Journal of Heuristics (2021) 27:951-990
https://doi.org/10.1007/s10732-021-09475-z

®

Check for
updates

Conflict history based heuristic for constraint satisfaction
problem solving

Djamal Habet' - Cyril Terrioux’

Received: 16 July 2020 / Revised: 11 February 2021 / Accepted: 4 May 2021 / Published online: 30 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

The variable ordering heuristic is an important module in algorithms dedicated to solve
Constraint Satisfaction Problems (CSP), while it impacts the efficiency of exploring
the search space and the size of the search tree. It also exploits, often implicitly, the
structure of the instances. In this paper, we propose Conflict-History Search (CHS), a
dynamic and adaptive variable ordering heuristic for CSP solving. It is based on the
search failures and considers the temporality of these failures throughout the solving
steps. The exponential recency weighted average is used to estimate the evolution
of the hardness of constraints throughout the search. The experimental evaluation on
XCSP3 instances shows that integrating CHS to solvers based on MAC (Maintaining
Arc Consistency) and BTD (Backtracking with Tree Decomposition) achieves compet-
itive results and improvements compared to the state-of-the-art heuristics. Beyond the
decision problem, we show empirically that the solving of the constraint optimization
problem (COP) can also take advantage of this heuristic.

Keywords CSP solving - Variable ordering heuristic - Conflict history - Exponential
recency weighted average

1 Introduction

The Constraint Satisfaction Problem (CSP) is an important formalism in Artificial
Intelligence (AI) which allows to model and efficiently solve problems that occur
in various fields, both academic and industrial (e.g. Cabon et al. 1999; Holland and

This paper is an extension of the work published in Habet and Terrioux (2019).

B Djamal Habet
djamal.habet@lis-lab.fr

Cyril Terrioux
cyril.terrioux @lis-lab.fr

I Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-021-09475-z&domain=pdf

952 D. Habet, C. Terrioux

O’Sullivan 2005; Rossi et al. 2006; Simonin et al. 2015). A CSP instance is defined on
a set of variables, which must be assigned in their respective finite domains. Variable
assignments must satisfy a set of constraints, which express restrictions on assign-
ments. A solution is an assignment of each variable, which satisfies all constraints.

CSP solving is often based on backtracking algorithms. In recent years, it has made
significant progress thanks to research on several aspects. In particular, considerable
effort is devoted to global constraints, filtering techniques, learning and restarts (Rossi
et al. 2006). An important component in CSP solvers is the variable ordering heuristic.
Indeed, the corresponding heuristics define, statically or dynamically, the order in
which the variables will be assigned and, thus, the way that the search space will be
explored and the size of the search tree. The problem of finding the best variable to
assign (i.e. one which minimizes the search tree size) is NP-Hard (Liberatore 2000).

Many heuristics have been proposed (e.g. Bessiere et al. 2001; Bessiere and Régin
1996; Boussemart et al. 2004; Brélaz 1979; Geelen 1992; Golomb and Baumert 1965;
Hebrard and Siala 2017; Michel and Hentenryck 2012; Refalo 2004) aiming mainly to
satisfy the first-fail principle (Haralick and Elliot 1980) which advises “to succeed, try
first where you are likely to fail”. Nowadays, the most efficient heuristics are adaptive
and dynamic (Boussemart et al. 2004; Geelen 1992; Hebrard and Siala 2017; Michel
and Hentenryck 2012; Refalo 2004), where the variable ordering is defined according
to the collected information since the beginning of the search. For instance, some
heuristics consider the effect of filtering when decisions and propagations are applied
(Michel and Hentenryck 2012; Refalo 2004). dom /wdeg is one of the simplest, the
most used and efficient variable ordering heuristic (Boussemart et al. 2004). It is based
on the hardness of constraints and, more specifically, reflects how often a constraint
fails. It uses a weighting process to focus on the variables appearing in constraints with
high weights which are assumed to be hard to satisfy. In addition, some heuristics,
such as LC (Lecoutre et al. 2006) and COS (Gay et al. 2015), attempt to consider the
search history while they require the use of auxiliary heuristics.

In this paper, we propose Conflict-History Search (CHS), a new dynamic and
adaptive variable ordering heuristic for CSP solving. It is based on the history of
search failures, which happen as soon as a domain of a variable is emptied after con-
straint propagations. The goal is to reward the scores of constraints that have recently
been involved in conflicts and therefore to favor the variables appearing in these con-
straints. The scores of constraints are estimated on the basis of the exponential recency
weighted average technique, which comes from reinforcement learning (Sutton and
Barto 1998). It was also recently used in defining powerful branching heuristics for
solving the satisfiability problem (SAT) (Liang et al. 2016a,b). We have integrated
CHS in solvers based on MAC (Maintaining Arc Consistency) (Sabin and Freuder
1994) and BTD (Backtracking with Tree-Decomposition) (Jégou and Terrioux 2003).
The empirical evaluation on XCSP3 instances' shows that CHS is competitive and
brings improvements to the state-of-the-art heuristics. In addition, this evaluation pro-
vides an extensive study of the performance of state-of-the-art search heuristics on
more than 12,000 instances. Finally, we also study, from a practical viewpoint, the
benefits of the proposed heuristic for solving constraint optimization problems (COP).

1 http://www.xcsp.org.

@ Springer

http://www.xcsp.org

Conflict history based search for CSP 953

The paper is structured as follows. Section 2 includes some necessary definitions and
notations. Section 3 presents and details our contribution, the CHS variable ordering
heuristic. Section 4 describes related work on variable ordering heuristics for CSP and
on branching heuristics for the satisfiability problem. CHS is evaluated experimentally
and compared to the main powerful heuristics of the state-of-the-art on CSP instances
in Sect. 5 and on COP ones in Sect. 6. Finally, we conclude and give some perspectives
on extending the application of CHS.

2 Preliminaries

This section is dedicated to the definition of CSP and Exponential Recency Weighted
Average, which we use to propose our heuristic.

2.1 Constraint satisfaction problem

An instance of a Constraint Satisfaction Problem (CSP) is given by a triple (X, D, C),
such that: X = {x{,...,x,} is a set of n variables, D = {Dy, ..., D,} is a set of
finite domains, and C = {c1, ..., c.} is a set of e constraints. The domain of each
variable x; is D;. Each constraint c; is defined by its scope S(c;) and its compatibility
relation R(c;), where S(c;) = {xj;,...,x;,} € Xand R(c;) € Dj, x---x Dj.The
constraint satisfaction problem asks for an assignment of the variables x; € X within
their respective domains D; (1 < i < n) that satisfies each constraint in C. Such
consistent assignment is a solution. Checking whether a CSP instance has a solution
is NP-complete (Rossi et al. 2006).

In the past decades, many solvers have been proposed for solving CSPs. Generally,
from a practical viewpoint, they succeed in solving efficiently a large kind of instances
despite of the NP-completeness of the CSP decision problem. In most cases, they rely
on optimized backtracking algorithms whose time complexity is at least in O (e.d")
where d denotes the size of the largest domain. In order to ensure an efficient solving,
they commonly exploit jointly several techniques (see Rossi et al. 2006 for more
details) among which we can cite:

— variable ordering heuristics which aim to guide the search by choosing the next
variable to assign (we discuss about some state-of-the-art heuristics in Sect. 4),

— constraint learning and non-chronological backtracking which aim to avoid some
redundancies during the exploration of the search space,

— filtering techniques enforcing some consistency level which aim to simplify the
instance by removing some values from domains or tuples from constraint relations
which cannot participate to a solution.

For instance, most state-of-the-art solvers maintain some consistency level at each
step of the search, like MAC (Maintaining Arc-Consistency Sabin and Freuder 1994)
or RFL (Real Full Look-ahead Nadel 1988) do for arc-consistency. This latter turns
out to be a relevant tradeoff between the number of removed values and the runtime.

We now recall MAC with more details. During the solving, MAC develops a binary
search tree whose nodes correspond to decisions. More precisely, it can make two

@ Springer

954 D. Habet, C. Terrioux

kinds of decisions: positive decisions x; = v; which assign the value v; to the variable
x; and negative decisions x; 7 v; which ensure that x; cannot be assigned with
v;. Let us consider ¥ = (81, ...,4;) (where each §; may be a positive or negative
decision) as the current decision sequence. At each node of the search tree, MAC takes
either a positive decision or negative one. When reaching a new level, it starts by a
positive decision which requires to choose a variable among the unassigned variables
and a value. Both choices are achieved thanks to heuristics. Then, once the decision
made, MAC applies an arc-consistency filtering. This filtering deletes some values of
unassigned variables which are not consistent with the last taken decision and X'. By
so doing, a domain may become empty. In such a case, we say that a dead-end or a
conflict occurs. This means that the current set of decisions cannot lead to a solution.
If no dead-end occurs, the search goes on to the next level by choosing a new positive
decision. Otherwise, the current decision is called into question. If it is a positive
decision x; = v;, MAC makes the corresponding negative decision x; # v;, thatis the
value v; is deleted from the domain D;. Otherwise, it is a negative decision and MAC
backtracks to the last positive decision x; = v¢ in X' and makes the decision x; # vy.
If no such decision exists, it means that the instance has no solution. In contrast, if
MAC succeeds in assigning all the variables, the corresponding assignment is, by
construction, a solution of the considered instance.

More recently, restart techniques have been introduced in the CSP framework (e.g.
in Lecoutre et al. 2007). They generally allow to reduce the impact of bad choices
performed thanks to heuristics (like the variable ordering heuristic) or of the occurrence
of heavy-tailed phenomena (Gomes et al. 2000). For efficiency reasons, they are usually
exploited with some learning techniques like recording of nld-nogoods in Lecoutre
etal. (2007). These nogoods can be seen as a set of decisions which cannot be extended
to a solution. They are used to avoid visiting again a part of the search space which has
already been visited by MAC. These nogoods are recorded each time a restart occurs.

2.2 Exponential recency weighted average

Given a time series of m numbers y = (y1, y2, ..., Ym), the simple average of y is
p % y; where each y; has the same weight % There are situations where recent
data are more relevant than old data to describe the current situation. The Exponential
Recency Weighted Average (ERWA) (Sutton and Barto 1998) takes into account such
considerations by giving higher weights to the recent data than the older ones. More
precisely, the exponential moving average y,, is computed as follows:

m
Im=Y axd—a)" " xy
i=1
where 0 < « < 1 is a step-size parameter which controls the relative weights between

recent and past data. The moving average can also be calculated incrementally by the
formula:

Ym =0 =) X Yyp—1 + & X yp.

@ Springer

Conflict history based search for CSP 955

The base case is y9 = 0. ERWA is used to solve the bandit problem to estimate the
expected reward of different actions in nonstationary environments (Sutton and Barto
1998). In bandit problems, the agent must select an action to play, from a given set of
actions, while maximizing its long term expected reward.

3 Conflict-history search for CSP

This section is dedicated to our contribution by defining and describing a new variable
ordering heuristic for CSP solving, which we call Conflict-History Search (CHS). The
main idea is to consider the history of constraint failures and favor the variables that
often appear in recent failures. In this order, the conflicts are dated and the constraints
are weighted on the basis of the exponential recency weighted average. These weights
are coupled with the variable domains to calculate the Conflict-History scores of the
variables.

3.1 CHS description

Formally, CHS maintains for each constraint ¢; a score g(c;) which is initialized to
0 at the beginning of the search. If ¢; leads to a failure during the search because the
domain of a variable in S(c;) is emptied then g (c;) is updated by the formula below
derived from ERWA (Sutton and Barto 1998):

q(cj) =1 —a) xq(cj)+axr(cj)

The parameter 0 < « < 1 is the step-size and r(c) is the reward value. The parameter
« fixes the importance given to the old value of g at the expense of the reward ». The
value of « decreases over time as it is applied in reinforcement learning to converge
towards relevant values of ¢ (Sutton and Barto 1998). In other words, decreasing the
value of o amounts to giving more importance to the last value of ¢ and considering
that the values of g are more and more relevant as the search progresses. Furthermore,
we are interested by the constraint failure to follow the first-fail principle (Haralick
and Elliot 1980).

CHS applies the decreasing policy of «, which is successfully used for designing
efficient branching heuristic for the satisfiability problem (Liang et al. 2016a,b). More
precisely, starting from an initial value a, @ decreases by 107¢ at each constraint
failure to a minimum of 0.06. This minimum value of & controls the number of steps
before considering that a convergence is reached.

The reward value r(c;) is based on how recently c¢; occurred in conflicts. More
precisely, itrelies on the proximity between the previous conflictin which ¢ is involved
and the current one. By so doing, we aim to give a higher reward to constraints that fail
regularly over short periods of time during the search space exploration. The reward
value is calculated according to the formula:

1
Conflicts — Conflict(cj) + 1

re) =

@ Springer

956 D. Habet, C. Terrioux

Initialized to 0, Conflicts is the number of conflicts which have occurred since
the beginning of the search. Conflict(c;) is also initialized to O for each constraint
¢;j € C. Whena conflict occurs on ¢, r(c;) and g (c) are computed. Then Conflicts
is incremented by 1 and Conflict(c;) is updated to the new value of Conflicts.

At this stage, we define the Conflict-History score of a variable x; € X as follows:

ZC.feci x;i€S(cj)AUvars(S(cj))|>1 q(cj)

chv(x;) = Di]
1

D

Uvars(Y) is the set of unassigned variables in Y. D; is the current domain of x; and
its size may be reduced by the propagation process in the current step of the search.
CHS chooses the variable to assign with the highest chv value. In this manner, CHS
focuses branching on the variables with a small domain size belonging to constraints
which appear recently and repetitively in conflicts.

One can observe that at the beginning of the search, all the variables have the same
score, which is equal to 0. To avoid random selection, we update Eq. 1 to calculate
chv as given below, where § is a positive real number close to 0.

Za,ec: x,—ES(Cj)A|Uvars(S(Cj))|>l(q(cj) +9)
| Dl

@)

chv(x;) =

Thus, when the search starts, the branching will be oriented according to the degree of
the variables without having a negative influence on the ERWA-based calculation later
in the search. CHS selects the branching variable with the highest chv value calculated
according to Eq. 2.

The heuristic CHS is described in Algorithm 1 with an event-driven approach.
Lines 2—7 correspond to the initialization step. If a conflict occurs when enforcing the
filtering with the constraint c ;, the associated event is triggered and the score is update
(Lines 8—14). The selection of a new variable is achieved thanks to Lines 15-16.

3.2 CHS and restarts

Restart techniques are known to be important for the efficiency of solving algorithms
(see for example Lecoutre et al. 2007). Restarts may allow to reduce the impact of
irrelevant choices done during the search according to heuristics, such as variable
selection.

As it will be detailed later, CHS is integrated into CSP solving algorithms, which
include restarts. In the corresponding implementations, the Conflict(c;) value of
each constraint c; is not reinitialized when a restart occurs. It is the same for g(c;).
However, a smoothing may be applied and will be explained below. Keeping this
information unchanged reinforces learning from the search history.

Concerning the step-size o, which defines the importance given to the old value of
q(cj) at the expense of the reward r(c;), CHS reinitializes the value of « to o at each
restart (Line 18 of Algorithm 1). This may guide the search through different parts of
the search space.

@ Springer

Conflict history based search for CSP 957

Algorithm 1: CHS

Input: an event e

1 switch e do
2 case initialization
3 o < o)
4 Conflicts <0
5 for cjeCdo
6 Conflict(cj) < 0
7 L q(cj) <0
8 case conflict when filtering with c;
9 r(cj) < Conflictsfclonflict(cj-)+1
10 qcj) < (1 —a) x q(cj) +a xr(c;)
11 Conflicts < Conflicts + 1
12 Conflict(cj) < Conflicts
13 if « > 0.06 then
14 L o« a—107°
15 case select a new variable
(g(cj)+8)
.) cj eC: xieS(zrj)/\\Uvars(S(cj))\>1
16 return a variable x s.t. x € arg min D]
L xjeUvars(X) !
17 case restart
18 o < o)
19 forc; € C do
20 L L](Cj) <—q(Cj) « 0.995C0nfltct37C0n_fltcr(c]-)

3.3 CHS and smoothing

At each conflict, CHS updates the chv score of one constraint at a time: the constraint
c¢;j which is used to wipe out the domain of a variable in S(c;). As long as they do
not appear in new conflicts, some constraints can have their weights unchanged for
several search steps. These constraints may have high scores while their importance
does not seem significant for the current part of the search. To avoid this situation, we
propose to smooth the scores g (c;) of all the constraints ¢; € C at each restart by the
following formula:

q(c/) — CI(CJ') % O'995Cunflicls—Conflict(c'j)

Hence, the scores of constraints are decayed according to the date of their last appear-
ances in conflicts (Lines 19-20 of Algorithm 1).

4 Related work

Before providing a detailed experimental evaluation of CHS and its components,
we present the most efficient and common variable ordering heuristics for CSP. As

@ Springer

958 D. Habet, C. Terrioux

CHS, the recalled heuristics share the same behavior. In effect, the variables and/or
constraints are weighted dynamically throughout the search by considering the col-
lected information since its beginning. Some of these heuristics, such as Last Conflict
(Lecoutre et al. 2006), require the use of an auxiliary heuristic as it will be explained
later. We also recall briefly branching heuristics for the satisfiability problem. It should
be recalled that ERWA was first used in the context of the satisfiability problem (Liang
et al. 2016a,b).

4.1 Impact-based search (IBS)

This heuristic selects the variable which leads to the largest search space reduction
(Refalo 2004). The impact on the search space size is approximated as the reduction
of the product of the variable domain sizes. Formally, the impact of assigning the
variable x; to the value v; € D; is defined by:

Pufter
Pbefore

I(xizv,-)zl—

Pyfier and Ppegore are respectively the products of the domain cardinalities after and
before branching on x; = v; and applying constraint propagations. By doing so,
selecting the next branching variable requires the computation of the impact of each
variable assignment, by simulating filtering at each node of the search tree. This can
be very time consuming. Hence, IBS considers the impact of an assignment at a given
node as the average of its observed impacts. More precisely, if K is the index set of
impacts observed of x; = v;, IBS estimates an averaged impact of this assignment as
follows, where Ij is kth impact value:

Y okek Ik(xi = v)
K|

I(xj =v) =

Finally, the impact of a variable according to its current domain, which may be
filtered, is defined as follows:

T(x;) = Z 1—1(x; =v)

veD;

IBS selects the variable with the highest impact value Z (x;).

4.2 Conflict-driven heuristic

A popular variable ordering heuristic for CSP solving is dom/wdeg (Boussemart
et al. 2004). It guides the search towards the variables appearing in the constraints
which seem hard to satisfy. For each constraint c;, the dom /wdeg heuristic maintains
a weight w(c;), initially set to 1, counting the number of times that c¢; has led to a
failure (i.e. the domain of a variable x; in S(c;) is emptied during propagation from

@ Springer

Conflict history based search for CSP 959

c¢;j). The weighted degree of a variable x; is defined as:

wdeg(x;) = > w(c))

c;€C: x;€S(cj)NUvars(S(cj))|>1

The dom/wdeg heuristic selects the variable x; to assign with the smallest ratio
|D;i|/wdeg(x;), such that D; is the current domain of x; (the size of D; may be
reduced in the current search step). Note that the constraint weights are not smoothed
indom /wdeg. Also, variants of dom /wdeg were introduced, such as in Hebrard and
Siala (2017), but are not widely used in practice. Very recently, a refined version of
wdeg (called wdeg®@<?) has been defined in Wattez et al. (2019). When a conflict
occurs for a constraint ¢, instead of increasing its weight by 1 as in dom/wdeg,
wdeg®®“? increases its weight by a value depending on the number of unassigned
variables in the scope of ¢; and their current domain size.

4.3 Activity-based heuristic (ABS)

ABS is motivated by the prominent role of filtering techniques in CSP solving (Michel
and Hentenryck 2012). It exploits this filtering information and maintains measures of
how often the variable domains are reduced during the search. In practice, at each node
of the search tree, constraint propagation may filter the domains of some variables after
the decision process. Let X s be the set of such variables. Accordingly, the activities
A(x;), initially set to O, of the variables x; € X are updated as follows:

- Ax) =A(x) +1ifx; € X
- A(x) =y x A(x;) if x; ¢ X

y is adecay parameter, such that 0 < y < 1. The ABS heuristic selects the variable
x; with the highest ratio A(x;)/|D;]|.

4.4 CHB in gecode

Dedicated to constraint programming, Gecode solver implements Conflict-History
based Branching (CHB) heuristic since version 5.1.0 released in April 2017 (Schulte
2018). It follows the same steps of the first definition of CHB in the context of the
satisfiability problem (Liang et al. 2016a,b). In Gecode, the following parameters are
used to update the Q-score of each variable x; of the CSP instance, denoted gs(x;).
f is the number of failures encountered since the beginning of the search and /f (x;)
is the last failure number of x;, corresponding to the last time that D; is emptied.

Initialized to 0.05 for each variable x;, CHB update the Q-score gs(x;) of x; during
the constraint propagation as follows:

— If D; is not reduced then ¢s(x;) remains unchanged
— If D; is pruned and the search leads to a failure, [f (x;) is set to f and gs(x;) is
updated by:
gs(xj) = (1 —a) x gs(x;)) +a xr

@ Springer

960 D. Habet, C. Terrioux

The step-size «, initialized to 0.4, is updated to o — 1070 if ¢ > 0.06. The value
of the reward r is given by:

1
f=1f(x)+1

— If D; is pruned and the search does not lead to a failure, ¢s(x;) is also updated by:
gs(x) = (1 —a) x gs(xi) +a xr
In this case, the reward value is defined by:

0.9
f=1fGi)+1

CHB in Gecode selects the variable with the highest Q-score.

4.5 Last conflict (LC)

Last Conflict (LC) reasoning (Lecoutre et al. 2006) aims to better identify and exploit
nogoods in a binary tree search, where each node has a first branch corresponding to
a positive decision (x; = v;) and eventually a second branch with a negative decision
(xi # v;).

If a positive decision x; = v; leads to a conflict then LC records the variable x;
as a conflicting variable. The value v; is removed from the domain D; of x;. After
developing the negative branch x; # v;, LC continues the search by assigning a new
value v] to x; instead of choosing a new decision variable. This treatment is repeated
until a successful assignment of x; is achieved. In this case, the variable x; is unrecorded
as a conflicting one and the next decision variable is decided by an auxiliary variable
ordering heuristic. Hence, this last one is used when no conflicting variable is recorded
by LC.

4.6 Conflict order search (COS)

Conflict Order Search (COS) (Gay et al. 2015) is intended to focus the search on the
variables which lead to recent conflicts. When a branching on a variable x; fails, x; is
stamped by the total number of failures since the beginning of the search (the initial
stamp value of each variable is 0). COS prefers the variable with the highest stamp
value. An auxiliary heuristic is used if all the unassigned variables have the stamp
value 0.

4.7 Branching heuristics for the satisfiability problem

In the context of the satisfiability problem, modern solvers based on Conflict-Driven
Clause Learning (CDCL) (Eén and Sorensson 2003; Marques-Silva and Sakallah 1999;

@ Springer

Conflict history based search for CSP 961

Moskewicz et al. 2001) employ variable branching heuristics correlated to the ability of
the variable to participate in producing learnt clauses when conflicts arise (a conflictis a
clause falsification). The Variable State Independent Decaying Sum (VSIDS) heuristic
(Moskewicz et al. 2001) maintains an activity value for each Boolean variable. The
activities are modified by two operations: the bump (increase the activity of variables
appearing in the process of generating a new learnt clause when a conflict is analyzed)
and the multiplicative decay of the activities (often applied at each conflict). VSIDS
selects the variable with the highest activity to branch on.

Recently, a conflict history based branching heuristic (CHB) (Liang et al. 2016a),
based on the exponential recency weighted average, was introduced. It rewards the
activities to favor the variables that were recently assigned by decision or propagation.
The rewards are higher if a conflict is discovered. The Learning Rate Branching (LRB)
heuristic (Liang et al. 2016b) extends CHB by exploiting locality and introducing the
learning rate of the variables.

4.8 Discussion

Reinforcement learning techniques have already been studied in constraint program-
ming. The multi-armed bandit framework is used to select adaptively the consistency
level of propagation at each node of the search tree (Balafrej et al. 2015). A linear
regression method is used to learn the scoring function of value heuristics (Chu and
Stuckey 2015). Rewards are calculated and used to select adaptively the backtracking
strategy (Bachiri et al. 2015). Learning process based on Least Squares Policy Iter-
ation technique is used to tune adaptively the parameters of stochastic local search
algorithms (Battiti and Campigotto 2012).

More recently, upper confidence bound and Thompson Sampling techniques are
employed to select automatically a variable ordering heuristic for CSP, among a set
of candidate ones, at each node of the search tree (Xia and Yap 2018). The considered
candidate set contains notably IBS, ABS and dom /wdeg. Knowing that no heuristic
always outperforms another, Xia and Yap exploit reinforcement learning (under the
form of a multi-armed bandit) to choose the search heuristic to employ at each node of
the search rather than choosing a particular heuristic before the solving. More recently,
Wattez et al. have proposed another MAB approach (Wattez et al. 2020). Like in the
work of Xia and Yap, each heuristic corresponds to an arm. In contrast, an new arm is
chosen at each restart instead of each node. On the other hand, in CHS, reinforcement
learning allows to select the branching variable based on ERWA. Note also that CHS
can be used as an additional arm in the work of Xia and Yap while it is already exploited
as an arm in Wattez et al. (2020).

To return to the heuristics detailed in this section, LC, COS and CHB are also
conceptually interested in the search history as CHS. They act directly on the variable
scores while CHS considers this history by weighting the constraints that are responsi-
ble for failures before scoring the variables. As an illustration, CHB in Gecode updates
the Q-score values of variables according to ERWA while CHS uses ERWA to update
the weight of constraints to calculate the score of the variables. The update of the «
parameter is also different between CHS and CHB, especially during restarts.

@ Springer

962 D. Habet, C. Terrioux

Weight and score decaying is also used in other heuristics such as ABS. However,
it is applied to the score of the variables and not that of the constraints such as in
CHS. It is also important to note that there is no decaying in CHB. Furthermore, CHS
and dom /wdeg calculate differently the score of the constraints leading to failures.
In the first case, the score of the constraint is always incremented by a constant value
1. In the second case, the new score is a tradeoff between the current one and the
reward that varies at each failure. Moreover, the scores of constraints are not decayed
in dom/wdeg contrary to CHS. Finally, unlike LC and COS, CHS does not require
the use of an auxiliary heuristic.

5 Experimental evaluation on CSP instances

This section is devoted to the evaluation of the behavior of our heuristic when solving
CSP instances (decision problem). We first describe the experimental protocol we
use. In Sect. 5.2, we assess the sensitivity of our heuristic CHS to its parameters and
the benefits of smoothing and resetting. Afterwards, we compare CHS with state-of-
the-art variable ordering heuristics in Sect. 5.3, before studying the behavior of CHS
when it is used jointly with LC or COS in Sect. 5.4. Finally, in Sect. 5.5, we evaluate
the practical interest of CHS in the particular case where the search is guided by a
tree-decomposition.

5.1 Experimental protocol

We consider all the CSP instances from the XCSP3 repository? and the XCSP3 com-
petition 2018,3 resulting in 16,947 instances. XCSP3, for XML-CSP version 3, is
an XML-based format to represent instances of combinatorial constrained problems.
Our solvers are compliant with the rules of the competition except that the global
constraints cumulative, circuit and some variants of the allDifferent
constraint (namely except and 1ist) or the noOverlap constraint are not sup-
ported yet. Consequently, from the 16,947 obtained instances, we first discard 1233
unsupported instances. We also remove 2813 instances which are detected as inconsis-
tent by the initial arc-consistency preprocessing and having no interest for the present
comparison. Finally, we have noted that some instances appear more than once. In such
a case, we keep only one copy. In the end, our benchmark contains 12,829 instances,
including notably structured instances and instances with global constraints.
Regarding the solving step, we exploit MAC with restarts (Lecoutre et al.
2007) before assessing the impact of our approach on a structural solving method,
namely BTD-MAC+RST+Merge (Jégou et al. 2016). Roughly speaking, BTD-
MAC+RST+Merge differs from MAC by the exploitation of the structure via the notion
of tree-decomposition (i.e. a collection of subsets of variables, called clusters, which
are arranged in the form of a tree Robertson and Seymour 1986). While the search per-
formed by MAC considers at each step all the remaining variables, one performed by

2 http://www.xcsp.org/series.
3 http://www.cril.univ-artois.fr/XCSP18/.

@ Springer

http://www.xcsp.org/series
http://www.cril.univ-artois.fr/XCSP18/

Conflict history based search for CSP 963

BTD-MAC+RST+Merge only takes into account the unassigned variables of the cur-
rent cluster. The clusters of the computed tree-decomposition are processed according
to a depth-first traversal of the tree-decomposition starting from a cluster called the
root cluster (see Jégou et al. 2016 for more details). For BTD-MAC+RST+Merge, the
tree-decompositions are computed with the heuristic Hs-TD-WT (Jégou et al. 2016).
The first root cluster is the cluster having the maximum ratio number of constraints to
its size minus one. At each restart, the selected root cluster is one which maximizes the
sum of the weights of the constraints whose scope intersects the cluster. The merging
heuristic is the one provided in Jégou et al. (2016). Note that these settings except
the variable ordering heuristic correspond to those used for the XCSP3 competitions
2017 and 2018 (Habet et al. 2018; Jégou et al. 2017, 2018).

MAC and BTD-MAC+RST+Merge use a geometric restart strategy based on the
number of backtracks with an initial cutoff set to 100 and an increasing factor set to
1.1. In order to make the comparison fair, the lexicographic ordering is used for the
choice of the next value to assign. We consider the following heuristics dom /wdeg,
wdegC“'Cd, ABS, IBS and CHB as implemented in Gecode. For ABS, we fix the decay
parameter y to 0.999 as in Michel and Hentenryck (2012). Note that we do not exploit
aprobing step like one mentioned in Michel and Hentenryck (2012). So all the weights
are initially set to 0. For CHB, we use the value parameters as given in Schulte (2018).
We also introduce a new variant dom /wdeg+s which we define as dom /wdeg where
the weights of constraints are smoothed at each restart, exactly as in CHS. For all the
heuristics, ties (if any) are broken by using the lexicographic ordering.

We have written our own C++ code to implement all the compared variable ordering
heuristics in this section, as well as the solvers that exploit them (MAC and BTD).
By so doing, we avoid any bias related to the way the heuristics and solvers are
implemented. In particular, the variable ordering heuristics are all implemented with
equal refinement and care. Moreover, when comparing the variable ordering heuristics
for a given solver, the only thing which differs is the variable ordering heuristic. Indeed,
we use exactly the same propagators, the same value heuristic, etc. This ensures that
we make a fair comparison. Finally, given a solver and a CSP instance, we consider
that a variable ordering heuristic 41 is better than another one 4, if /11 allows the solver
to solve the instance faster than /,. Indeed, the aim of variable ordering heuristic is
to make a good tradeoff between the size of the explored search tree and the runtime
spent for choosing a relevant variable (remember that finding the best one is an NP-
Hard task Liberatore 2000). Since all the other parts of the solver are identical, the
solving runtime turns to be a relevant measure of the quality of this tradeoff. Thus,
when the comparison relies on a collection of instances, / is said better than £, if it
leads the solver to solve more instances than /. If both lead to solve the same number
of instance, ties are broken by considering the smaller cumulative runtime. At the
end, note that our protocol is consistent with the recommendations outlined in Hooker
(1995).

The experiments are performed on Dell PowerEdge R440 servers with Intel Xeon
Silver 4112 processors (clocked at 2.6 GHz) under Ubuntu 18.04. Each solving process
is allocated a slot of 30 minutes and at most 16 GB of memory per instance. In the
following tables, #solved (abbreviated sometimes #solv.) denotes the number of solved

@ Springer

964 D. Habet, C. Terrioux

Table 1 Number of instances

solved by MAC+CHS o # solved instances Time (h)

depending on the value of « SAT UNSAT ALL

(between 0.1 and 0.9) for

consistent instances (SAT), 0.1 6530 4212 10742 1038.89

inconsistent ones (UNSAT), and 0.2 6505 4206 1711 1049.55

all the instances (ALL) and the 03 6505 4203 10708 1052.04

cumulative runtime (in hours) of

MAC+CHS for all the instances 04 6493 4204 10697 1056.14
0.5 6509 4202 10711 1058.13
0.6 6487 4205 10692 1062.14
0.7 6504 4207 10711 1055.46
0.8 6479 4197 10676 1072.28
0.9 6473 4203 10676 1071.43
VBS 6691 4242 10933 940.21

instances for a given solver and time is the cumulative runtime, i.e. the sum of the
runtime over all the considered instances.

5.2 Impact of CHS settings

In this part, we assess the sensitivity of CHS with respect to the chosen values for o or
6. First, we observe the impact of g value. Hence, we fix § to 10~ to start the search
by considering the variable degrees then quickly exploit ERWA-based computation.
We then vary the value of «y.

Table 1 presents the number of instances solved by MAC depending on the initial
value of «g and the corresponding cumulative runtime. Here, we first vary oy between
0.1 and 0.9 with a step of 0.1. We also provide the results of the Virtual Best Solver
(VBS). The VBS is a theoretical/virtual solver that returns the best answer obtained
by MAC with a given «p among those considered here. Roughly, it allows to count
the number of the instances solved at least one time when varying the value of «,
while considering the smaller corresponding runtime. Table 1 shows that the results
obtained for the different values of « are relatively close to each others. However,
we can observe that the value ag = 0.1 allows MAC to solve more instances (10,742
solved instances with a cumulative solving time of 1,038.89 hours) than the other
considered values. More precisely, MAC with CHS and o9 = 0.1 solves at least 31
additional instances. The worst cases are «g = 0.8 and og = 0.9 with 10,676 instances
solved respectively in 1072 and 1071 h. If we discard the value 0.1 for oo, we observe
that the results for the remaining considered values are quite close. This shows that
CHS is relatively robust w.r.t. the ¢ parameter. Moreover, we can also remark that
these observations are still valid if we focus on SAT instances (respectively on UNSAT
instances). For example, the choice og = 0.1 leads to solving the largest number of
SAT instances (resp. UNSAT instances), exactly 6530 instances (resp. 4212 instances).
Figures 1 and 2 also show that oy = 0.1 is the best choice among the experimented
values. Indeed, we can note that the curve corresponding to op = 0.1 is almost always

@ Springer

Conflict history based search for CSP 965

10500 T T T T T

10000

9500

9000

#instances

8500

8000 f

7500 i
0.1 — 03 0.5 07~ 09—
02--- 04 06 --- 08—~ -VBS -
7000 1 1 1 1 1
10 20 30 40 50 60

runtime (s)

Fig. T Number of solved instances as a function of the elapsed time for ¢« varying between 0.1 and 0.9
and the VBS, for a runtime between 1 and 60 s

1 1000 T T T T T T T T
10800
10600

10400

#instances

10200

10000 ff
0.1 —_— 0.3 0.5 0.7 e e 0.9
02--- 04 0.6 -~~~ 0.8 ~—-~VBS -~
9800 1 1 1 1 1 1 1 1
200 400 600 800 1000 1200 1400 1600 1800

runtime (s)

Fig. 2 Number of solved instances as a function of the elapsed time for ¢y varying between 0.1 and 0.9
and the VBS, a for runtime between 60 and 1800 s

above the others in both figures. These two figures also highlight the robustness of
CHS w.r.t. the value of «(since all the curves are quite close.

Since the value g = 0.1 leads to the best result, a natural question is what happens if
we consider the value oy = 0 (which is normally a forbidden value since 0 < o < 1).
So we run MAC+CHS with og = 0. In this case, the number of solved instances
decreases significantly since only 9069 instances are solved. At the same time, the

@ Springer

966 D. Habet, C. Terrioux

Table 2 Number of instances

solved by MAC+CHS «0 z[:oTlved mstar{ljc;ss AT AL Time (h)
depending on the value of «
(between 0.025 and 0.15) for 0.025 6507 4202 10709 1061.07
consistent instances (SAT),
inconsistent ones (UNSAT), and 0.05 6512 4212 10724 1058.89
all the instances (ALL) and the 0.075 6500 4204 10704 1064.61
cumulative runtime (in hours) of (1 6530 4212 10742 1038.89
MAC+CHS for all the instances
0.125 6519 4203 10722 1078.10
0.15 6503 4207 10710 1061.81

runtime is almost doubled with a cumulative runtime of 1921.35 hours. Consequently,
the benefit of CHS is highly related to the tradeoff between the rewards of the past
conflicts and the reward of the last one and so choosing a positive value for « is crucial.
The impact of this tradeoff is reinforced by the fact that MAC+CHS with g = 1 (a
forbidden value too) performs worse than most of the combinations of MAC with «
between 0.1 and 0.9. Indeed, it only solves 10,667 instances while spending more time
(1089.37 h).

Likewise, we can wonder what happens if we choose a value slightly different from
0.1. Hence, we now vary oo between 0.025 and 0.15 with a step of 0.025 (see Table 2).
Again, MAC+CHS with g = 0.1 turns to be the best case by solving more instances
and obtaining the smallest cumulative runtime. Furthermore, the robustness of CHS
w.r.t. the op parameter is strengthened since we can note that the other values of «
obtain close results.

Regarding the Virtual Best Solver (VBS) in Table 1, we note that it can solve 191
additional instances than MAC+CHS when oy = 0.1 with the best runtime of 940.21
h. We can also remark that most of these additional instances are consistent (161 SAT
instances vs. 30 UNSAT). If we consider the results instance per instance, we observe
that 10,478 instances are solved whatever the chosen value for o, which shows again
the robustness of CHS w.r.t. the value of «. Furthermore, among the 455 remaining
ones, there exists 106 instances which are only solved by MAC with a particular
value for «g (of course this value depends on the considered instance) and for 32% of
the instances, MAC needs more than 1,200 seconds in order to solve each of them.
Accordingly, some instances seem to be harder to solve. Finally, we observe that these
455 instances belong to several families. Indeed, more than half of the considered
families are involved here, which shows that this phenomenon is more related to the
instances themselves than to a particular feature of their family.

Now, we set g to 0.1 and evaluate different values of § (see Table 3). The obser-
vations are similar to those presented previously, showing the robustness of CHS
regarding §. Also, it is interesting to highlight that MAC+CHS with § = 0 solves
10,683 instances while it solves 10,742 instances if § = 10~4. This illustrates the
relevance of introducing é in CHS since it allows to solve 59 more instances with this
last setting.

Table 4 gives the results of MAC+CHS (g = 0.1, 8§ = 10~*) with smoothing
(+s) the constraint scores or without (-s) and/or with resetting (+r) the value of « to

@ Springer

Conflict history based search for CSP 967

Table 3 Impact of the value of §)
on MAC+CHS regarding the 5 SAT UNSAT ALL Time (B)
number of solved instances and 0 6479 4204 10683 1079.25
the cumulative runtime in hours
0> 6519 4207 10726 1043.53
104 6530 4212 10742 1038.89
1073 6508 4199 10707 1044.41

Table 4 Number of instances solved by MAC with CHS with/without smoothing and reset of « and
cumulative runtime in hours

Solver SAT UNSAT ALL Time (h)
MAC+CHS (+s +r) 6530 4212 10742 1038.89
MAC+CHS+s-r 6520 4209 10729 1043.95
MAC+CHS-s-r 6484 4199 10683 1064.20
MAC+CHS-s+r 6482 4176 10658 1067.72

0.1 at each new restart or without (-r). The observed behaviors clearly support the
importance of smoothing and restarts for CHS. For example, MAC+CHS+s-r solves
13 less instances than MAC+CHS, while MAC+CHS-s+r solves 84 instances less.

Finally, these results are globally consistent with those presented in Habet and
Terrioux (2019). Indeed, except that the best value of ¢ is now 0.1 instead of 0.4 in
Habet and Terrioux (2019), we observe the same trends. The benchmark used in Habet
and Terrioux (2019) was a subset of our initial benchmark. If we proceed similarly
by removing arc-inconsistent instances, we obtain a benchmark with 7916 instances.
From this benchmark, MAC solved respectively 6700 and 6706 instances with 0.1 and
0.4 for ¢ in Habet and Terrioux (2019), while in the current experiments, it succeeds
in solving 6837 and 6829 instances. In both cases, the gap between the two values of
o is very small. Note that the increase in the number of solved instances is mainly
related to some improvements in our implementation and the difference of hardware
configurations. Both impact all the heuristics in the same manner.

5.3 CHS versus other search heuristics

Now, we compare CHS to other search strategies from the state-of-the-art, namely
dom/wdeg, wdeg®®?, ABS, IBS and CHB. In the remaining part of the paper, by
default, we consider CHS with g = 0.1 and § = 10~*. We also consider the variant
dom/wdeg+s that we introduced for dom /wdeg.

Figure 3 presents the number of solved instances as a function of the elapsed
time for each considered heuristic. Since no heuristic outperforms another for all
instances or families of instances, Tables 5, 6, 7 and 8 give some details for each
family of instances. They allow to have a better insight of the kind of instances for
which CHS is relevant. More accurately, for each family, they provide on rows C
the number of instances solved by MAC with each considered heuristic (excluding

@ Springer

968 D. Habet, C. Terrioux

12000 T T T

11000

10000

9000

8000

#instances

7000

5000 |
CHS —— dom/wdeg o o |
4000 dom/wdeg+s - - - ABS IBS wdegeaed .o....

1 10 100 1000

runtime (s)

Fig. 3 Number of solved instances as a function of the elapsed time (with a logarithmic scale) for the
considered heuristics (namely CHS, dom /wdeg+s, dom /wdeg, wdeg@-°d ABS, CHB and IBS) and the
VBS based on these seven heuristics

IBS4) and the cumulative runtime for solving them for each heuristic, and on rows
T the total number of instances of the family, the number of solved instances and
the corresponding cumulative runtime for each heuristic. For each row, we write in
bold the result of the best heuristic. As mentioned in our experimental protocol and
like the solver competitions, we first consider the number of solved instances and we
break ties by considering the cumulative runtime (given in seconds, except for the
total runtimes which are expressed in hours). We only provide two digits after the
decimal dot when the runtime does not exceed 100 s. Beyond, such details do not
bring a significant information. We divide the instance families into three categories:
academic, real-world and XCSP3 2018 competition. For that, we use the labeling from
the XCSP3 repository.

From Fig. 3 and Tables 5, 6, 7 and 8, it is clear that MAC with CHS performs
better than any other heuristics whether in terms of the number of solved instances
or runtime. Indeed, for example, dom /wdeg is the heuristic closest to CHS but leads
to solve 92 instances less. At the same time, CHS solves 127 instances more than
MAC+dom /wdeg+s and 174 more than MAC+wdeg®@<¢. Likewise, it solves 134
additional instances w.r.t. MAC+ABS.

Now, if we consider the heuristic CHB which is based on conflict history like
CHS, the gap with CHS is even greater (213 instances). This last result shows that the
calculation of weights by ERWA on the constraints (as done in CHS) is more relevant
than its calculation on the variables (as done in CHB). Note that the poor score of IBS
is mainly related to the estimation of the size of the search tree (i.e. the product of

4 Given the poor results of MAC with IBS, including IBS leads to a less relevant comparison on instances
solved by MAC with each heuristic since it significantly decreases the number of such instances.

@ Springer

969

Conflict history based search for CSP

10°0 01 10°0 01 10°0 0L 100 01 10°0 01 10°0 01 0l L
10°0 10°0 10°0 10°0 10°0 10°0 or D s[zzngoyd£rD
961¥ 6 11€S 6 LLbY 6 €0SS 6 €L19 8 6L¥S 8 I L
pLT 8Tt 6679 891 €LL 9I°6L 8 O Ke1ryseIso)
00912 S 1091C S 009IT S 109IT S 10912 S 1091 S L1 L
LT0 vL0 6£°0 1L°0 06°0 68°0 S O sueanQpaImojo)
1098 S 9¢80L 91 TLIEY 6L 991c8 8 €19LL 6 t0SSL 01 L
8€°0 18t 162 S8y 7879 6201 ¢ O Supuonbogre)
L09SP S8 6810 S8 0198% S8 9106% 8 86£0S S8 6LLIS 8 T L
LT'L 9861 €001 91t 86LI1 6LET 8 O sjoyyoeg
87T9TT LOT 096V61 611 L£9TTT OIT SL9STT PIT T9P9PT 86 PSIIVL st e L
989% oLI 10€8 §T9¢8 ¥80S vLS €L D paig
€0°0 v 10°0 v 10°0 14 10°0 14 10°0 v 200 v v L
€0°0 10°0 100 100 10°0 200 v O oiseq
LOY 43 80 € ¥8TLI € LO6SI T 0187 43 S6°€ 43 €L
0T0 020 0801 9768 69°6 070 ww 0 [PAW[Y OIWapEOY
QWIL], "AJOS# QWIL], AJOSH QWI], "AJOSH QUWIL], AJOS# QWI], "AJOSH QWIL], "AJOS#
gHD sqv prpad2Pm Sapm/uop s+8opm [uiop SHD SQOUEISUT # Arueq
(G Q1qeL

10§ | Meq) A[IUIR) PAISPISUOD YI®3 10} GHD 10 SAV * porpp82pM *Sopm/wop *s+32pm/wop ‘SHD G DVIA JO (SWNUNI PUE SIOUEISUL JO Jaquinu) sINsal pI[eId(§ 3|qeL

pringer

Qs

D. Habet, C. Terrioux

970

10288 C £0C88 [4 00788 (4 €088 C 0T88 [4 088 C Is L

150 Ly'e 0°0 9I'e LS'T 0cy c D syoeIskey
9¢°¢ 9 61y 9 €€°C 9 (%% 9 e 9 9¢'¢ 9 L L

9¢°¢ 61y €€°C 6y e 9¢'¢ 9 O louey
121291 1 €v88SI 91 206C91 1 180091 91 08SLSI LT S8LEST 61 Y0l L

40! 690 98°¢ 18°¢¢ LOC 00 D yderpngeoern
£989¢ IT orrLe 91 123553 I 2669¢ Il ¥969¢ 01 0809¢ Cl 0e L

ILC] LET 8GI1 98¢l 796 86 or D stoqng
68’11 L 68°0S L Sroe L SL91 L slee L 01°¢C L L L

68’11 68°0S Sroe SL91 slee or-ee L D JOALI
19¢ LE 19¢ LE 8LC LE €ve LE 9¢¢ LE 9¢¢ LE Le L

19¢ 19¢ 8LC €ve 9¢¢ 9¢¢C Le D ourwoq
€061 8¢ L6'1C 8¢ 9026 9¢ LESTI €€ 9ricI €€ 6008 9¢ 8¢ L

68°01 1eel LTIE 68LI1 YLTT s e O I3 fpuoweIg
TSLL (4} 0LS6 Cl 1011 Cl SLLL 4! LLETT 1! SOLL Cl 81 L

8¢S 0€s ors 6CS 88 1439 ¢l O oouenboguligeq — orwepesy
Qwl], A[OS# QWI], AJOS# Qwl], A[OS# QWI], AJOS# QWI], A[OS# QWIL], "AJOS#

qgHD sqgv NS.SMNES Sapm/wop s+3apm/uop SHD SooUB)ISUL # A[ueq

G 9IqeL 10J 7 Mg §3[qel

pringer

As

971

Conflict history based search for CSP

08¢ ol €01 o1 129 01 19¢ 0l 19¢ 0l 99¢ 01 or L
08¢ €01 124 19¢ 19¢ 99¢ or D ndsiorey
€G188 & ¥186v 85 9L¥001 61 L669L w ST06S vs ST80L 144 98 L
0¥9¢ 1494 ILce 0s€ 9¢8 (413 8I DO arenbgorSey
86 €8 1944 €8 OLTT €8 €LY €8 €LY €8 9¢¢ €8 ¢8 L
786 (344 oLT1 €LY €LY 9¢¢ €8 D ooudnbagoSey
SSY991 9LC 08SYLI ILC TLSCTLI YLT 858991 SLT §L9991 9LT €8€091 18¢C 99¢ L
8791 09 0scl (314 SL8 099 9¢ DO arenbguney
ceELYC 8C 8L68OI L9 9£T8el 6y 8LYIVI 6y 98vivI 6y 696111 6 gcl L
LS9T (45 8LET clel L8E1 Y191 9% DO plojsueT
(451544 4! ¥118¢ 6 1599¢ Cl YCLTE 9 €SLTE 9 LTSTE L ¢ 1L
L8E 9C'C WSl G81 861 981 s D InogIystuy
YLOCTI €l Socel cl LLYTI el S6ccl €l eecl €l 9¢8I1 €1 6l L
1444 6101 ges 8¢ 9% €67 [4 B SIYSTUy]
L199¢ 9801 LOTLT 8801 0SIv1 9601 SLTY 1011 £€79C T01T 968¢ 0011 wIr L
0119 125! S08 S0C 08°89 SL'96 ¥801 D omyedy] OIUIPEdY
QWIL], A[OS# QWI], A[OS# QWI], A[OS# Qwl], A[OS# QWI], A[OS# QWI], A[OS#
gHD sqgv \Séumﬁcs Sapm /wop s+3apm/uop SHD SQJUB)ISUI # A[uueyg

G 91quL 10F € Wed 9 3[qeL

pringer

As

D. Habet, C. Terrioux

972

V8LEY LET €€91¢ eVl €CoLE el 88Y6T 148 080c¢e el 8LYSE 24! 091 L

LTS SEV9 101 6¢l 0ore 8¢8 vel D Soutd
19¢y LE Sv681 6C v16S 9¢ rrov LE So0v LE 6L1Y LE 8¢ L

Sv'68 SYLT eyl 6CT'I8 81°68 1T°s8 6c D Sngsuoasig
1cocy v 8Ivly ¥ 89¢9¢ L LOVIV 14 90v1v ¥ 9I8LE 9 Lc L

919 ev9l LSE e 191 69°¢ /A unejoyo
890¢Y 8T l6SEy LT 9eve9 91 0L0S9 14! £6789 €l 18L8S 0¢ 0s L

LEY 6S'8 148! 60¢C 1691 LO'19 Tl O SuuonnrediequinN
£06¢ 1293 S00s 1253 866C gee 1€9% 1253 956¢ S I8LE 1253 9¢e L

08¢ 06°St L6S LYC 60°LL 1 Ise D weISouoN
LT9S 8¢ Wi 1€ 68 1e S09 Ie (433 1e 11¢ 1e e L

LTC 65T °6'9¢ 89°8¢ L6'El L8'T1 8¢ O yoesdeus nniy
091v 91 YLIL 14! 8SYS Sl 09LS L1 1099 ¥1 8STY LT 8I L

96¢ (424 9¢ 8¢ Ly €I¢ T D PXIA
961 981CT 68'SS 981¢C 8¢€C 981CT €v'sS 981¢ 68°SL 981¢C 9¢l 981¢C 981C L

9¢1 68°GS 8¢€C ev'ss 68°SL 9Cl 98IC D dSOXEeN Ollopedy
QWI], ‘AJOS# QWI], AJOS# QWI], AJOS# QWI], AJOS# QWI], AJOS# QWI], AJOS#

qdHD sqgv E.SMNES Sapm /wop s+3apm/wop SHD SQOURISUI # ey

G 91quL 10F ¥ 11ed 9 3[qeL

pringer

As

973

Conflict history based search for CSP

pringer

As

99618 €91 LT0Ee9 vLOT 8IOSOL ¥991 LTSS8S €OLT LLISEO 8L91 8THSO9 6691 ss6l L
001v61 601SL 0c69¢l 66¥6S 0S91L 97959 16S1 O wopuey
90CL1 I8 €5°¢ 06 68C 06 79°¢ 06 06°¢ 06 86°¢ 06 06 L
9001 69°¢ 6I'C GeT 0e¢ 12X 18 D 9oup[[PAINGIEPpEY
L6£9 91 9LSY1 01 0€89 Sl 6v69 Sl 99L9 Sl 6£6S 91 8I L
101 G8'CLI LY'88 YL'ES 6£'98 6I°SS 0or O SIS Tu3sueang)
(X304 0c SSET (44 £8¢C6 81 °9¢€T I £6€T IC S08¥y 0¢ v¢ L
80¢ 99°p¢ 180T 68°S9 068 L6V 8 D suoanQy
L0801 14 €L601 14 01801 14 806 S IL16 S 1206 5 or L
LT'L I8°CLL 056 1.0 9r'cC 8L'E 2] Suppoenyusand
92850¢ ¥C 65€50C ¥C LOLETT ¥¢ 60L¥0C §¢ Tegee 9C T0s€0T 9¢ 8yl L
9 9S1 661 (424 8¢S (414 ¥¢ O sdnoriseng
601¢€€ 609 OLT¥1 <19 91L8I €19 90L6 (48 69CT1 €19 L8TO1 19 v19 L
Y6¢£1C 658 LO6ET TeeL L69L 0819 L09 O wopueyQ
SOI¥se SEl LESLYE LET 91S66¢ 121 +8906¢ PIT 99668¢ 6C1 8¢0I9¢ o€l Lee L
L96¢T 681 SoIl LT61 €6L1 yeel 601 O ueo2[00gopnesd Olopedy
Qwl], AJOS# QWI], AJOS# QWIL], ‘AJOS# QwWI], AJOS# QWI], AJOS# QWI], ‘AJOS#
dHD sgv NS.SMN%S Sapm/wop s+3apm /wop SHD SQouB)ISUT # Apueq

G 9IquL 10F G Wed £ 3|qel

D. Habet, C. Terrioux

974

€C0 6 Sl 6 LEO 6 0T0 6 61°0 6 0 6 6 L
€C0 §Co LEO 0C0 61°0 0 [{ el mjopng
8L8ICE 9L91 LOVIBC T691 99TLOC 1891 vESY9T LOLI I1S6SLC 6691 0S6¥9C vOLI 8L81 L
£98¢eY 18T 78S6¢C L9Y0¢ 79¢61 welc 9191 O wsrydrowosiqng
96'00CL ¥ T990CL ¥ T6'91SS S TI'CICL ¢ oLegicL S SYyoTL 14 or L
960 299 800 90°0 LO0 Sz ¥ D [RSIUEIN
96S L 806¢ 8 €Cly 8 00LT 6 6001 8 YL6E 8 or L
96 80¢ s 98¢ 601 YLE L D BUIWRTLNYSS
9818¢C <6 0gTre 88 T€66C 6 681 98 £Co0Y ¢8 (43333 06 L01T L
6C'L9 LT6C (9% Lyl 0€cl 9L01 08 O Surpaydg
Y00LT LSE (44141 19¢ L68TI 19¢ €9161 19¢ 966¢1 19¢ €0C81 19¢ 99¢ L
6VIL L9YE L98C 1L0OS SI6e 0299 9¢e O s
LST LT 9LT L1 60¢ LT £9¢ LT 86¢ LT 68¢ LT 0oc L
LST 9LT 60¢ £9¢ 86¢ 68¢C LT D QIEJNWOOY JIApedy
QuIl], A[OS# Quil], A[OS# QuIL, A[OS# Quil], A[OS# QuWIL], A[OS# QuIl], A[OS#
qHD sqgv ?.3%&»3 Sapm/wop s+3apm/wop SHD SQOUB)ISUT # ATure

§ 9IqvL 10J 9 11ed £ 3|qeL

pringer

As

975

Conflict history based search for CSP

Y6CTOLIT 6CSOT UPI'L60T 8090T U69SSIT 89S0T UPS960T 0S90T USTIIL SI90T U68'8E0T THLOT 6C8CI L
yzeLs 96Ty Y 85'€9 ysoLe yogLe Up6ee LOTOT D v
Y 98°C8 801 qeLeL 48! 4998 oLl Uv0es LO1 ygces Ol Y 00°8L SII s9¢ L
ULST q$9°0 4080 qest uyel qeol ¥8 D suonnadwo)
qosyIl SSL yiscel LTL UpesIl 9SL YII8II SOL U86'S0I1 YLL Y 8H'e01 8LL ¥L6 L
Uv6'l Us69 qyes Uvey U660 L8O LL9 O PIOM-TEY
Y €6'8L6 996 J 06788 69L6 U 69756 0L6 Y 8e568 8LL6 Y eeveo 1€L6 UerLss 986 06SIT L
y08c8 YoLoe yer'Ls UsLIe yerse yeoce 9ve6 O Jluepesy [e10L
STI8SI 88¢ 610¥1C 99¢ 8L09SI 18C 801991 00€ 688111 cle SSTITL 91¢€ ILe L
[§544 L89€ET PS8LI 118C1 1L 6SY ¥€¢ D ddimm
0088C € 6599¢C S 091€T 9 S00LT ¥ €00LT ¥ S0esT S 61 L
€00 w00 SO0 <o 00 1o € D Surnpaydgsiodg
I8ILIT £ve LS88CT 9¢e 06¥01C IPe 18¥8¢C 8¢ 9L0TET LEE PSLIET 333 09y L
059¢ 9¢€01 Socl 08LT 16LC (434 we D SI2J[0D[EI0S
S608 LS LOSL 9¢ Y44 6S 809¢ 65 €SSL LS 10ev 8¢ 09 L
05°L801 €L'66C €601 LL'OY 8°08 LSSy e deyry
0S°0 0s 1234 0s 9L'0 0s ¥8°0 0S 8¥°0 0s 6T°0 0s 0s L
(U ¥€0 9L'0 ¥8°0 870 62770 0s D POIAD[EUSY
€00 14! 00 4! €00 4! S0'0 4! SO0 4! €0°0 48 ¥ L
€00 00 €00 S0°0 SO0 €0°0 ¥L D JNBUSY PLIOM-[eoy
8CL Sv LyT Fig Lyel Sy S6¢ Sy 69¢ Sy 9St St v L
8TL LyC LyEl S6¢ 69¢ oSy Sy O uewsoesSuIARLL
SLLTTY LOT 6£06¢Y 68 89996¢€ LT1 PIeT6E 611 L1L8TY 6 994404 OrT1 oge L
LL9 20T 185 Elag! S6'9L e 08 D suonnjogiadng OTapedy
Quily, AJOS# QW] AJOS# QWI], AJOS# iy, AJOS# QuI], AJOS# QwIL], AJOS#
qHD sqgv pora82PM Sapm /uwop s+8apm/wop SHD SQJURISUL # Aqruueq

§ IqeL 1oy L 11ed 8 3|qeL

pringer

As

976 D. Habet, C. Terrioux

Table9 Mean and standard deviation of the difference between the number of instances solved by the VBS
and the corresponding number for MAC with each heuristic

CHS dom/wdeg+s dom/wdeg wdeg“"”d ABS CHB

Mean 5.11 7.38 6.75 8.21 7.50 8.91
Standard deviation 9.25 13.93 11.17 15.98 1491 19.11

the domain sizes Refalo 2004). In fact, we observe that, for many instances, the value
of the estimation exceeds the capacity of representation of long double in C++.
Finally, these trends are still valid if we focus on SAT instances or UNSAT ones.

Interestingly, whatever the value of «p, MAC with CHS remains better than all its
competitors. Indeed, the worst case is observed when the value of « is equal to 0.8 or
0.9 with 10,676 solved instances. This observation also holds for the version of CHS
in which we disable the smoothing or the resetting of «. This clearly highlights the
practical interest of our approach.

If we look at the results more closely, i.e. for each family (see Tables 5, 6, 7 and
8), we observe that no heuristic dominates the others. Indeed, if CHS is the heuristic
that leads most often to the best results (for 13 families), the other heuristics are
close (notably 10 families for wdeg®? ABS and CHB). This makes the choice of a
particular heuristic difficult, as it is highly dependent on the instance or the family of
instances to be processed. This probably explains the gap between VBS and MAC with
any heuristic (e.g. 10,982 solved instances for the VBS against 10,812 for MAC with
CHS). Curiously, dom /wdeg+s only ranks first for 3 families while being globally
ranked at the third place. As CHS, it rarely performs significantly worse than the other
heuristics.

To illustrate this phenomenon, let us consider the difference between the number of
instances solved by the VBS and the corresponding number for MAC, for each family,
with each heuristic. This number can be seen as a measure of the robustness of the
heuristic. Table 9 provides the mean and the standard deviation of this difference for
each heuristic. It shows that CHS is the most robust heuristic by obtaining the smallest
mean and standard deviation.

Finally, our observations are consistent with ones in Habet and Terrioux (2019).
In particular, MAC clearly performs better with CHS than with any other heuristic,
notably the two powerful and popular variable ordering heuristics dom /wdeg and
ABS. The gap between CHS and the other heuristics has widened with the increase in
the number of instances taken into account.

5.4 Combination with LC and COS

LC and COS are two branching strategies based on conflicts which require an auxiliary
variable ordering heuristic in order to choose a variable when no conflict can be
exploited. In this subsection, we study the behavior of CHS and some heuristics of the
state-of-the-art when they are used jointly with LC or COS. We only keep the three best

@ Springer

Conflict history based search for CSP 977

11000 T T T

10500

10000

9500

9000

#instances

8500

8000

7500

CHS

dom/wdeg+s - - dom/wdelzg ABS

1
1 10 100 1000
runtime (s)

7000

Fig.4 Number of solved instances as a function of the elapsed time (with a logarithmic scale) for LC with
the heuristics CHS, dom /wdeg+s, dom /wdeg or ABS

heuristics according to the results of the previous subsection, namely dom /wdeg+s,
dom/wdeg and ABS.

First, we consider the case of LC. Figure 4 presents the number of solved instances
as a function of the elapsed time for LC combined with each considered heuristic. As
a first observation, we can note that using LC does not change the ranking obtained
in the previous subsection. Namely, LC combined with CHS leads to the best results
followed by dom /wdeg+s, dom/wdeg and ABS. Indeed, as we can see in Table 10,
MAC with LC and CHS solves more instances and solves them more quickly than
MAC with LC and any other heuristic. Moreover, for any considered heuristic /#, we
can also remark that MAC with LC and & performs better and faster than MAC with
h. For instance, MAC with LC and CHS solves 10,812 in 1017.03 hours against
10,742 instances solved in 1038.89 hours for MAC with CHS. We can also observe
that the gain in the number of solved instances thanks to MAC with LC and & w.r.t.
MAC with & varies according to £ (70 instances for CHS and 110 instances for ABS).
This probably reflects the fact that the less efficient the heuristic is, the easier it is to
solve additional instances. To this end, LC with CHS turns to be the most interesting
variable ordering heuristic among all the heuristics we consider in our experiments.

Now, we assess the behavior of MAC when using COS with any auxiliary heuristic
among CHS, dom/wdeg+s, dom/wdeg and ABS. As shown in Fig. 5 and Table 10,
combining COS with any heuristic leads to decrease significantly the ability of MAC
to solve instances. Indeed, we can observe that MAC using COS and any heuristic
solves at least 346 instances less than MAC using solely the auxiliary heuristic. Thus,
if the ranking remains the same, the gap between MAC with COS and CHS and MAC
with COS and any other auxiliary heuristic is narrower (from 92 instances when the
heuristics are exploited alone to 16 instances with COS). A possible explanation of

@ Springer

978 D. Habet, C. Terrioux

10500 T T T

\

10000 -
9500 -
9000 -

8500 -

#instances

8000 -

7500 A

7000 1

CHS !
1 10 100 1000

runtime (s)

dom/wdeg+s - - dom/wdelzg ABS

6500

Fig. 5 Number of solved instances as a function of the elapsed time (with a logarithmic scale) for COS
with the heuristics CHS, dom /wdeg+s, dom/wdeg or ABS

Table 10 Number of instances

. Auxiliary LC COS
sqlved by MAC with L,C/_COS Heuristic #solved Time (h) #solved Time (h)
with any auxiliary heuristic
among CHS, dom/wdeg+s, CHS 10812 101703 10281 1363.86
dom/wdeg or ABS, and
cumulative runtime in hours dom/wdeg+s 10752 1057.91 10265 1368.66
dom/wdeg 10741 1067.28 10259 1367.17
ABS 10718 1090.23 10262 1368.99

this behavior is that MAC only exploits the auxiliary heuristic when there is no more
variable appearing in conflicts. This occurs at the beginning of the search when no
conflict has been encountered yet or when all the variables appearing in past conflicts
are assigned. Clearly, the first case concerns few nodes in the search tree. For the
second case, it may be the same too as soon as many variables are involved in the
encountered conflicts. In addition, a potential drawback of COS is that the conflicts
exploited by COS may be old and so have less sense at some steps of the search.

5.5 CHS and tree-decomposition

We now assess the behavior of CHS when the search is guided by a tree-decomposition.
Studying this question is quite natural since CHS aims to exploit the structure of the
instance, but in a way different from what the tree-decomposition does. With this aim in
view, we consider BTD-MAC+RST+Merge (Jégou et al. 2016) and the heuristics CHS,
dom/wdeg+s,dom/wdeg and ABS combined or not with LC. As shown in Fig. 6 and
Table 11, the trends observed for MAC are still valid for BTD-MAC+RST+Merge.

@ Springer

Conflict history based search for CSP 979

11000 T T T

10500 -

10000 -

9500 -

9000 -

#instances

8500 -

8000 -

7500 |~ 1

CHS !
1 10 100 1000

runtime (s)

dom/wdeg+s - - dom/wdelzg ABS

7000

Fig. 6 Number of instances solved by BTD-MAC+RST+Merge as a function of the elapsed time (with a
logarithmic scale) with the heuristics CHS, dom /wdeg+s, dom/wdeg or ABS

Table 11 Number of instances

solved b (Auxiliary) Without LC With LC

vee by Heuristi #sol Time (h #sol Time (h

BTD-MAC+RST+Merge with euristic solved ime (h) solved ime (h)

the heuristics CHS, CHS 10770 103559 10839 1011.22

dom/wdeg+s, dom/wdeg and

ABS combined or not with LC, dom/wdeg+s 10712 1065.01 10805 1032.30

and cumulative runtime in hours ~ dom/wdeg 10672 1089.00 10767 1061.63
ABS 10650 1082.71 10705 1093.49

Indeed, the solving is more efficient with CHS than with any other used heuris-
tic by at least 58 additional instances. For example, BTD-MAC+RST+Merge with
CHS solves 10,770 instances (in 1035 h) against 10,712 instances (in 1065 h) for
dom/wdeg+s. Moreover, we can note that using BTD-MAC+RST+Merge instead of
MAC does not change the ranking of the heuristics in terms of the number of solved
instances or the cumulative runtime.

Likewise, we can make the same observations if we exploit LC (see Fig. 7 and
Table 11). Above all, BTD-MAC+RST+Merge with LC and CHS turns out to be
more efficient than MAC with LC and any auxiliary heuristic. For example, it solves
27 additional instances compared to MAC with LC and CHS. All these observations
show that exploiting both CHS and tree-decomposition may be of interest and that
these two strategies can be complementary.

Finally, these results are consistent with the ones in Habet and Terrioux (2019).
They are also consistent with ones of the XCSP3 competition 2018. For instance,
BTD-MAC+RST+Merge participated in the mini-solvers track of the competition by
using respectively dom /wdeg (for the solver miniBTD Jégou et al. 2018) and CHS (for

@ Springer

980 D. Habet, C. Terrioux

11000 T T T

10500

10000

9500

9000

#instances

8500

8000

7500

CHS !
1 10 100 1000

runtime (s)

dom/wdeg+s - - dom/wdelzg ABS

7000

Fig. 7 Number of instances solved by BTD-MAC+RST+Merge as a function of the elapsed time (with a
logarithmic scale) with LC combined with the heuristics CHS, dom /wdeg+s, dom /wdeg or ABS

the solver miniBTD_12 Habet et al. 2018) as variable ordering heuristic. miniBTD_12
finished in the second place by solving 79 instances while miniBTD was ranked third
with 74 solved instances.

6 Experimental evaluation on COP instances

This section is devoted to the evaluation of the behavior of our heuristic when solving
COP instances (optimization problem). Note that the constraint optimization problem
(COP) differs from the constraint satisfaction problem by only the addition of an
objective function to optimize. So solving a COP instance consists in assigning all the
variables while satisfying all the constraints and optimizing the objective function. It
is an NP-hard task (Rossi et al. 2006).

We first describe the experimental protocol we use. Then, in Sect. 6.2, we assess the
sensitivity of our heuristic CHS to its parameters and the benefits of smoothing and
resetting. Finally, we compare CHS with state-of-the-art variable ordering heuristics
in Sect. 6.3.

6.1 Experimental protocol

We consider the COP instances from the 2019 XCSP3 competition.? Like for CSP
instances, we discard 36 instances containing some global constraints which are not

5 http://www.cril.univ-artois.fr/XCSP19.

@ Springer

http://www.cril.univ-artois.fr/XCSP19

Conflict history based search for CSP 981

Table 12 Number of instances
having the status OPT, UNSAT
or SAT depending on the value

instances Time (h)
OPT UNSAT SAT

R
=)

of « (between 0.1 and 0.9) and 0.1 119 1 36 67.48

the cumulative runtime (in

hours) for all the instances 0.2 121 1 83 66.75
0.3 124 1 80 66.10
0.4 126 1 78 62.38
0.5 124 1 73 66.31
0.6 120 1 84 68.18
0.7 120 1 83 68.73
0.8 113 1 91 70.65
0.9 117 1 85 70.08
VBS 140 1 66 59.04

handled by our library yet. In the end, our benchmark contains 264 instances, including
notably structured ones and instances with global constraints.

The experiments are performed in the same conditions as for CSP instances. In
particular, we use the same value heuristic, the same settings for variable ordering
heuristics, restarts, Regarding the solving step, we exploit a branch and bound
algorithm based on MAC with restarts and denoted MAC-BnB. We distinguish three
statuses when solving a COP instance. If the solver finds an optimal solution and
proves the optimality within the allocated time slot (30 min), the instance has the
status OPT meaning that it is has been optimally solved. However, if the solver has
found a solution but cannot establish its optimality, the instance has the status SAT
meaning that a solution has been found in the CSP sense but with no guarantee with
respect to the objective function. In such a case, the solver has only produced an upper
bound (resp. a lower bound) if the instance aims to minimize (resp. maximize) the
objective function. Finally, if the solver proves that the instance has no solution, the
instance has the status UNSAT. In the following, an instance is said solved if it has
the status OPT or UNSAT.

6.2 Impact of CHS settings

In this part, we assess the sensitivity of CHS with respect to the chosen values for o
or § when solving COP instances. First, we study the impact of «g value. With this
aim in view, we set § to 10~* and then vary the value of ¢p between 0.1 and 0.9 with
astep of 0.1.

Table 12 provides the number of instances having the status OPT, UNSAT or SAT
depending on the initial value of «p and the corresponding cumulative runtime. We
also provide the results of the Virtual Best Solver (VBS) built on the basis of this nine
combinations of MAC-BnB and CHS. Table 12 shows that the results obtained for
the different values of o are relatively close to each others. Indeed, if we consider
the number of solved instances, the best combination (¢g = 0.4) solves in average
6 additional instances and the gap with the worst one is 13 instances. Regarding the

@ Springer

982 D. Habet, C. Terrioux

150 | | I I I I I I
B e e
| T T |
120
110

100

#instances

0.1 — 03 0.5 07 09—~ T
0~2| [0[4 I()'6 —— ._I 0'8 I_VBS - .I. - I
400 600 800 1000 1200 1400 1600 1800
runtime (s)

Fig. 8 Number of solved COP instances as a function of the elapsed time for ¢y varying between 0.1 and
0.9 and the VBS

runtime, MAC-BnB and CHS with oy = 0.4 correspond again to the best combination
with a cumulative runtime of 62.38 h. The other combinations are generally 5% slower,
except for the values 0.8 and 0.9 of ¢ for which the rate is about 10%. Globally,
these results are consistent with ones obtained when solving CSP instances and show
again the robustness of CHS with respect to the value of «p. This robustness is also
highlighted by the fact that all the curves in Fig. 8 are quite close. Moreover, from this
figure, we can note that oy = 0.4 is the best choice among the experimented values.
Indeed, the corresponding curve is almost always above the others.

Regarding the Virtual Best Solver (VBS) in Table 12, we note that it can solve
14 additional instances than MAC-BnB and CHS with op = 0.4 while saving 3.34
h. If we consider the results instance per instance, we observe that 103 instances
among the ones solved by the VBS are solved whatever the chosen value for «y.
Furthermore, 20 instances among the 38 remaining ones are solved by more than half
of the combinations. Finally, the 18 remaining instances seem harder to solve with an
average runtime for the VBS about 819 seconds.

Now, we set a to 0.4 and consider different values of § (see Table 13). The obser-
vations are similar to those presented previously, showing the robustness of CHS
regarding §. It turns out that using a non-zero values for § allows MAC-BnB to per-
form better. This shows the relevance of introducing § in CHS. Finally, like for the
CSP solving, the value 10~ leads to obtain the best results in terms of the number of
solved instances as well as the runtime.

Table 14 gives the results of MAC-BnB+CHS (arg = 0.4,8 = 10~*) with smoothing
(+s) the constraint scores or without (-s) and/or with resetting (+) the value of « to
0.4 at each new restart or without (-r). The observed behaviors clearly support the
importance of smoothing and restarts for CHS. For example, MAC-BnB with CHS+s-

@ Springer

Conflict history based search for CSP 983

Table 13 Impact of the value of
§ regarding the number of
instances having the status OPT,
cumulative runtime in hours.

8 # instances Time (h)
OPT UNSAT SAT

1073 123 1 82 67.21
1074 126 1 78 62.38
1073 121 1 84 68.47
Tahl?leh14 Nulmb(;?r Of, ins;’;lnces Variant # instances Time (h)
which are solve (.)pnma. y OPT UNSAT SAT
(OPT), proved as inconsistent
.(UNSAT) or for Whlch a solution CHS(+5+r) 126 1 78 62.38
is found (SAT) with CHS
with/without smoothing and CHS+s-r 121 1 84 66.82
reset of & and the cumulative CHS-s-r 115 1 81 69.73
runtime (in hours) for all the CHS-s+r 116 1 82 70.16
instances

r solves 5 less instances than MAC-BnB with CHS, while MAC-BnB with CHS-s-r
solves 11 instances less. In addition, it can be noted that removing the smoothing or
the resetting lead to an increase in runtime.

6.3 CHS versus other search heuristics

In this part, we compare CHS (with ¢g = 0.4 and § = 10~*) to other search strategies
from the state-of-the-art, namely dom /wdeg, wdeg®“¢, ABS and CHB. We also
consider the variant dom /wdeg+s that we introduced for dom /wdeg.

Figure 9 presents the number of solved instances as a function of the elapsed time
for each considered heuristic. Clearly, CHS turns to be the more efficient heuristics.
Indeed, MAC-BnB with CHS solves at least 13 additional instances than with any
other considered heuristic while performing faster. More interestingly, CHS outper-
forms CHB with 49 additional solved instances. Nevertheless, no heuristic outperforms
another for all instances or families of instances. So, Tables 15 and 16 give some details
for each family of instances considered in the competition. They allow to have a better
insight of the kind of instances for which CHS is relevant. Note that we do not consider
CHB in order to have a relevant comparison for instances which are solved with all
the heuristics. Indeed, considering CHB dramatically reduces the number of instances
solved by all the heuristics. Like for the decision problem, CHS is not always the
better heuristic, but, it turns to be the more robust one. Finally, we can also remark
that whatever the values chosen for o or § among the considered one, CHS performs
better than the state-of-the-art heuristics. This observation still holds if CHS does not
exploit smoothing and/or reset of «.

@ Springer

D. Habet, C. Terrioux

984

8€E S1 SSL81 1LL81 07881 2881 9 L
WL 484 11T 0+9¢C ¥29¢T o) yoesdeuy]
€5081 S YOYLI 98591 9pS91 LSYLI 9 L
I¥'€s TIL Y01 101 [9201 o) Sunojopydern
€756 9 SELIT T88¢1 cesyl €056 9 L
€res 0L1 Y6'L6 121 (ANL) o) Jo[nyquIo[on
€601 4! SP8SI 61€61 £8681 160L1 8 L
895 968 61¢€1 €86 9LL o) poojiseq
TI91¢ € 8€8ST €PpIT 9881¢ €109 4} L
S8'C oLy SY'e 6TLE 8L'0 o) Jyooisny
01%S € Yeys 1890t 90vS LI¥S ¢ L
7801 9T 1879 LT'9 LULI o) UOIBIO[0)PILOYSSAYD)
100LC 0 L89IT 200LT €00LT S0SYeT 4 L
0 0 0 0 0 o) Supjoequrg
QuILy, "AJOSH QuuLy, QuIL], Quiry, QuI], “AJOS#
sav s+8apm /uop SHD Aqureg
(S1

3[qe], 10§ | Med) A[IIey PAISPISUOD YILd 10} SAVY 0 1,5, 8P ‘3opm /wiop ‘s+5opm/uiop ‘SHD YA (SWNUNI PUE SIIULISUT PIATOS JO JOqUINU) SINSAI PITEIS §1 d|qel

pringer

As

985

Conflict history based search for CSP

8¥81 Sl 9€€TT € (1143 ST 61¢ Sl Ly Sl SI L
8¢€CI 9¢L sEv oLV 0€'L € o] Sunoa[[0DazIIg
0081 0 LyL 1 0081 0 0081 0 0081 0 I L
0 0 0 0 0 0 o] 13YonoAezZld
861 [091 [95°86 (4 01 C ILT [4 C L
861 091 SS°86 01 ILT C o) Sl A[qedBad
S0SOT 01 (ARAN} 01 8LETT 01 ¥8CCl 6 ¥¥oCl1 6 SI L
9s¢ oSy Ly 0Ly 80§ 8 0] qd
6LCIT 14 9011 ST 6C0LT 8 LOI9I1 8 999¢ Sl Sl L
6LY1 1L 90L ¥S6 veT 4 o syprguado
00cTsT I £817€C C 0T61T € 0L8¢€T C 00CsT I Sl L
0 0 0 0 0 0 o pdo
ceol [8€81 1 8¢€CE I 120t I L8IT I [4 L
[43! I8¢ 6¢vl 1ce L8E I o) SuLeIsOYAsINN
{1448 v 8¥8¥1 ¥ 688771 % L18¥1 % 124U 14 cl L
07°86 8vv 681 L1y 79 4 o) UONE[aLIO30INY MO
Eliig AJOS# Quuly, ‘AJOS# Eliiig g ‘AJOS# Quity, ‘AJOS# QuIl], AJOS#
sav Sapm Sapm/wop s+8apm/wop SHD SQJURISUL # A[rureq

po o

Gl 9IqeL 103 ¢ 1ed gl d|qel

pringer

As

D. Habet, C. Terrioux

986

€SPST L 979LI1 L €0v91 L 10991 L 69LS1 L Sl L
€501 9cce £00¢ 10ce 69¢1 L o] UeWSO[ESTUI[[OARL],
LTvE I L8S (4 PS81 [4 €T ! 659 4 C L
LT91 €€ 897 434 8S¢ I o) [BL
Lyeel 6 100LT 0 €1801 6 S1801 6 SI8¢I 6 Sl L
0 0 0 0 0 0 o) PIE[[IeL
€Sl L 8LLS 4! 18201 €1 GLTO6 Cl S8YIl Cl Sl L
€01 LYC €89 LIT 8y L o RUSULEN
§eoe [4 130149 1 019¢ [4 L09¢ C S09¢ [4 4 L
8C0 e 45 99°C oL'e I 0 deyry
LT81 € 1081 € €081 € 1081 € 1081 € 4 L
16'LC 050 8¢€°¢ 60 90°1 € o) Koswey
0081 0 0081 0 0081 0 0081 0 sSSPl ! I L
0 0 0 0 0 0 o) SupyoenyudanQ
LY18 S 9997 L 0Ly L 8Svy L L6IY L 6 L
816 Gc8 1394 L(44 6¢¢ S o JUWUSISS yOneIpene)
g "AJOSH# g, "AJOSH# g, "ATOSH# oy, "AJOS# oy, "AJOS#
sav Sapm Sapm/wop s+3apm/wop SHD SOURISUI # A[rureq

po o

GI 9IqeL 10J € 1ed 91 d|qel

pringer

As

987

Conflict history based search for CSP

Y L6'69 41! qyoLeL SoI1 qyocTsL 601 YsysL 01 qI1€e99 LTI ¥9¢ L
Y 68cC ycre Uvpe 496°¢C 496°¢C L o] v

6vEC 4 L201 [801 [106 (4 L66 C [4 L
6vEC L201 801 106 L66 [4 o] 9STNOY2IBA

080% I 61¢y I YL6E ! 810¥ I 8Yey I € L
08v 619 pLE 81y LyL I o] dip

oy, "ATOS# oy, "ATOSH# oy, "AJOSH# oy, "ATOS# oy, "AJOSH#

sgv ?.SM%S Sapm/uwop s+3apm/wop SHD SQOUR)ISUL # Apuae

G 9IqeL 10j ¥ 1ed 91 d|qel

pringer

As

988 D. Habet, C. Terrioux

160 T T T T T T T . B | P
140 - P 1
120

100

#instances

¥ CHS —— dom/wdeg CHB wdegeacd -
i dom/wdeg+s - - - ABS VBS - _
20 bl 1 | 1 1 L | | |
200 400 600 800 1000 1200 1400 1600 1800
runtime (s)

Fig. 9 Number of solved instances as a function of the elapsed time for the considered heuristics (namely
CHS, dom/wdeg+s, dom/wdeg, wdeg®<?, and ABS) and the VBS based on these five heuristics

7 Conclusion

We have proposed CHS, a new variable ordering heuristic for CSP based on the
search history and designed following techniques inspired from reinforcement learn-
ing. The experimental results confirm the relevance of CHS, which is competitive
with the most powerful heuristics, when implemented in solvers based on MAC or
tree-decomposition exploitation. Our experiments also shows that CHS turns to be
relevant for solving COP instances.

The experimental study suggests that the initial value of o parameter value could be
refined. We will explore the possibility of defining its value depending on the instance
to be solved. For example, we will look for probing techniques to fix its appropriate
value. Furthermore, similarly to the ABS heuristic, we will also consider including
information provided by filtering operations in CHS. Finally, we will measure the
impact of CHS on solving other problems under constraints, such as counting and
optimization when modeled as weighted CSP.

Acknowledgements This work has been funded by the French Agence Nationale de la Recherche, Refer-
ence ANR-16-CE40-0028.
References

Bachiri, I., Gaudreault, J., Quimper, C., Chaib-draa, B.: RLBS: an adaptive backtracking strategy based on
reinforcement learning for combinatorial optimization. In: Proceedings of ICTAL pp. 936-942 (2015)

Balafrej, A., Bessiere, C., Paparrizou, A.: Multi-armed bandits for adaptive constraint propagation. In:
Proceedings of IJCAL, pp. 290-296 (2015)

@ Springer

Conflict history based search for CSP 989

Battiti, R., Campigotto, P.: An Investigation of Reinforcement Learning for Reactive Search Optimization,
pp. 131-160. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

Bessiere, C., Chmeiss, A., Sais, L.: Neighborhood-based variable ordering heuristics for the constraint
satisfaction problem. In: Proceedings of CP, pp. 565-569 (2001)

Bessiere, C., Régin, J.C.: MAC and Combined Heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard
Problems. In: Proceedings of CP, pp. 61-75 (1996)

Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints.
In: Proceedings of ECAL pp. 146-150 (2004)

Brélaz, D.: New methods to color vertices of a graph. Commun. ACM 22(4), 251-256 (1979)

Cabon, C., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio link frequency assignment. Constraints
4,79-89 (1999)

Chu, G., Stuckey, P.J.: Learning value heuristics for constraint programming. In: Integration of Al and OR
Techniques in Constraint Programming, pp. 108—123. Springer International Publishing, Cham (2015)

Eén, N., Sorensson, N.: An extensible SAT-solver. In: Proceedings of SAT, pp. 502-518 (2003)

Gay, S., Hartert, R., Lecoutre, C., Schaus, P.: Conflict Ordering search for scheduling problems. In: Pesant,
G. (ed.) Proceedings of CP, pp. 140-148 (2015)

Geelen, P.A.: Dual viewpoint heuristics for binary constraint satisfaction problems. In: Proceedings of
ECAL, pp. 31-35 (1992)

Golomb, S.W., Baumert, L.D.: Backtrack programming. J. ACM 12, 516-524 (1965)

Gomes, C.P.,, Selman, B., Crato, N., Kautz, H.A.: Heavy-tailed phenomena in satisfiability and constraint
satisfaction problems. J. Autom. Reason. 24(1/2), 67-100 (2000)

Habet, D., Jégou, P., Kanso, H., Terrioux, C.: BTD_12 and miniBTD_12. In: Proceedings of the XCSP3
Competition, pp. 68-69 (2018)

Habet, D., Terrioux, C.: Conflict history based search for constraint satisfaction problem. In: Proceeding of
SAC, Knowledge Representation and Reasoning Technical Track, pp. 1117-1122 (2019)

Haralick, R.M., Elliot, G.L.: Increasing tree search efficiency for constraint satisfaction problems. AlJ 14,
263-313 (1980)

Hebrard, E., Siala, M.: Explanation-based weighted degree. In: Proceedings of CPAIOR, pp. 167-175
(2017)

Holland, A., O’Sullivan, B.: Weighted super solutions for constraint programs. In: Proceedings of AAAIL
pp- 378-383 (2005)

Hooker, J.N.: Testing heuristics: we have it all wrong. J. Heuristics 1(1), 33-42 (1995)

Jégou, P., Kanso, H., Terrioux, C.: Towards a dynamic decomposition of CSPs with separators of bounded
size. In: Proceedings of CP, pp. 298-315 (2016)

Jégou, P., Kanso, H., Terrioux, C.: BTD and miniBTD. In: XCSP3 Competition (2017)

Jégou, P., Kanso, H., Terrioux, C.: BTD and miniBTD. In: Proceedings of the XCSP3 Competition, pp.
66-67 (2018)

Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of constraint networks. AIJ
146, 43-75 (2003)

Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Last conflict based reasoning. In: Proceedings of ECAI, pp.
133-137 (2006)

Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Nogood recording from restarts. In: Proceedings of IJCAI, pp.
131-136 (2007)

Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Recording and minimizing nogoods from restarts. JSAT 1(3—4),
147-167 (2007)

Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Exponential recency weighted average branching heuris-
tic for SAT solvers. In: Proceedings of AAAI pp. 3434-3440 (2016a)

Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic for SAT solvers.
In: Proceedings of SAT, pp. 123-140 (2016b)

Liberatore, P.: On the complexity of choosing the branching literal in DPLL. Artif. Intell. 116(1-2) (2000)

Marques-Silva, J., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans.
Comput. 48(5), 506-521 (1999)

Michel, L., Hentenryck, P.V.: Activity-based search for black-box constraint programming solvers. In:
Proceedings of CPAIOR, pp. 228-243 (2012)

Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT
solver. In: Proceedings of DAC, pp. 530-535 (2001)

@ Springer

990 D. Habet, C. Terrioux

Nadel, B.: Tree search and arc consistency in constraint-satisfaction algorithms, pp. 287-342. In: Search in
Artificial Intelligence. Springer-Verlag (1988)

Refalo, P.: Impact-based search strategies for constraint programming. In: Proceedings of CP, pp. 557-571
(2004)

Robertson, N., Seymour, P.D.: Graph minors II: algorithmic aspects of treewidth. Algorithms 7, 309-322
(1986)

Rossi, F.,, van Beek, P., Walsh, T.: Handbook of Constraint Programming, Foundations of Artificial Intelli-
gence, vol. 2. Elsevier (2006)

Sabin, D., Freuder, E.C.: Contradicting conventional wisdom in constraint satisfaction. In: Proceedings of
ECAL pp. 125-129 (1994)

Schulte, C.: Programming branchers. In: Schulte, C., Tack, G., Lagerkvist, M.Z. (eds.) Modeling and
Programming with Gecode (2018). Corresponds to Gecode 6.0.1

Simonin, G., Artigues, C., Hebrard, E., Lopez., P.: Scheduling scientific experiments for comet exploration.
Constraints 20(1), 77-99 (2015)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 1st edn. MIT Press, Cambridge (1998)

Wattez, H., Koriche, F., Lecoutre, C., Paparrizou, A., Tabary, S.: Learning variable ordering heuristics with
multi-armed bandits and restarts. In: Proceedings of ECAI (2020)

Wattez, H., Lecoutre, C., Paparrizou, A., Tabary, S.: Refining constraint weighting. In: Proceedings of
ICTAL pp. 71-77 (2019)

Xia, W., Yap, R.H.C.: Learning robust search strategies using a bandit-based approach. In: Proceedings of
AAAL pp. 6657-6665 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	Conflict history based heuristic for constraint satisfaction problem solving
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Constraint satisfaction problem
	2.2 Exponential recency weighted average

	3 Conflict-history search for CSP
	3.1 CHS description
	3.2 CHS and restarts
	3.3 CHS and smoothing

	4 Related work
	4.1 Impact-based search (IBS)
	4.2 Conflict-driven heuristic
	4.3 Activity-based heuristic (ABS)
	4.4 CHB in gecode
	4.5 Last conflict (LC)
	4.6 Conflict order search (COS)
	4.7 Branching heuristics for the satisfiability problem
	4.8 Discussion

	5 Experimental evaluation on CSP instances
	5.1 Experimental protocol
	5.2 Impact of CHS settings
	5.3 CHS versus other search heuristics
	5.4 Combination with LC and COS
	5.5 CHS and tree-decomposition

	6 Experimental evaluation on COP instances
	6.1 Experimental protocol
	6.2 Impact of CHS settings
	6.3 CHS versus other search heuristics

	7 Conclusion
	Acknowledgements
	References

