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Abstract
The variable ordering heuristic is an importantmodule in algorithms dedicated to solve
Constraint Satisfaction Problems (CSP), while it impacts the efficiency of exploring
the search space and the size of the search tree. It also exploits, often implicitly, the
structure of the instances. In this paper, we propose Conflict-History Search (CHS), a
dynamic and adaptive variable ordering heuristic for CSP solving. It is based on the
search failures and considers the temporality of these failures throughout the solving
steps. The exponential recency weighted average is used to estimate the evolution
of the hardness of constraints throughout the search. The experimental evaluation on
XCSP3 instances shows that integrating CHS to solvers based on MAC (Maintaining
ArcConsistency) andBTD (BacktrackingwithTreeDecomposition) achieves compet-
itive results and improvements compared to the state-of-the-art heuristics. Beyond the
decision problem, we show empirically that the solving of the constraint optimization
problem (COP) can also take advantage of this heuristic.

Keywords CSP solving · Variable ordering heuristic · Conflict history · Exponential
recency weighted average

1 Introduction

The Constraint Satisfaction Problem (CSP) is an important formalism in Artificial
Intelligence (AI) which allows to model and efficiently solve problems that occur
in various fields, both academic and industrial (e.g. Cabon et al. 1999; Holland and
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O’Sullivan 2005; Rossi et al. 2006; Simonin et al. 2015). A CSP instance is defined on
a set of variables, which must be assigned in their respective finite domains. Variable
assignments must satisfy a set of constraints, which express restrictions on assign-
ments. A solution is an assignment of each variable, which satisfies all constraints.

CSP solving is often based on backtracking algorithms. In recent years, it has made
significant progress thanks to research on several aspects. In particular, considerable
effort is devoted to global constraints, filtering techniques, learning and restarts (Rossi
et al. 2006). An important component in CSP solvers is the variable ordering heuristic.
Indeed, the corresponding heuristics define, statically or dynamically, the order in
which the variables will be assigned and, thus, the way that the search space will be
explored and the size of the search tree. The problem of finding the best variable to
assign (i.e. one which minimizes the search tree size) is NP-Hard (Liberatore 2000).

Many heuristics have been proposed (e.g. Bessière et al. 2001; Bessière and Régin
1996; Boussemart et al. 2004; Brélaz 1979; Geelen 1992; Golomb and Baumert 1965;
Hebrard and Siala 2017; Michel and Hentenryck 2012; Refalo 2004) aiming mainly to
satisfy the first-fail principle (Haralick and Elliot 1980) which advises “to succeed, try
first where you are likely to fail”. Nowadays, the most efficient heuristics are adaptive
and dynamic (Boussemart et al. 2004; Geelen 1992; Hebrard and Siala 2017; Michel
and Hentenryck 2012; Refalo 2004), where the variable ordering is defined according
to the collected information since the beginning of the search. For instance, some
heuristics consider the effect of filtering when decisions and propagations are applied
(Michel and Hentenryck 2012; Refalo 2004). dom/wdeg is one of the simplest, the
most used and efficient variable ordering heuristic (Boussemart et al. 2004). It is based
on the hardness of constraints and, more specifically, reflects how often a constraint
fails. It uses a weighting process to focus on the variables appearing in constraints with
high weights which are assumed to be hard to satisfy. In addition, some heuristics,
such as LC (Lecoutre et al. 2006) and COS (Gay et al. 2015), attempt to consider the
search history while they require the use of auxiliary heuristics.

In this paper, we propose Conflict-History Search (CHS), a new dynamic and
adaptive variable ordering heuristic for CSP solving. It is based on the history of
search failures, which happen as soon as a domain of a variable is emptied after con-
straint propagations. The goal is to reward the scores of constraints that have recently
been involved in conflicts and therefore to favor the variables appearing in these con-
straints. The scores of constraints are estimated on the basis of the exponential recency
weighted average technique, which comes from reinforcement learning (Sutton and
Barto 1998). It was also recently used in defining powerful branching heuristics for
solving the satisfiability problem (SAT) (Liang et al. 2016a, b). We have integrated
CHS in solvers based on MAC (Maintaining Arc Consistency) (Sabin and Freuder
1994) and BTD (Backtracking with Tree-Decomposition) (Jégou and Terrioux 2003).
The empirical evaluation on XCSP3 instances1 shows that CHS is competitive and
brings improvements to the state-of-the-art heuristics. In addition, this evaluation pro-
vides an extensive study of the performance of state-of-the-art search heuristics on
more than 12,000 instances. Finally, we also study, from a practical viewpoint, the
benefits of the proposed heuristic for solving constraint optimization problems (COP).

1 http://www.xcsp.org.
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Thepaper is structured as follows. Section2 includes somenecessary definitions and
notations. Section 3 presents and details our contribution, the CHS variable ordering
heuristic. Section 4 describes related work on variable ordering heuristics for CSP and
on branching heuristics for the satisfiability problem. CHS is evaluated experimentally
and compared to the main powerful heuristics of the state-of-the-art on CSP instances
in Sect. 5 and on COP ones in Sect. 6. Finally, we conclude and give some perspectives
on extending the application of CHS.

2 Preliminaries

This section is dedicated to the definition of CSP and Exponential Recency Weighted
Average, which we use to propose our heuristic.

2.1 Constraint satisfaction problem

An instance of a Constraint Satisfaction Problem (CSP) is given by a triple (X , D,C),
such that: X = {x1, . . . , xn} is a set of n variables, D = {D1, . . . , Dn} is a set of
finite domains, and C = {c1, . . . , ce} is a set of e constraints. The domain of each
variable xi is Di . Each constraint c j is defined by its scope S(c j ) and its compatibility
relation R(c j ), where S(c j ) = {x j1 , . . . , x jk } ⊆ X and R(c j ) ⊆ Dj1 ×· · ·×Djk . The
constraint satisfaction problem asks for an assignment of the variables xi ∈ X within
their respective domains Di (1 ≤ i ≤ n) that satisfies each constraint in C . Such
consistent assignment is a solution. Checking whether a CSP instance has a solution
is NP-complete (Rossi et al. 2006).

In the past decades, many solvers have been proposed for solving CSPs. Generally,
from a practical viewpoint, they succeed in solving efficiently a large kind of instances
despite of the NP-completeness of the CSP decision problem. In most cases, they rely
on optimized backtracking algorithms whose time complexity is at least in O(e.dn)
where d denotes the size of the largest domain. In order to ensure an efficient solving,
they commonly exploit jointly several techniques (see Rossi et al. 2006 for more
details) among which we can cite:

– variable ordering heuristics which aim to guide the search by choosing the next
variable to assign (we discuss about some state-of-the-art heuristics in Sect. 4),

– constraint learning and non-chronological backtracking which aim to avoid some
redundancies during the exploration of the search space,

– filtering techniques enforcing some consistency level which aim to simplify the
instance by removing some values fromdomains or tuples from constraint relations
which cannot participate to a solution.

For instance, most state-of-the-art solvers maintain some consistency level at each
step of the search, like MAC (Maintaining Arc-Consistency Sabin and Freuder 1994)
or RFL (Real Full Look-ahead Nadel 1988) do for arc-consistency. This latter turns
out to be a relevant tradeoff between the number of removed values and the runtime.

We now recall MACwith more details. During the solving, MAC develops a binary
search tree whose nodes correspond to decisions. More precisely, it can make two
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kinds of decisions: positive decisions xi = vi which assign the value vi to the variable
xi and negative decisions xi �= vi which ensure that xi cannot be assigned with
vi . Let us consider Σ = 〈δ1, . . . , δi 〉 (where each δ j may be a positive or negative
decision) as the current decision sequence. At each node of the search tree, MAC takes
either a positive decision or negative one. When reaching a new level, it starts by a
positive decision which requires to choose a variable among the unassigned variables
and a value. Both choices are achieved thanks to heuristics. Then, once the decision
made, MAC applies an arc-consistency filtering. This filtering deletes some values of
unassigned variables which are not consistent with the last taken decision and Σ . By
so doing, a domain may become empty. In such a case, we say that a dead-end or a
conflict occurs. This means that the current set of decisions cannot lead to a solution.
If no dead-end occurs, the search goes on to the next level by choosing a new positive
decision. Otherwise, the current decision is called into question. If it is a positive
decision xi = vi , MACmakes the corresponding negative decision xi �= vi , that is the
value vi is deleted from the domain Di . Otherwise, it is a negative decision and MAC
backtracks to the last positive decision x� = v� in Σ and makes the decision x� �= v�.
If no such decision exists, it means that the instance has no solution. In contrast, if
MAC succeeds in assigning all the variables, the corresponding assignment is, by
construction, a solution of the considered instance.

More recently, restart techniques have been introduced in the CSP framework (e.g.
in Lecoutre et al. 2007). They generally allow to reduce the impact of bad choices
performed thanks to heuristics (like the variable ordering heuristic) or of the occurrence
of heavy-tailed phenomena (Gomes et al. 2000). For efficiency reasons, they are usually
exploited with some learning techniques like recording of nld-nogoods in Lecoutre
et al. (2007). These nogoods can be seen as a set of decisions which cannot be extended
to a solution. They are used to avoid visiting again a part of the search space which has
already been visited by MAC. These nogoods are recorded each time a restart occurs.

2.2 Exponential recency weighted average

Given a time series of m numbers y = (y1, y2, . . . , ym), the simple average of y is∑m
i=1

1
m yi where each yi has the same weight 1

m . There are situations where recent
data are more relevant than old data to describe the current situation. The Exponential
Recency Weighted Average (ERWA) (Sutton and Barto 1998) takes into account such
considerations by giving higher weights to the recent data than the older ones. More
precisely, the exponential moving average ȳm is computed as follows:

ȳm =
m∑

i=1

α × (1 − α)m−i × yi

where 0 < α < 1 is a step-size parameter which controls the relative weights between
recent and past data. The moving average can also be calculated incrementally by the
formula:

ȳm = (1 − α) × ȳm−1 + α × ym .
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The base case is ȳ0 = 0. ERWA is used to solve the bandit problem to estimate the
expected reward of different actions in nonstationary environments (Sutton and Barto
1998). In bandit problems, the agent must select an action to play, from a given set of
actions, while maximizing its long term expected reward.

3 Conflict-history search for CSP

This section is dedicated to our contribution by defining and describing a new variable
ordering heuristic for CSP solving, which we callConflict-History Search (CHS). The
main idea is to consider the history of constraint failures and favor the variables that
often appear in recent failures. In this order, the conflicts are dated and the constraints
are weighted on the basis of the exponential recency weighted average. These weights
are coupled with the variable domains to calculate the Conflict-History scores of the
variables.

3.1 CHS description

Formally, CHS maintains for each constraint c j a score q(c j ) which is initialized to
0 at the beginning of the search. If c j leads to a failure during the search because the
domain of a variable in S(c j ) is emptied then q(c j ) is updated by the formula below
derived from ERWA (Sutton and Barto 1998):

q(c j ) = (1 − α) × q(c j ) + α × r(c j )

The parameter 0 < α < 1 is the step-size and r(c j ) is the reward value. The parameter
α fixes the importance given to the old value of q at the expense of the reward r . The
value of α decreases over time as it is applied in reinforcement learning to converge
towards relevant values of q (Sutton and Barto 1998). In other words, decreasing the
value of α amounts to giving more importance to the last value of q and considering
that the values of q are more and more relevant as the search progresses. Furthermore,
we are interested by the constraint failure to follow the first-fail principle (Haralick
and Elliot 1980).

CHS applies the decreasing policy of α, which is successfully used for designing
efficient branching heuristic for the satisfiability problem (Liang et al. 2016a, b). More
precisely, starting from an initial value α0, α decreases by 10−6 at each constraint
failure to a minimum of 0.06. This minimum value of α controls the number of steps
before considering that a convergence is reached.

The reward value r(c j ) is based on how recently c j occurred in conflicts. More
precisely, it relies on the proximity between the previous conflict inwhich c j is involved
and the current one. By so doing, we aim to give a higher reward to constraints that fail
regularly over short periods of time during the search space exploration. The reward
value is calculated according to the formula:

r(c j ) = 1

Con f licts − Con f lict(c j ) + 1
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Initialized to 0, Con f licts is the number of conflicts which have occurred since
the beginning of the search. Con f lict(c j ) is also initialized to 0 for each constraint
c j ∈ C . When a conflict occurs on c j , r(c j ) and q(c j ) are computed. ThenCon f licts
is incremented by 1 and Con f lict(c j ) is updated to the new value of Con f licts.

At this stage, we define the Conflict-History score of a variable xi ∈ X as follows:

chv(xi ) =
∑

c j∈C : xi∈S(c j )∧|Uvars(S(c j ))|>1 q(c j )

|Di | (1)

Uvars(Y ) is the set of unassigned variables in Y . Di is the current domain of xi and
its size may be reduced by the propagation process in the current step of the search.
CHS chooses the variable to assign with the highest chv value. In this manner, CHS
focuses branching on the variables with a small domain size belonging to constraints
which appear recently and repetitively in conflicts.

One can observe that at the beginning of the search, all the variables have the same
score, which is equal to 0. To avoid random selection, we update Eq. 1 to calculate
chv as given below, where δ is a positive real number close to 0.

chv(xi ) =
∑

c j∈C : xi∈S(c j )∧|Uvars(S(c j ))|>1(q(c j ) + δ)

|Di | (2)

Thus, when the search starts, the branching will be oriented according to the degree of
the variables without having a negative influence on the ERWA-based calculation later
in the search. CHS selects the branching variable with the highest chv value calculated
according to Eq. 2.

The heuristic CHS is described in Algorithm 1 with an event-driven approach.
Lines 2–7 correspond to the initialization step. If a conflict occurs when enforcing the
filtering with the constraint c j , the associated event is triggered and the score is update
(Lines 8–14). The selection of a new variable is achieved thanks to Lines 15–16.

3.2 CHS and restarts

Restart techniques are known to be important for the efficiency of solving algorithms
(see for example Lecoutre et al. 2007). Restarts may allow to reduce the impact of
irrelevant choices done during the search according to heuristics, such as variable
selection.

As it will be detailed later, CHS is integrated into CSP solving algorithms, which
include restarts. In the corresponding implementations, the Con f lict(c j ) value of
each constraint c j is not reinitialized when a restart occurs. It is the same for q(c j ).
However, a smoothing may be applied and will be explained below. Keeping this
information unchanged reinforces learning from the search history.

Concerning the step-size α, which defines the importance given to the old value of
q(c j ) at the expense of the reward r(c j ), CHS reinitializes the value of α to α0 at each
restart (Line 18 of Algorithm 1). This may guide the search through different parts of
the search space.
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Algorithm 1: CHS
Input: an event e

1 switch e do
2 case ini tiali zation
3 α ← α0
4 Con f licts ← 0
5 for c j ∈ C do
6 Con f lict(c j ) ← 0
7 q(c j ) ← 0

8 case con f lict when f iltering wi th c j
9 r(c j ) ← 1

Con f licts−Con f lict(c j )+1

10 q(c j ) ← (1 − α) × q(c j ) + α × r(c j )
11 Con f licts ← Con f licts + 1
12 Con f lict(c j ) ← Con f licts
13 if α > 0.06 then
14 α ← α − 10−6

15 case select a new variable

16 return a variable x s.t. x ∈ arg min
xi∈Uvars(X)

∑

c j∈C : xi∈S(c j )∧|Uvars(S(c j ))|>1
(q(c j )+δ)

|Di |

17 case restart
18 α ← α0
19 for c j ∈ C do
20 q(c j ) ← q(c j ) × 0.995Con f licts−Con f lict(c j )

3.3 CHS and smoothing

At each conflict, CHS updates the chv score of one constraint at a time: the constraint
c j which is used to wipe out the domain of a variable in S(c j ). As long as they do
not appear in new conflicts, some constraints can have their weights unchanged for
several search steps. These constraints may have high scores while their importance
does not seem significant for the current part of the search. To avoid this situation, we
propose to smooth the scores q(c j ) of all the constraints c j ∈ C at each restart by the
following formula:

q(c j ) = q(c j ) × 0.995Con f licts−Con f lict(c j )

Hence, the scores of constraints are decayed according to the date of their last appear-
ances in conflicts (Lines 19–20 of Algorithm 1).

4 Related work

Before providing a detailed experimental evaluation of CHS and its components,
we present the most efficient and common variable ordering heuristics for CSP. As
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CHS, the recalled heuristics share the same behavior. In effect, the variables and/or
constraints are weighted dynamically throughout the search by considering the col-
lected information since its beginning. Some of these heuristics, such as Last Conflict
(Lecoutre et al. 2006), require the use of an auxiliary heuristic as it will be explained
later.We also recall briefly branching heuristics for the satisfiability problem. It should
be recalled that ERWAwas first used in the context of the satisfiability problem (Liang
et al. 2016a, b).

4.1 Impact-based search (IBS)

This heuristic selects the variable which leads to the largest search space reduction
(Refalo 2004). The impact on the search space size is approximated as the reduction
of the product of the variable domain sizes. Formally, the impact of assigning the
variable xi to the value vi ∈ Di is defined by:

I (xi = vi ) = 1 − Pa f ter
Pbe f ore

Pa f ter and Pbef ore are respectively the products of the domain cardinalities after and
before branching on xi = vi and applying constraint propagations. By doing so,
selecting the next branching variable requires the computation of the impact of each
variable assignment, by simulating filtering at each node of the search tree. This can
be very time consuming. Hence, IBS considers the impact of an assignment at a given
node as the average of its observed impacts. More precisely, if K is the index set of
impacts observed of xi = vi , IBS estimates an averaged impact of this assignment as
follows, where Ik is kth impact value:

Ī (xi = vi ) =
∑

k∈K Ik(xi = vi )

|K |
Finally, the impact of a variable according to its current domain, which may be

filtered, is defined as follows:

I(xi ) =
∑

v∈Di

1 − Ī (xi = v)

IBS selects the variable with the highest impact value I(xi ).

4.2 Conflict-driven heuristic

A popular variable ordering heuristic for CSP solving is dom/wdeg (Boussemart
et al. 2004). It guides the search towards the variables appearing in the constraints
which seem hard to satisfy. For each constraint c j , the dom/wdeg heuristic maintains
a weight w(c j ), initially set to 1, counting the number of times that c j has led to a
failure (i.e. the domain of a variable xi in S(c j ) is emptied during propagation from
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c j ). The weighted degree of a variable xi is defined as:

wdeg(xi ) =
∑

c j∈C : xi∈S(c j )∧|Uvars(S(c j ))|>1

w(c j )

The dom/wdeg heuristic selects the variable xi to assign with the smallest ratio
|Di |/wdeg(xi ), such that Di is the current domain of xi (the size of Di may be
reduced in the current search step). Note that the constraint weights are not smoothed
in dom/wdeg. Also, variants of dom/wdeg were introduced, such as in Hebrard and
Siala (2017), but are not widely used in practice. Very recently, a refined version of
wdeg (called wdegca.cd ) has been defined in Wattez et al. (2019). When a conflict
occurs for a constraint c j , instead of increasing its weight by 1 as in dom/wdeg,
wdegca.cd increases its weight by a value depending on the number of unassigned
variables in the scope of c j and their current domain size.

4.3 Activity-based heuristic (ABS)

ABS is motivated by the prominent role of filtering techniques in CSP solving (Michel
and Hentenryck 2012). It exploits this filtering information and maintains measures of
how often the variable domains are reduced during the search. In practice, at each node
of the search tree, constraint propagationmay filter the domains of some variables after
the decision process. Let X f be the set of such variables. Accordingly, the activities
A(xi ), initially set to 0, of the variables xi ∈ X are updated as follows:

– A(xi ) = A(xi ) + 1 if xi ∈ X f

– A(xi ) = γ × A(xi ) if xi /∈ X f

γ is a decay parameter, such that 0 ≤ γ ≤ 1. The ABS heuristic selects the variable
xi with the highest ratio A(xi )/|Di |.

4.4 CHB in gecode

Dedicated to constraint programming, Gecode solver implements Conflict-History
based Branching (CHB) heuristic since version 5.1.0 released in April 2017 (Schulte
2018). It follows the same steps of the first definition of CHB in the context of the
satisfiability problem (Liang et al. 2016a, b). In Gecode, the following parameters are
used to update the Q-score of each variable xi of the CSP instance, denoted qs(xi ).
f is the number of failures encountered since the beginning of the search and l f (xi )
is the last failure number of xi , corresponding to the last time that Di is emptied.

Initialized to 0.05 for each variable xi , CHB update the Q-score qs(xi ) of xi during
the constraint propagation as follows:

– If Di is not reduced then qs(xi ) remains unchanged
– If Di is pruned and the search leads to a failure, l f (xi ) is set to f and qs(xi ) is
updated by:

qs(xi ) = (1 − α) × qs(xi ) + α × r
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The step-size α, initialized to 0.4, is updated to α − 10−6 if α > 0.06. The value
of the reward r is given by:

r = 1

f − l f (xi ) + 1

– If Di is pruned and the search does not lead to a failure, qs(xi ) is also updated by:

qs(xi ) = (1 − α) × qs(xi ) + α × r

In this case, the reward value is defined by:

r = 0.9

f − l f (xi ) + 1

CHB in Gecode selects the variable with the highest Q-score.

4.5 Last conflict (LC)

Last Conflict (LC) reasoning (Lecoutre et al. 2006) aims to better identify and exploit
nogoods in a binary tree search, where each node has a first branch corresponding to
a positive decision (xi = vi ) and eventually a second branch with a negative decision
(xi �= vi ).

If a positive decision xi = vi leads to a conflict then LC records the variable xi
as a conflicting variable. The value vi is removed from the domain Di of xi . After
developing the negative branch xi �= vi , LC continues the search by assigning a new
value v′

i to xi instead of choosing a new decision variable. This treatment is repeated
until a successful assignment of xi is achieved. In this case, the variable xi is unrecorded
as a conflicting one and the next decision variable is decided by an auxiliary variable
ordering heuristic. Hence, this last one is used when no conflicting variable is recorded
by LC.

4.6 Conflict order search (COS)

Conflict Order Search (COS) (Gay et al. 2015) is intended to focus the search on the
variables which lead to recent conflicts. When a branching on a variable xi fails, xi is
stamped by the total number of failures since the beginning of the search (the initial
stamp value of each variable is 0). COS prefers the variable with the highest stamp
value. An auxiliary heuristic is used if all the unassigned variables have the stamp
value 0.

4.7 Branching heuristics for the satisfiability problem

In the context of the satisfiability problem, modern solvers based on Conflict-Driven
ClauseLearning (CDCL) (Eén andSörensson2003;Marques-Silva andSakallah 1999;
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Moskewicz et al. 2001) employ variable branching heuristics correlated to the ability of
the variable to participate in producing learnt clauseswhen conflicts arise (a conflict is a
clause falsification). TheVariable State Independent Decaying Sum (VSIDS) heuristic
(Moskewicz et al. 2001) maintains an activity value for each Boolean variable. The
activities are modified by two operations: the bump (increase the activity of variables
appearing in the process of generating a new learnt clause when a conflict is analyzed)
and the multiplicative decay of the activities (often applied at each conflict). VSIDS
selects the variable with the highest activity to branch on.

Recently, a conflict history based branching heuristic (CHB) (Liang et al. 2016a),
based on the exponential recency weighted average, was introduced. It rewards the
activities to favor the variables that were recently assigned by decision or propagation.
The rewards are higher if a conflict is discovered. The Learning Rate Branching (LRB)
heuristic (Liang et al. 2016b) extends CHB by exploiting locality and introducing the
learning rate of the variables.

4.8 Discussion

Reinforcement learning techniques have already been studied in constraint program-
ming. The multi-armed bandit framework is used to select adaptively the consistency
level of propagation at each node of the search tree (Balafrej et al. 2015). A linear
regression method is used to learn the scoring function of value heuristics (Chu and
Stuckey 2015). Rewards are calculated and used to select adaptively the backtracking
strategy (Bachiri et al. 2015). Learning process based on Least Squares Policy Iter-
ation technique is used to tune adaptively the parameters of stochastic local search
algorithms (Battiti and Campigotto 2012).

More recently, upper confidence bound and Thompson Sampling techniques are
employed to select automatically a variable ordering heuristic for CSP, among a set
of candidate ones, at each node of the search tree (Xia and Yap 2018). The considered
candidate set contains notably IBS, ABS and dom/wdeg. Knowing that no heuristic
always outperforms another, Xia and Yap exploit reinforcement learning (under the
form of a multi-armed bandit) to choose the search heuristic to employ at each node of
the search rather than choosing a particular heuristic before the solving.More recently,
Wattez et al. have proposed another MAB approach (Wattez et al. 2020). Like in the
work of Xia and Yap, each heuristic corresponds to an arm. In contrast, an new arm is
chosen at each restart instead of each node. On the other hand, in CHS, reinforcement
learning allows to select the branching variable based on ERWA. Note also that CHS
can be used as an additional arm in thework ofXia andYapwhile it is already exploited
as an arm in Wattez et al. (2020).

To return to the heuristics detailed in this section, LC, COS and CHB are also
conceptually interested in the search history as CHS. They act directly on the variable
scores while CHS considers this history by weighting the constraints that are responsi-
ble for failures before scoring the variables. As an illustration, CHB inGecode updates
the Q-score values of variables according to ERWAwhile CHS uses ERWA to update
the weight of constraints to calculate the score of the variables. The update of the α

parameter is also different between CHS and CHB, especially during restarts.
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Weight and score decaying is also used in other heuristics such as ABS. However,
it is applied to the score of the variables and not that of the constraints such as in
CHS. It is also important to note that there is no decaying in CHB. Furthermore, CHS
and dom/wdeg calculate differently the score of the constraints leading to failures.
In the first case, the score of the constraint is always incremented by a constant value
1. In the second case, the new score is a tradeoff between the current one and the
reward that varies at each failure. Moreover, the scores of constraints are not decayed
in dom/wdeg contrary to CHS. Finally, unlike LC and COS, CHS does not require
the use of an auxiliary heuristic.

5 Experimental evaluation on CSP instances

This section is devoted to the evaluation of the behavior of our heuristic when solving
CSP instances (decision problem). We first describe the experimental protocol we
use. In Sect. 5.2, we assess the sensitivity of our heuristic CHS to its parameters and
the benefits of smoothing and resetting. Afterwards, we compare CHS with state-of-
the-art variable ordering heuristics in Sect. 5.3, before studying the behavior of CHS
when it is used jointly with LC or COS in Sect. 5.4. Finally, in Sect. 5.5, we evaluate
the practical interest of CHS in the particular case where the search is guided by a
tree-decomposition.

5.1 Experimental protocol

We consider all the CSP instances from the XCSP3 repository2 and the XCSP3 com-
petition 2018,3 resulting in 16,947 instances. XCSP3, for XML-CSP version 3, is
an XML-based format to represent instances of combinatorial constrained problems.
Our solvers are compliant with the rules of the competition except that the global
constraints cumulative, circuit and some variants of the allDifferent
constraint (namely except and list) or the noOverlap constraint are not sup-
ported yet. Consequently, from the 16,947 obtained instances, we first discard 1233
unsupported instances.We also remove 2813 instances which are detected as inconsis-
tent by the initial arc-consistency preprocessing and having no interest for the present
comparison. Finally, we have noted that some instances appearmore than once. In such
a case, we keep only one copy. In the end, our benchmark contains 12,829 instances,
including notably structured instances and instances with global constraints.

Regarding the solving step, we exploit MAC with restarts (Lecoutre et al.
2007) before assessing the impact of our approach on a structural solving method,
namely BTD-MAC+RST+Merge (Jégou et al. 2016). Roughly speaking, BTD-
MAC+RST+Merge differs fromMACby the exploitation of the structure via the notion
of tree-decomposition (i.e. a collection of subsets of variables, called clusters, which
are arranged in the form of a tree Robertson and Seymour 1986). While the search per-
formed by MAC considers at each step all the remaining variables, one performed by

2 http://www.xcsp.org/series.
3 http://www.cril.univ-artois.fr/XCSP18/.
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BTD-MAC+RST+Merge only takes into account the unassigned variables of the cur-
rent cluster. The clusters of the computed tree-decomposition are processed according
to a depth-first traversal of the tree-decomposition starting from a cluster called the
root cluster (see Jégou et al. 2016 for more details). For BTD-MAC+RST+Merge, the
tree-decompositions are computed with the heuristic H5-TD-WT (Jégou et al. 2016).
The first root cluster is the cluster having the maximum ratio number of constraints to
its size minus one. At each restart, the selected root cluster is one which maximizes the
sum of the weights of the constraints whose scope intersects the cluster. The merging
heuristic is the one provided in Jégou et al. (2016). Note that these settings except
the variable ordering heuristic correspond to those used for the XCSP3 competitions
2017 and 2018 (Habet et al. 2018; Jégou et al. 2017, 2018).

MAC and BTD-MAC+RST+Merge use a geometric restart strategy based on the
number of backtracks with an initial cutoff set to 100 and an increasing factor set to
1.1. In order to make the comparison fair, the lexicographic ordering is used for the
choice of the next value to assign. We consider the following heuristics dom/wdeg,
wdegca.cd , ABS, IBS and CHB as implemented in Gecode. For ABS, we fix the decay
parameter γ to 0.999 as in Michel and Hentenryck (2012). Note that we do not exploit
a probing step like onementioned inMichel and Hentenryck (2012). So all the weights
are initially set to 0. For CHB, we use the value parameters as given in Schulte (2018).
We also introduce a new variant dom/wdeg+s which we define as dom/wdeg where
the weights of constraints are smoothed at each restart, exactly as in CHS. For all the
heuristics, ties (if any) are broken by using the lexicographic ordering.

We havewritten our ownC++ code to implement all the compared variable ordering
heuristics in this section, as well as the solvers that exploit them (MAC and BTD).
By so doing, we avoid any bias related to the way the heuristics and solvers are
implemented. In particular, the variable ordering heuristics are all implemented with
equal refinement and care. Moreover, when comparing the variable ordering heuristics
for a given solver, the only thingwhich differs is the variable ordering heuristic. Indeed,
we use exactly the same propagators, the same value heuristic, etc. This ensures that
we make a fair comparison. Finally, given a solver and a CSP instance, we consider
that a variable ordering heuristic h1 is better than another one h2 if h1 allows the solver
to solve the instance faster than h2. Indeed, the aim of variable ordering heuristic is
to make a good tradeoff between the size of the explored search tree and the runtime
spent for choosing a relevant variable (remember that finding the best one is an NP-
Hard task Liberatore 2000). Since all the other parts of the solver are identical, the
solving runtime turns to be a relevant measure of the quality of this tradeoff. Thus,
when the comparison relies on a collection of instances, h1 is said better than h2 if it
leads the solver to solve more instances than h2. If both lead to solve the same number
of instance, ties are broken by considering the smaller cumulative runtime. At the
end, note that our protocol is consistent with the recommendations outlined in Hooker
(1995).

The experiments are performed on Dell PowerEdge R440 servers with Intel Xeon
Silver 4112 processors (clocked at 2.6GHz) underUbuntu 18.04. Each solving process
is allocated a slot of 30 minutes and at most 16 GB of memory per instance. In the
following tables, #solved (abbreviated sometimes #solv.) denotes the number of solved
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Table 1 Number of instances
solved by MAC+CHS
depending on the value of α0
(between 0.1 and 0.9) for
consistent instances (SAT),
inconsistent ones (UNSAT), and
all the instances (ALL) and the
cumulative runtime (in hours) of
MAC+CHS for all the instances

α0 # solved instances Time (h)

SAT UNSAT ALL

0.1 6530 4212 10742 1038.89

0.2 6505 4206 1711 1049.55

0.3 6505 4203 10708 1052.04

0.4 6493 4204 10697 1056.14

0.5 6509 4202 10711 1058.13

0.6 6487 4205 10692 1062.14

0.7 6504 4207 10711 1055.46

0.8 6479 4197 10676 1072.28

0.9 6473 4203 10676 1071.43

VBS 6691 4242 10933 940.21

instances for a given solver and time is the cumulative runtime, i.e. the sum of the
runtime over all the considered instances.

5.2 Impact of CHS settings

In this part, we assess the sensitivity of CHSwith respect to the chosen values for α0 or
δ. First, we observe the impact of α0 value. Hence, we fix δ to 10−4 to start the search
by considering the variable degrees then quickly exploit ERWA-based computation.
We then vary the value of α0.

Table 1 presents the number of instances solved by MAC depending on the initial
value of α0 and the corresponding cumulative runtime. Here, we first vary α0 between
0.1 and 0.9 with a step of 0.1. We also provide the results of the Virtual Best Solver
(VBS). The VBS is a theoretical/virtual solver that returns the best answer obtained
by MAC with a given α0 among those considered here. Roughly, it allows to count
the number of the instances solved at least one time when varying the value of α0,
while considering the smaller corresponding runtime. Table 1 shows that the results
obtained for the different values of α0 are relatively close to each others. However,
we can observe that the value α0 = 0.1 allows MAC to solve more instances (10,742
solved instances with a cumulative solving time of 1,038.89 hours) than the other
considered values. More precisely, MAC with CHS and α0 = 0.1 solves at least 31
additional instances. The worst cases are α0 = 0.8 and α0 = 0.9with 10,676 instances
solved respectively in 1072 and 1071 h. If we discard the value 0.1 for α0, we observe
that the results for the remaining considered values are quite close. This shows that
CHS is relatively robust w.r.t. the α0 parameter. Moreover, we can also remark that
these observations are still valid if we focus on SAT instances (respectively onUNSAT
instances). For example, the choice α0 = 0.1 leads to solving the largest number of
SAT instances (resp. UNSAT instances), exactly 6530 instances (resp. 4212 instances).
Figures 1 and 2 also show that α0 = 0.1 is the best choice among the experimented
values. Indeed, we can note that the curve corresponding to α0 = 0.1 is almost always
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Fig. 1 Number of solved instances as a function of the elapsed time for α0 varying between 0.1 and 0.9
and the VBS, for a runtime between 1 and 60 s

Fig. 2 Number of solved instances as a function of the elapsed time for α0 varying between 0.1 and 0.9
and the VBS, a for runtime between 60 and 1800 s

above the others in both figures. These two figures also highlight the robustness of
CHS w.r.t. the value of α0 since all the curves are quite close.

Since the valueα0 = 0.1 leads to the best result, a natural question iswhat happens if
we consider the value α0 = 0 (which is normally a forbidden value since 0 < α < 1).
So we run MAC+CHS with α0 = 0. In this case, the number of solved instances
decreases significantly since only 9069 instances are solved. At the same time, the
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Table 2 Number of instances
solved by MAC+CHS
depending on the value of α0
(between 0.025 and 0.15) for
consistent instances (SAT),
inconsistent ones (UNSAT), and
all the instances (ALL) and the
cumulative runtime (in hours) of
MAC+CHS for all the instances

α0 # solved instances Time (h)
SAT UNSAT ALL

0.025 6507 4202 10709 1061.07

0.05 6512 4212 10724 1058.89

0.075 6500 4204 10704 1064.61

0.1 6530 4212 10742 1038.89

0.125 6519 4203 10722 1078.10

0.15 6503 4207 10710 1061.81

runtime is almost doubled with a cumulative runtime of 1921.35 hours. Consequently,
the benefit of CHS is highly related to the tradeoff between the rewards of the past
conflicts and the reward of the last one and so choosing a positive value forα0 is crucial.
The impact of this tradeoff is reinforced by the fact that MAC+CHS with α0 = 1 (a
forbidden value too) performs worse than most of the combinations of MAC with α0
between 0.1 and 0.9. Indeed, it only solves 10,667 instances while spending more time
(1089.37 h).

Likewise, we can wonder what happens if we choose a value slightly different from
0.1. Hence, we now vary α0 between 0.025 and 0.15 with a step of 0.025 (see Table 2).
Again, MAC+CHS with α0 = 0.1 turns to be the best case by solving more instances
and obtaining the smallest cumulative runtime. Furthermore, the robustness of CHS
w.r.t. the α0 parameter is strengthened since we can note that the other values of α0
obtain close results.

Regarding the Virtual Best Solver (VBS) in Table 1, we note that it can solve 191
additional instances than MAC+CHS when α0 = 0.1 with the best runtime of 940.21
h. We can also remark that most of these additional instances are consistent (161 SAT
instances vs. 30 UNSAT). If we consider the results instance per instance, we observe
that 10,478 instances are solved whatever the chosen value for α0, which shows again
the robustness of CHS w.r.t. the value of α0. Furthermore, among the 455 remaining
ones, there exists 106 instances which are only solved by MAC with a particular
value for α0 (of course this value depends on the considered instance) and for 32% of
the instances, MAC needs more than 1,200 seconds in order to solve each of them.
Accordingly, some instances seem to be harder to solve. Finally, we observe that these
455 instances belong to several families. Indeed, more than half of the considered
families are involved here, which shows that this phenomenon is more related to the
instances themselves than to a particular feature of their family.

Now, we set α0 to 0.1 and evaluate different values of δ (see Table 3). The obser-
vations are similar to those presented previously, showing the robustness of CHS
regarding δ. Also, it is interesting to highlight that MAC+CHS with δ = 0 solves
10,683 instances while it solves 10,742 instances if δ = 10−4. This illustrates the
relevance of introducing δ in CHS since it allows to solve 59 more instances with this
last setting.

Table 4 gives the results of MAC+CHS (α0 = 0.1, δ = 10−4) with smoothing
(+s) the constraint scores or without (-s) and/or with resetting (+r ) the value of α to
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Table 3 Impact of the value of δ

on MAC+CHS regarding the
number of solved instances and
the cumulative runtime in hours

δ SAT UNSAT ALL Time (h)

0 6479 4204 10683 1079.25

10−5 6519 4207 10726 1043.53

10−4 6530 4212 10742 1038.89

10−3 6508 4199 10707 1044.41

Table 4 Number of instances solved by MAC with CHS with/without smoothing and reset of α and
cumulative runtime in hours

Solver SAT UNSAT ALL Time (h)

MAC+CHS (+s + r) 6530 4212 10742 1038.89

MAC+CHS+s-r 6520 4209 10729 1043.95

MAC+CHS-s-r 6484 4199 10683 1064.20

MAC+CHS-s+r 6482 4176 10658 1067.72

0.1 at each new restart or without (-r ). The observed behaviors clearly support the
importance of smoothing and restarts for CHS. For example, MAC+CHS+s-r solves
13 less instances than MAC+CHS, while MAC+CHS-s+r solves 84 instances less.

Finally, these results are globally consistent with those presented in Habet and
Terrioux (2019). Indeed, except that the best value of α0 is now 0.1 instead of 0.4 in
Habet and Terrioux (2019), we observe the same trends. The benchmark used in Habet
and Terrioux (2019) was a subset of our initial benchmark. If we proceed similarly
by removing arc-inconsistent instances, we obtain a benchmark with 7916 instances.
From this benchmark, MAC solved respectively 6700 and 6706 instances with 0.1 and
0.4 for α0 in Habet and Terrioux (2019), while in the current experiments, it succeeds
in solving 6837 and 6829 instances. In both cases, the gap between the two values of
α0 is very small. Note that the increase in the number of solved instances is mainly
related to some improvements in our implementation and the difference of hardware
configurations. Both impact all the heuristics in the same manner.

5.3 CHS versus other search heuristics

Now, we compare CHS to other search strategies from the state-of-the-art, namely
dom/wdeg, wdegca.cd , ABS, IBS and CHB. In the remaining part of the paper, by
default, we consider CHS with α0 = 0.1 and δ = 10−4. We also consider the variant
dom/wdeg+s that we introduced for dom/wdeg.

Figure 3 presents the number of solved instances as a function of the elapsed
time for each considered heuristic. Since no heuristic outperforms another for all
instances or families of instances, Tables 5, 6, 7 and 8 give some details for each
family of instances. They allow to have a better insight of the kind of instances for
which CHS is relevant. More accurately, for each family, they provide on rows C
the number of instances solved by MAC with each considered heuristic (excluding
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968 D. Habet, C. Terrioux

Fig. 3 Number of solved instances as a function of the elapsed time (with a logarithmic scale) for the
considered heuristics (namely CHS, dom/wdeg+s, dom/wdeg, wdegca.cd , ABS, CHB and IBS) and the
VBS based on these seven heuristics

IBS4) and the cumulative runtime for solving them for each heuristic, and on rows
T the total number of instances of the family, the number of solved instances and
the corresponding cumulative runtime for each heuristic. For each row, we write in
bold the result of the best heuristic. As mentioned in our experimental protocol and
like the solver competitions, we first consider the number of solved instances and we
break ties by considering the cumulative runtime (given in seconds, except for the
total runtimes which are expressed in hours). We only provide two digits after the
decimal dot when the runtime does not exceed 100 s. Beyond, such details do not
bring a significant information. We divide the instance families into three categories:
academic, real-world and XCSP3 2018 competition. For that, we use the labeling from
the XCSP3 repository.

From Fig. 3 and Tables 5, 6, 7 and 8, it is clear that MAC with CHS performs
better than any other heuristics whether in terms of the number of solved instances
or runtime. Indeed, for example, dom/wdeg is the heuristic closest to CHS but leads
to solve 92 instances less. At the same time, CHS solves 127 instances more than
MAC+dom/wdeg+s and 174 more than MAC+wdegca.cd . Likewise, it solves 134
additional instances w.r.t. MAC+ABS.

Now, if we consider the heuristic CHB which is based on conflict history like
CHS, the gap with CHS is even greater (213 instances). This last result shows that the
calculation of weights by ERWA on the constraints (as done in CHS) is more relevant
than its calculation on the variables (as done in CHB). Note that the poor score of IBS
is mainly related to the estimation of the size of the search tree (i.e. the product of

4 Given the poor results of MAC with IBS, including IBS leads to a less relevant comparison on instances
solved by MAC with each heuristic since it significantly decreases the number of such instances.
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Table 9 Mean and standard deviation of the difference between the number of instances solved by the VBS
and the corresponding number for MAC with each heuristic

CHS dom/wdeg+s dom/wdeg wdegca.cd ABS CHB

Mean 5.11 7.38 6.75 8.21 7.50 8.91

Standard deviation 9.25 13.93 11.17 15.98 14.91 19.11

the domain sizes Refalo 2004). In fact, we observe that, for many instances, the value
of the estimation exceeds the capacity of representation of long double in C++.
Finally, these trends are still valid if we focus on SAT instances or UNSAT ones.

Interestingly, whatever the value of α0, MAC with CHS remains better than all its
competitors. Indeed, the worst case is observed when the value of α0 is equal to 0.8 or
0.9 with 10,676 solved instances. This observation also holds for the version of CHS
in which we disable the smoothing or the resetting of α. This clearly highlights the
practical interest of our approach.

If we look at the results more closely, i.e. for each family (see Tables 5, 6, 7 and
8), we observe that no heuristic dominates the others. Indeed, if CHS is the heuristic
that leads most often to the best results (for 13 families), the other heuristics are
close (notably 10 families for wdegca.cd , ABS and CHB). This makes the choice of a
particular heuristic difficult, as it is highly dependent on the instance or the family of
instances to be processed. This probably explains the gap betweenVBS andMACwith
any heuristic (e.g. 10,982 solved instances for the VBS against 10,812 for MAC with
CHS). Curiously, dom/wdeg+s only ranks first for 3 families while being globally
ranked at the third place. As CHS, it rarely performs significantly worse than the other
heuristics.

To illustrate this phenomenon, let us consider the difference between the number of
instances solved by the VBS and the corresponding number for MAC, for each family,
with each heuristic. This number can be seen as a measure of the robustness of the
heuristic. Table 9 provides the mean and the standard deviation of this difference for
each heuristic. It shows that CHS is the most robust heuristic by obtaining the smallest
mean and standard deviation.

Finally, our observations are consistent with ones in Habet and Terrioux (2019).
In particular, MAC clearly performs better with CHS than with any other heuristic,
notably the two powerful and popular variable ordering heuristics dom/wdeg and
ABS. The gap between CHS and the other heuristics has widened with the increase in
the number of instances taken into account.

5.4 Combination with LC and COS

LC andCOS are two branching strategies based on conflicts which require an auxiliary
variable ordering heuristic in order to choose a variable when no conflict can be
exploited. In this subsection, we study the behavior of CHS and some heuristics of the
state-of-the-art when they are used jointlywith LC or COS.We only keep the three best
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Fig. 4 Number of solved instances as a function of the elapsed time (with a logarithmic scale) for LC with
the heuristics CHS, dom/wdeg+s, dom/wdeg or ABS

heuristics according to the results of the previous subsection, namely dom/wdeg+s,
dom/wdeg and ABS.

First, we consider the case of LC. Figure 4 presents the number of solved instances
as a function of the elapsed time for LC combined with each considered heuristic. As
a first observation, we can note that using LC does not change the ranking obtained
in the previous subsection. Namely, LC combined with CHS leads to the best results
followed by dom/wdeg+s, dom/wdeg and ABS. Indeed, as we can see in Table 10,
MAC with LC and CHS solves more instances and solves them more quickly than
MAC with LC and any other heuristic. Moreover, for any considered heuristic h, we
can also remark that MAC with LC and h performs better and faster than MAC with
h. For instance, MAC with LC and CHS solves 10,812 in 1017.03 hours against
10,742 instances solved in 1038.89 hours for MAC with CHS. We can also observe
that the gain in the number of solved instances thanks to MAC with LC and h w.r.t.
MAC with h varies according to h (70 instances for CHS and 110 instances for ABS).
This probably reflects the fact that the less efficient the heuristic is, the easier it is to
solve additional instances. To this end, LC with CHS turns to be the most interesting
variable ordering heuristic among all the heuristics we consider in our experiments.

Now, we assess the behavior of MAC when using COS with any auxiliary heuristic
among CHS, dom/wdeg+s, dom/wdeg and ABS. As shown in Fig. 5 and Table 10,
combining COS with any heuristic leads to decrease significantly the ability of MAC
to solve instances. Indeed, we can observe that MAC using COS and any heuristic
solves at least 346 instances less than MAC using solely the auxiliary heuristic. Thus,
if the ranking remains the same, the gap between MAC with COS and CHS and MAC
with COS and any other auxiliary heuristic is narrower (from 92 instances when the
heuristics are exploited alone to 16 instances with COS). A possible explanation of
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978 D. Habet, C. Terrioux

Fig. 5 Number of solved instances as a function of the elapsed time (with a logarithmic scale) for COS
with the heuristics CHS, dom/wdeg+s, dom/wdeg or ABS

Table 10 Number of instances
solved by MAC with LC/COS
with any auxiliary heuristic
among CHS, dom/wdeg+s,
dom/wdeg or ABS, and
cumulative runtime in hours

Auxiliary LC COS
Heuristic #solved Time (h) #solved Time (h)

CHS 10812 1017.03 10281 1363.86

dom/wdeg+s 10752 1057.91 10265 1368.66

dom/wdeg 10741 1067.28 10259 1367.17

ABS 10718 1090.23 10262 1368.99

this behavior is that MAC only exploits the auxiliary heuristic when there is no more
variable appearing in conflicts. This occurs at the beginning of the search when no
conflict has been encountered yet or when all the variables appearing in past conflicts
are assigned. Clearly, the first case concerns few nodes in the search tree. For the
second case, it may be the same too as soon as many variables are involved in the
encountered conflicts. In addition, a potential drawback of COS is that the conflicts
exploited by COS may be old and so have less sense at some steps of the search.

5.5 CHS and tree-decomposition

Wenowassess the behavior ofCHSwhen the search is guided by a tree-decomposition.
Studying this question is quite natural since CHS aims to exploit the structure of the
instance, but in away different fromwhat the tree-decomposition does.With this aim in
view,we considerBTD-MAC+RST+Merge (Jégou et al. 2016) and the heuristicsCHS,
dom/wdeg+s, dom/wdeg andABS combined or not with LC. As shown in Fig. 6 and
Table 11, the trends observed for MAC are still valid for BTD-MAC+RST+Merge.
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Fig. 6 Number of instances solved by BTD-MAC+RST+Merge as a function of the elapsed time (with a
logarithmic scale) with the heuristics CHS, dom/wdeg+s, dom/wdeg or ABS

Table 11 Number of instances
solved by
BTD-MAC+RST+Merge with
the heuristics CHS,
dom/wdeg+s, dom/wdeg and
ABS combined or not with LC,
and cumulative runtime in hours

(Auxiliary) Without LC With LC
Heuristic #solved Time (h) #solved Time (h)

CHS 10770 1035.59 10839 1011.22

dom/wdeg+s 10712 1065.01 10805 1032.30

dom/wdeg 10672 1089.00 10767 1061.63

ABS 10650 1082.71 10705 1093.49

Indeed, the solving is more efficient with CHS than with any other used heuris-
tic by at least 58 additional instances. For example, BTD-MAC+RST+Merge with
CHS solves 10,770 instances (in 1035 h) against 10,712 instances (in 1065 h) for
dom/wdeg+s. Moreover, we can note that using BTD-MAC+RST+Merge instead of
MAC does not change the ranking of the heuristics in terms of the number of solved
instances or the cumulative runtime.

Likewise, we can make the same observations if we exploit LC (see Fig. 7 and
Table 11). Above all, BTD-MAC+RST+Merge with LC and CHS turns out to be
more efficient than MAC with LC and any auxiliary heuristic. For example, it solves
27 additional instances compared to MAC with LC and CHS. All these observations
show that exploiting both CHS and tree-decomposition may be of interest and that
these two strategies can be complementary.

Finally, these results are consistent with the ones in Habet and Terrioux (2019).
They are also consistent with ones of the XCSP3 competition 2018. For instance,
BTD-MAC+RST+Merge participated in the mini-solvers track of the competition by
using respectively dom/wdeg (for the solverminiBTDJégou et al. 2018) andCHS (for
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Fig. 7 Number of instances solved by BTD-MAC+RST+Merge as a function of the elapsed time (with a
logarithmic scale) with LC combined with the heuristics CHS, dom/wdeg+s, dom/wdeg or ABS

the solver miniBTD_12Habet et al. 2018) as variable ordering heuristic. miniBTD_12
finished in the second place by solving 79 instances while miniBTD was ranked third
with 74 solved instances.

6 Experimental evaluation on COP instances

This section is devoted to the evaluation of the behavior of our heuristic when solving
COP instances (optimization problem). Note that the constraint optimization problem
(COP) differs from the constraint satisfaction problem by only the addition of an
objective function to optimize. So solving a COP instance consists in assigning all the
variables while satisfying all the constraints and optimizing the objective function. It
is an NP-hard task (Rossi et al. 2006).

We first describe the experimental protocol we use. Then, in Sect. 6.2, we assess the
sensitivity of our heuristic CHS to its parameters and the benefits of smoothing and
resetting. Finally, we compare CHS with state-of-the-art variable ordering heuristics
in Sect. 6.3.

6.1 Experimental protocol

We consider the COP instances from the 2019 XCSP3 competition.5 Like for CSP
instances, we discard 36 instances containing some global constraints which are not

5 http://www.cril.univ-artois.fr/XCSP19.
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Table 12 Number of instances
having the status OPT, UNSAT
or SAT depending on the value
of α0 (between 0.1 and 0.9) and
the cumulative runtime (in
hours) for all the instances

α0 # instances Time (h)
OPT UNSAT SAT

0.1 119 1 86 67.48

0.2 121 1 83 66.75

0.3 124 1 80 66.10

0.4 126 1 78 62.38

0.5 124 1 73 66.31

0.6 120 1 84 68.18

0.7 120 1 83 68.73

0.8 113 1 91 70.65

0.9 117 1 85 70.08

VBS 140 1 66 59.04

handled by our library yet. In the end, our benchmark contains 264 instances, including
notably structured ones and instances with global constraints.

The experiments are performed in the same conditions as for CSP instances. In
particular, we use the same value heuristic, the same settings for variable ordering
heuristics, restarts, …. Regarding the solving step, we exploit a branch and bound
algorithm based on MAC with restarts and denoted MAC-BnB. We distinguish three
statuses when solving a COP instance. If the solver finds an optimal solution and
proves the optimality within the allocated time slot (30 min), the instance has the
status OPT meaning that it is has been optimally solved. However, if the solver has
found a solution but cannot establish its optimality, the instance has the status SAT
meaning that a solution has been found in the CSP sense but with no guarantee with
respect to the objective function. In such a case, the solver has only produced an upper
bound (resp. a lower bound) if the instance aims to minimize (resp. maximize) the
objective function. Finally, if the solver proves that the instance has no solution, the
instance has the status UNSAT. In the following, an instance is said solved if it has
the status OPT or UNSAT.

6.2 Impact of CHS settings

In this part, we assess the sensitivity of CHS with respect to the chosen values for α0
or δ when solving COP instances. First, we study the impact of α0 value. With this
aim in view, we set δ to 10−4 and then vary the value of α0 between 0.1 and 0.9 with
a step of 0.1.

Table 12 provides the number of instances having the status OPT, UNSAT or SAT
depending on the initial value of α0 and the corresponding cumulative runtime. We
also provide the results of the Virtual Best Solver (VBS) built on the basis of this nine
combinations of MAC-BnB and CHS. Table 12 shows that the results obtained for
the different values of α0 are relatively close to each others. Indeed, if we consider
the number of solved instances, the best combination (α0 = 0.4) solves in average
6 additional instances and the gap with the worst one is 13 instances. Regarding the
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Fig. 8 Number of solved COP instances as a function of the elapsed time for α0 varying between 0.1 and
0.9 and the VBS

runtime, MAC-BnB and CHSwith α0 = 0.4 correspond again to the best combination
with a cumulative runtime of 62.38 h. The other combinations are generally 5% slower,
except for the values 0.8 and 0.9 of α0 for which the rate is about 10%. Globally,
these results are consistent with ones obtained when solving CSP instances and show
again the robustness of CHS with respect to the value of α0. This robustness is also
highlighted by the fact that all the curves in Fig. 8 are quite close. Moreover, from this
figure, we can note that α0 = 0.4 is the best choice among the experimented values.
Indeed, the corresponding curve is almost always above the others.

Regarding the Virtual Best Solver (VBS) in Table 12, we note that it can solve
14 additional instances than MAC-BnB and CHS with α0 = 0.4 while saving 3.34
h. If we consider the results instance per instance, we observe that 103 instances
among the ones solved by the VBS are solved whatever the chosen value for α0.
Furthermore, 20 instances among the 38 remaining ones are solved by more than half
of the combinations. Finally, the 18 remaining instances seem harder to solve with an
average runtime for the VBS about 819 seconds.

Now, we set α0 to 0.4 and consider different values of δ (see Table 13). The obser-
vations are similar to those presented previously, showing the robustness of CHS
regarding δ. It turns out that using a non-zero values for δ allows MAC-BnB to per-
form better. This shows the relevance of introducing δ in CHS. Finally, like for the
CSP solving, the value 10−4 leads to obtain the best results in terms of the number of
solved instances as well as the runtime.

Table 14 gives the results ofMAC-BnB+CHS (α0 = 0.4, δ = 10−4)with smoothing
(+s) the constraint scores or without (-s) and/or with resetting (+r ) the value of α to
0.4 at each new restart or without (-r ). The observed behaviors clearly support the
importance of smoothing and restarts for CHS. For example, MAC-BnBwith CHS+s-
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Table 13 Impact of the value of
δ regarding the number of
instances having the status OPT,
UNSAT or SAT and the
cumulative runtime in hours.

δ # instances Time (h)
OPT UNSAT SAT

0 120 1 84 67.89

10−5 123 1 82 67.21

10−4 126 1 78 62.38

10−3 121 1 84 68.47

Table 14 Number of instances
which are solved optimally
(OPT), proved as inconsistent
(UNSAT) or for which a solution
is found (SAT) with CHS
with/without smoothing and
reset of α and the cumulative
runtime (in hours) for all the
instances

Variant # instances Time (h)
OPT UNSAT SAT

CHS(+s+r ) 126 1 78 62.38

CHS+s-r 121 1 84 66.82

CHS-s-r 115 1 81 69.73

CHS-s+r 116 1 82 70.16

r solves 5 less instances than MAC-BnB with CHS, while MAC-BnB with CHS-s-r
solves 11 instances less. In addition, it can be noted that removing the smoothing or
the resetting lead to an increase in runtime.

6.3 CHS versus other search heuristics

In this part, we compare CHS (with α0 = 0.4 and δ = 10−4) to other search strategies
from the state-of-the-art, namely dom/wdeg, wdegca.cd , ABS and CHB. We also
consider the variant dom/wdeg+s that we introduced for dom/wdeg.

Figure 9 presents the number of solved instances as a function of the elapsed time
for each considered heuristic. Clearly, CHS turns to be the more efficient heuristics.
Indeed, MAC-BnB with CHS solves at least 13 additional instances than with any
other considered heuristic while performing faster. More interestingly, CHS outper-
formsCHBwith 49 additional solved instances.Nevertheless, no heuristic outperforms
another for all instances or families of instances. So, Tables 15 and 16 give some details
for each family of instances considered in the competition. They allow to have a better
insight of the kind of instances for which CHS is relevant. Note that we do not consider
CHB in order to have a relevant comparison for instances which are solved with all
the heuristics. Indeed, considering CHB dramatically reduces the number of instances
solved by all the heuristics. Like for the decision problem, CHS is not always the
better heuristic, but, it turns to be the more robust one. Finally, we can also remark
that whatever the values chosen for α0 or δ among the considered one, CHS performs
better than the state-of-the-art heuristics. This observation still holds if CHS does not
exploit smoothing and/or reset of α.

123



984 D. Habet, C. Terrioux

Ta
bl
e
15

D
et
ai
le
d
re
su
lts

(n
um

be
r
of

so
lv
ed

in
st
an
ce
s
an
d
ru
nt
im

e)
w
ith

C
H
S,

d
om

/
w
d
eg
+
s,
d
om

/
w
d
eg
,w

d
eg

ca
.c
d
or

A
B
S
fo
r
ea
ch

co
ns
id
er
ed

fa
m
ily

(P
ar
t1

fo
r
Ta
bl
e

15
)

Fa
m
ily

#
in
st
an
ce
s

C
H
S

d
om

/
w
d
eg
+
s

d
om

/
w
d
eg

w
d
eg

ca
.c
d

A
B
S

#s
ol
v.

T
im

e
#s
ol
v.

T
im

e
#s
ol
v.

T
im

e
#s
ol
v.

T
im

e
#s
ol
v.

T
im

e

B
in
Pa
ck
in
g

C
0

0
0

0
0

0

T
15

2
24

50
5

0
27

00
3

0
27

00
2

3
21

68
7

0
27

00
1

C
he
ss
bo

ar
dC

ol
or
at
io
n

C
3

17
.1
7

6.
17

6.
81

24
.2
6

10
.8
2

T
6

3
54

17
3

54
06

3
54

06
81

3
54

24
3

54
10

C
ut
st
oc
k

C
1

0.
78

37
.2
9

2.
45

4.
70

2.
85

T
15

12
60

13
3

21
88

6
4

21
44

3
7

15
83

8
3

21
61

2

Fa
st
fo
od

C
5

77
6

98
3

13
19

85
6

56
8

T
15

8
17

09
1

5
18

98
3

5
19

31
9

7
15

84
5

12
12

09
3

G
ol
om

bR
ul
er

C
3

62
.1
2

12
1

97
.9
4

17
0

52
.1
3

T
11

6
95

03
3

14
53

3
5

13
85

2
6

11
73

5
6

95
43

G
ra
ph

C
ol
or
in
g

C
5

10
43

10
1

10
4

71
2

53
.4
1

T
15

6
17

45
7

6
16

54
6

6
16

58
6

17
40

4
5

18
05

3

K
na
ps
ac
k

C
6

26
24

26
40

25
71

25
55

72
.4
1

T
15

6
18

82
4

6
18

84
0

6
18

77
1

6
18

75
5

15
33

8

123



Conflict history based search for CSP 985

Ta
bl
e
15

Pa
rt
2
fo
r
Ta
bl
e
15

Fa
m
ily

#
in
st
an
ce
s

C
H
S

d
om

/
w
d
eg
+
s

d
om

/
w
d
eg

w
d
eg

ca
.c
d

A
B
S

#s
ol
v.

T
im

e
#s
ol
v.

T
im

e
#s
ol
v.

T
im

e
#s
ol
v.

T
im

e
#s
ol
v.

T
im

e

L
ow

A
ut
oc
or
re
la
tio

n
C

4
64

4
41

7
48

9
44

8
98

.2
0

T
12

4
15

04
4

4
14

81
7

4
14

88
9

4
14

84
8

4
14

49
8

N
ur
se
R
os
te
ri
ng

C
1

38
7

22
1

14
39

38
.4
1

13
2

T
2

1
21

87
1

20
21

1
32

38
1

18
38

1
19

32

O
pd

C
0

0
0

0
0

0

T
15

1
25

20
0

2
23

87
0

3
21

91
0

2
23

48
3

1
25

20
0

O
pe
nS

ta
ck
s

C
4

23
4

95
4

70
6

71
14

79

T
15

15
56

66
8

16
10

7
8

17
02

9
15

11
06

4
21

27
9

Pb
C

8
50

8
47

0
47

2
45

6
25

6

T
15

9
12

64
4

9
12

28
4

10
11

37
8

10
11

31
3

10
10

50
5

Pe
ac
ab
le
A
rm

ie
s

C
2

17
1

10
2

98
.5
5

16
0

15
8

T
2

2
17

1
2

10
2

2
98

.5
6

2
16

0
2

15
8

Pi
zz
aV

ou
ch
er

C
0

0
0

0
0

0

T
1

0
18

00
0

18
00

0
18

00
1

17
47

0
18

00

Pr
iz
eC

ol
le
ct
in
g

C
3

7.
30

4.
76

4.
35

73
6

12
.3
8

T
15

15
47

2
15

31
9

15
32

0
3

22
33

6
15

18
48

123



986 D. Habet, C. Terrioux

Ta
bl
e
16

Pa
rt
3
fo
r
Ta
bl
e
15

Fa
m
ily

#
in
st
an
ce
s

C
H
S

d
om

/
w
d
eg
+
s

d
om

/
w
d
eg

w
d
eg

ca
.c
d

A
B
S

#s
ol
v.

T
im

e
#s
ol
v.

T
im

e
#s
ol
v.

T
im

e
#s
ol
v.

T
im

e
#s
ol
v.

T
im

e

Q
ua
dr
at
ic
A
ss
ig
nm

en
t

C
5

33
9

42
4

45
3

82
5

94
8

T
9

7
41

97
7

44
58

7
44

70
7

45
55

5
81

47

Q
ue
en
A
tta
ck
in
g

C
0

0
0

0
0

0

T
1

1
14

55
0

18
00

0
18

00
0

18
00

0
18

00

R
am

se
y

C
3

1.
06

0.
92

3.
38

0.
50

27
.9
1

T
4

3
18

01
3

18
01

3
18

03
3

18
01

3
18

27

R
lf
ap

C
1

3.
76

2.
66

3.
12

3.
14

0.
28

T
4

2
36

05
2

36
07

2
36

10
1

54
03

2
36

25

St
ill
L
if
e

C
7

44
8

21
7

68
3

24
7

10
23

T
15

12
11

48
5

12
92

75
13

10
28

1
12

87
78

7
15

42
3

Ta
ill
ar
d

C
0

0
0

0
0

0

T
15

9
12

81
5

9
10

81
5

9
10

81
3

0
27

00
1

9
13

34
7

Ta
l

C
1

25
8

43
4

46
8

23
3

16
27

T
2

2
65

9
1

22
34

2
18

54
2

58
7

1
34

27

T
ra
ve
lli
ng

Sa
le
sm

an
C

7
13

69
22

01
20

03
32

26
10

53

T
15

7
15

76
9

7
16

60
1

7
16

40
3

7
17

62
6

7
15

45
3

123



Conflict history based search for CSP 987

Ta
bl
e
16

Pa
rt
4
fo
r
Ta
bl
e
15

Fa
m
ily

#
in
st
an
ce
s

C
H
S

d
om

/
w
d
eg
+
s

d
om

/
w
d
eg

w
d
eg

ca
.c
d

A
B
S

#s
ol
v.

T
im

e
#s
ol
v.

T
im

e
#s
ol
v.

T
im

e
#s
ol
v.

T
im

e
#s
ol
v.

T
im

e

V
rp

C
1

74
7

41
8

37
4

61
9

48
0

T
3

1
43

48
1

40
18

1
39

74
1

42
19

1
40

80

W
ar
eh
ou

se
C

2
99

7
90

1
10

82
10

27
23

49

T
2

2
99

7
2

90
1

2
10

82
2

10
27

2
23

49

A
ll

C
72

2.
96

h
2.
96

h
3.
44

h
3.
45

h
2.
89

h

T
26

4
12

7
66

.3
1
h

10
2

75
.4
5
h

10
9

75
.2
0
h

10
5

72
.7
0
h

11
4

69
.9
7
h

123



988 D. Habet, C. Terrioux

Fig. 9 Number of solved instances as a function of the elapsed time for the considered heuristics (namely
CHS, dom/wdeg+s, dom/wdeg, wdegca.cd , and ABS) and the VBS based on these five heuristics

7 Conclusion

We have proposed CHS, a new variable ordering heuristic for CSP based on the
search history and designed following techniques inspired from reinforcement learn-
ing. The experimental results confirm the relevance of CHS, which is competitive
with the most powerful heuristics, when implemented in solvers based on MAC or
tree-decomposition exploitation. Our experiments also shows that CHS turns to be
relevant for solving COP instances.

The experimental study suggests that the initial value of α parameter value could be
refined. We will explore the possibility of defining its value depending on the instance
to be solved. For example, we will look for probing techniques to fix its appropriate
value. Furthermore, similarly to the ABS heuristic, we will also consider including
information provided by filtering operations in CHS. Finally, we will measure the
impact of CHS on solving other problems under constraints, such as counting and
optimization when modeled as weighted CSP.

Acknowledgements This work has been funded by the French Agence Nationale de la Recherche, Refer-
ence ANR-16-CE40-0028.
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