;

– For experiments using the same scenarios but without traffic lights, our approach
sets the departure times and speeds along the route for each vehicle so they avoid
conflicts in the use of intersections.

For this second situation, the departure time can only be changed to a value later
than the original time. Moreover, the routes of all vehicles in both situations, for the
same scenario, are always the same. These restrictions ensure a fair analysis between
experiments that compare these two situations using the same scenario.

4.2 Mathematical model

4.2.1 Case Study 1

The first case study considered a small artificial map that is, however, bigger than
the maps used in other studies discussed in Sect. 2. To create several intersections,
this map was configured as a 9 × 9 grid (Fig. 3), which was deformed to create a
heterogeneity among the roads and their lengths. The roads were also configured to
have two lanes in opposite directions.

Thismap employed 36 vehicleswhose routes start in an extremenode of the network
and finish in the opposite extreme node. The simulation showed a reduction of 853 s,
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Table 1 Results of the simulation in the 9 × 9 grid

Control Sum of arrival times (s) Total of CO2 emission (mg/s) Total of fuel consumption (ml/s)

Traffic lights 7786.00 29,268,179.50 12,568.23

Model 6933.00 2,198,4066.87 9433.00

Fig. 4 Real map representing a district of a large city

Table 2 Results of the simulation in the district map

Control Sum of arrival times (s) Total of CO2 emission (mg/s) Total of fuel consumption (ml/s)

Traffic lights 3584.00 10,909,621.55 4680.50

Model 3091.00 11,074,781.90 4760.73

in the sum of the vehicles’ arrival times, when our model, rather than the traffic lights
strategy, controls the vehicles’ behavior. Moreover, our model also reduced the fuel
consumption and CO2 emission in about 25% (Table 1).

4.2.2 Case Study 2

The second case study used a real scenario that represents a district of a large city.
This simulation had 1167 roads and 463 intersections, as illustrated in Fig. 4, and the
execution time was 20 min. The simulation used 73 vehicles (routes) and, using this
configuration, the model could almost return the optimal solution (maximum speed to
all vehicles). This means, the model returned the sum of all arrival times just as 1%
higher than its optimal value.

Table 2 presents the results for this simulation, where we can observe a reduction
of 493 s in the sum of the arrival times when the model is employed. This represents
an improvement of 14% in the average time that each vehicle spends in their journeys.
However, the CO2 and fuel consumption had a slight increase of about 1%.
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4.3 Mathematical model versus heuristic

4.3.1 Prologue

These two previous case studies have used scenarios with less than 100 routes. As we
could expect, the execution time for this problem increases according to the number of
intersections and vehicles used in the scenarios. Thus, the use of a heuristic for more
complex scenarios was necessary because the mathematical model was spending a
long time to return a solution and, after a certain point, no solution was returned (last
line in Table 3).

As a form to compare the two versions, i.e., mathematical model and heuristic,
and understand their results regarding the use of different scenarios, we designed
several maps to generate a high number of possible conflicts. The complexity of these
scenarios was gradually increased (Table 3) so we could identify possible thresholds
concerning the resolution of the model.

Table 3 shows (1) the number of intersections and routes (Inters/Routes) of each
scenario, (2) the resultant sum of arrival times when only the model is used, (3) the
time required to generate the plan using only the model, (4) the resultant sum of
arrival times when the model is used together with the heuristic, (5) the time required
to generate the plan when the model is used together with the heuristic, and (6) the
percentage increase in the sum of arrival times when the heuristic is used.

These results show that both the model heuristic basically return the same results
regarding the sum of arrival times of the vehicles. However, the important benefit of
this heuristic is to significantly reduce the total execution time. The longest time was
just 234 ms when the map presented 169 intersections and 104 routes (vehicles). The
limit of the model was the scenario with 441 intersections and 168 routes, when the
model was not able to return a solution. In this case, the heuristic could still return a
solution in 228 ms of execution.

4.3.2 Case Study 3

As demonstrated in Table 3, the heuristic can quicky produce feasible solutions even
in scenarios withmore than 100 routes. Therefore, this case study used a real map (Fig.
5) that represents a second district of a large city and employs 125 routes to evaluate
the heuristic.

As we can observe in Table 4, the heuristic obtained a reduction of about 7% in the
sum of the arrival times, decreasing such time in 256 s. The conflicts were success-
fully managed and any collision was identified during the simulation. Moreover, the
reduction of the required stops in intersections ensured improvements of about 20%
in both fuel consumption and CO2 emission.

4.3.3 Case Study 4

The next scenario (Fig. 6) creates a more complex situation to evaluate the scalability
of the heuristic, using a real map of a third district with 200 routes. Using this higher
number of routes, it was possible to generate more conflicts and stress the resolution
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Fig. 5 Real map representing a second district of a large city

Table 4 Results of the simulation using a second district map

Control Sum of arrival times (s) Total of CO2 emission (mg/s) Total of fuel consumption (ml/s)

Traffic lights 3709.00 13,268,861.76 5709.65

Heuristic 3453.00 10,563,535.57 4541.80

of the model. For example, the heuristic had to apply several increases at the initial
time of the routes to satisfy the constraints of the problem.

However, even considering such increases, the final results (Table 5) showed the
advantage of the heuristic procedure, which provided a reduction of 7% regarding
the sum of the arrival times when compared with the SUMO traffic lights approach.
Moreover, the simulation showed a reduction of about 10% in the CO2 emission and
11% in the fuel consumption.

4.3.4 Case Study 5

The final evaluation of the heuristic was conducted in a fictitious map with 1024
intersections and about 4000 roads, which were deformed to ensure a higher level of
aleatory regarding their lengths (Fig. 7).

This simulation had 256 routes and each route was composed of more than 60 inter-
sections to be managed. Despite this significant number of intersections and routes,
the execution time was about 300 ms. Thus, the heuristic algorithm could solve small
and big problems, always presenting improvements regarding the traditional intersec-
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Fig. 6 Real map representing a third district of a large city

Table 5 Results of the simulation using a third district map

Control Sum of arrival times (s) Total of CO2 emission (mg/s) Total of fuel consumption (ml/s)

Traffic lights 9616.00 31,671,179.73 13,611.98

Heuristic 8937.00 25,217,755.41 10,835.47

tion management system. Table 6 shows that our approach still presents advantages
regarding the sum of arrival times, fuel consumption, and CO2 emission.

5 Conclusion

5.1 Main contributions

This paper presented a proposal for the optimization of intersections management
in scenarios with autonomous vehicles. Its main contribution is the definition of a
mathematical model and a heuristic algorithm, where the later is capable of dealing
with complex scenarios, which are not discussed in the literature. While the studies
in this area are focused only on one or a few intersections, we in turn have evaluated
our approach from small to complex (1024 intersections) configurations. Even in such
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Fig. 7 Scenario with 1024 intersections and 4000 roads

Table 6 Results of the simulation using a scenario with 1024 intersections

Control Sum of arrival times (s) Total of CO2 emission (mg/s) Total of fuel consumption (ml/s)

Traffic lights 140,163.00 450,411,233.93 194,003.43

Heuristic 130,491.00 332,133,716.66 142,772.07

more complex scenarios, the heuristic algorithm could find a solution in milliseconds,
also considering specific constraints (safety interval) to ensure the safety of the system
against collisions. Constraints were also used to limit the maximum speed of vehicles
on each of the roads.

The simulations demonstrated that the heuristic can improve the traditional
approaches for intersection management regardless of the scenarios complexity. How-
ever, the gain in simple scenarios is lower because the traffic lights approach always
ensures the maximum speed of the vehicles until they are a few meters of the inter-
sections. Differently, our model defines a constant speed for each lane that is part of a
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route. This speed is always lower or equal than the lane speed limit, and it ensures that
the vehicle does not need to stop in the intersections. Thus, the gain of the heuristic
will be proportional to the number of intersections.

Apart from such a contribution, this study also considered two other metrics (fuel
consumption and CO2 emission) that are not usually discussed in other studies, but
are important in the sustainability context. Finally, all the configurations used in our
experiments are available and can be used as a benchmark to support future research
replications and extensions.

5.2 Limitations

This proposal only considers static rather than real-time scenarios. Thismeans, after the
plan creation, other vehicles cannot join the simulation. The simulations also showed
that the heuristic has low gains when the scenario presents few routes. Moreover,
while the heuristic could return a solution for all scenarios, it cannot ensure that such
a solution is optimal.

As far as we know, this is the first study that proposes a mathematical model and
heuristic to deal with scenarios that involve hundreds of intersections. Thus, we only
compared this approach with the implementation of the SUMO simulator, which uses
the traffic lights to manage the intersections.

5.3 Research directions

The main research direction of this study is to extend its approach so it can be used in
real-time scenarios. Currently, this approach can generate a solution in milliseconds
for complex scenarios, using a basic computational platform. If a new vehicle asks to
join the scenario, then the heuristic should run again to create a new scheduling that
considers this vehicle. For example, the central controller knows exactly the current
positions of all vehicles and could use these positions as the initial nodes of each
vehicle. In this case, it just needs to run again the heuristic algorithm. However, this
situation is not so easy and there are several issues involved in this approach. Their
formalization is part of our future studies.
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