
Journal of Heuristics (2021) 27:497–547
https://doi.org/10.1007/s10732-020-09465-7

Augmented intuition: a bridge between theory and practice

Pablo Moscato1 · Luke Mathieson2 ·Mohammad Nazmul Haque1

Received: 14 July 2019 / Revised: 31 August 2020 / Accepted: 23 December 2020 /
Published online: 31 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Motivated by the celebrated paper of Hooker (J Heuristics 1(1): 33–42, 1995) pub-
lished in the first issue of this journal, and by the relative lack of progress of both
approximation algorithms and fixed-parameter algorithms for the classical decision
and optimization problems related to covering edges by vertices, we aimed at devel-
oping an approach centered in augmenting our intuition about what is indeed needed.
We present a case study of a novel design methodology by which algorithm weak-
nesses will be identified by computer-based and fixed-parameter tractable algorithmic
challenges on their performance. Comprehensive benchmarkings on all instances of
small size then become an integral part of the design process. Subsequent analyses of
caseswhere human intuition “fails”, supported by computational testing, will then lead
to the development of new methods by avoiding the traps of relying only on human
perspicacity and ultimately will improve the quality of the results. Consequently,
the computer-aided design process is seen as a tool to augment human intuition. It
aims at accelerating and foster theory development in areas such as graph theory and
combinatorial optimization since some safe reduction rules for pre-processing can be
mathematically proved via theorems. This approach can also lead to the generation
of new interesting heuristics. We test our ideas with a fundamental problem in graph
theory that has attracted the attention of many researchers over decades, but for which
seems it seems to be that a certain stagnation has occurred. The lessons learned are
certainly beneficial, suggesting that we can bridge the increasing gap between theory
and practice by a more concerted approach that would fuel human imagination from
a data-driven discovery perspective.

Keywords Vertex cover · Augmented intelligence · Human–computer data-driven
discovery · Heuristics · Algorithms · Kernelization

P.M. acknowledges a generous donation from the Maitland Cancer Appeal and previous support from the
Australian Research Council Future Fellowship FT120100060 and Australian Research Council
Discovery Projects DP120102576, DP140104183 and DP200102364.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-020-09465-7&domain=pdf
http://orcid.org/0000-0003-2570-5966

498 P. Moscato et al.

1 Introduction

“It should be one’s sole endeavour to see everything afresh and create it anew.”
- Gustav Mahler

Nobel Prize winner in Physics, Richard Feynman, was considered one of the
quintessential problem solvers of the twentieth century. In a Chicago Tribune inter-
view1 his colleague at Caltech, Murray Gell-Mann, another Nobel Prize awardee, who
also was a world class problem solver in Physics and a champion for the study of com-
plexity in science (Gell-Mann 1995), half-jokingly specified ‘Feynman’s Algorithm’
as a simple three-step procedure:

1. Write down the problem.
2. Think really hard.
3. Write down the solution.

Puckish as this may seem, this “algorithm” rightfully models at a very high level
the conduct of much of the fundamental practice of Algorithmics and Theory of
Computer Science. When faced with a computational problem, algorithmic designers
and complexity theorists typically approach a white board (or a blank page), think
really hard for a while, sketch particular “complex instances of small size” that may
come to their mind, think really hard (again) to try to identify the worst-case scenario,
and they finally write down the solution in the form of an algorithm (or a complexity
proof that shows membership or some other type of tight result).

While this activity is accompanied by a toolkit of techniques and experience
obtained during the past decades, it is most certainly ad hoc. There is no consen-
sus of what “writing down the problem” is. Ideally, computational benchmarking on
all instances of small size can help to uncover the reasons why a heuristic may fail
to obtain the optimal solution. Systematic benchmarking on small instances is rarely
seen in practice, with most benchmarking being done a posteriori, on larger instances.
Hooker already pointed at these issues a quarter of a century ago both in Hooker
(1995) and in when he appealed for the establishment of a new “empirical science of
algorithms” (Hooker 1994).

Undoubtedly, it is also clear that the algorithmics approach of using human intuition
alone to generate worst-case instances has had its successes. For certain problems, this
standard approach is sufficient and relying on human intuition is all what is needed;
a near trivial example is the sorting of a list of numbers where most of the “bad”
algorithms are more complex than the “good” ones (cf. Bubblesort and Mergesort).
However, a proposal for using evolutionary algorithms to augment human intuition
via “evolutionary attacks” has already been proposed for those algorithms (Cotta and
Moscato 2003).

In spite of the success of just using human intuition alone, the core difficulties
with the approach run deeply and propagate into the future, for instance, by teaching
our young peers. Indeed, we routinely train the next generation of computer scien-
tists and applied discrete mathematicians by handpicking “the best examples” of this

1 https://www.chicagotribune.com/news/ct-xpm-1992-11-17-9204150260-story.html.

123

https://www.chicagotribune.com/news/ct-xpm-1992-11-17-9204150260-story.html

Augmented intuition: a bridge between theory and practice 499

paradigm based on the successes of this approach, and we praise the beauty and sim-
plicity of some proofs. When considering harder problems, however, this leads to the
development of algorithms with obscure weaknesses and limitations and/or lack of
insights into their empirical success or applicable range. For many problems andmany
researchers “algorithmic success” then becomes a one-off hit during the lifetime of
their careers. We can read in a famous textbook: “The Algorithm Design Manual” by
S. Skiena: “Algorithms are the ideas behind computer programs” (Skiena 2008), a
partial definition that algorithms share with heuristics. Very little is said about where
to find intuition for these ideas, or how we can systematize a process for algorithm
design. The early-on take home for students from the book is “Searching for coun-
terexamples is the best way to disprove the correctness of a heuristic” ... but he also
recognizes that this search “relies more on inspiration than exhaustion” (Skiena 2008,
Sec. 1.3.3).

What happens when we run out of inspiration? Would then be possible that we
could globally and collectively be ‘running out of ideas’ for a given problem? Could
we augment out intuition by employing exhaustive testing on instances of smaller
sizes? Can we make a methodological bridge between algorithm and heuristic design
by bringing benchmarking a priori instead of a posteriori? We aim at providing a case
study in one of combinatorial optimization’s most studied problems as an illustrative
example.

1.1 The vertex cover problem: muchmore than a case in point

The history of the well-known combinatorial problem k- Vertex Cover demon-
strates the problem in an incisively way. Given an undirected graph G(V , E), a vertex
cover V ′ is a subset of V such that for all edges in E at least one of the endpoints is in
V ′. The problem of deciding if a graph G can have a vertex cover with at most k > 0
vertices is one of the most well-recognized “classical” examples of an NP-complete
problem. In the optimization version (Min Vertex Cover), we aim at finding the cover
of the minimum cardinality.

The proof of the existence of a “straightforward algorithm” (quoting Garey and
Johnson 1979) with a guaranteed performance ratio of 2 is both simple and elegant
and, consequently, it has become standard practice to teach this proof in many under-
graduate courses around the world. However, the weakness and limitations of this
paradigm for algorithm design, which is based on a performance ratio and simplicity
of proofs, and which certainly involves “think [ing] really hard”, are neither discussed
nor questioned. In fact, it comes as a surprise to our students that very little other
progress in the development of approximation algorithms for Min Vertex Cover has
occurred since Gavril proved this result (the existence of a 2-approximation ratio) in
1974 [known as a private communication to D.S. Johnson according to a well-known
textbook (Garey and Johnson 1979)]. The best known approximation ratio for this
problem is 2 − �(1√

log|V |), a result obtained approximately 30 years after Gavil’s

proof Karakostas (2005). Progress exists on trying to demonstrate the hardness of
approximability, and only three years before, Dinur and Safra (2002) proved that it

123

500 P. Moscato et al.

is NP-hard to approximate the cardinality of the minimum vertex cover within any
factor smaller than 1.36.

1.2 Fixed-parameterized tractability: a new hope and a new stagnation

A breath of fresh air also happened for this problem; a string of exact algorithms for
the Min Vertex Cover has appeared over the past 30 years, each improving on the
previous results. These are called fixed-parameter tractable algorithms. The problem
then quickly became the “superstar” of this new wave of algorithmic design hope.
Today it is perhaps the most well-known problem of a computational complexity
class known as FPT (i.e., the class of problems for which a fixed-parameter tractable
algorithm exists).

This type of approach brought an interesting design strategy; it contained systematic
theoretical analyses of instances of small size for the purpose of kernelization. They
bring, in some sense, an “implicit benchmarking” process via mathematically proven
results on safe reduction rules. These ideas are explained in detail in Sect. 2. We give
an example of a safe reduction rule in Sect. 2.1 and all the reduction rules used in this
manuscript are given in Appendix A. They have proven useful to solve to optimality
any instance of vertex cover with up to 7 vertices. However, after a very successful 15
years, also in this case we observe a stagnation in the development of fixed-parameter
tractable algorithms since no significant further progress occurred since 2005, i.e.
fifteen years ago.

1.3 Is lack of progress “natural”?

How to track progress? Unfortunately, there is no generic repository containing all
theoretical results in computer science as a semantic database, but there is a very
useful online compendium on approximation algorithms maintained by Viggo Kann
since 1992.2 From it we can see that many well-known problems in that compendium
also have had very sporadic successes in terms of improving the approximability status
over decades. It is also remarkable that vertex cover, the problem that in some sense
initiated and help championed the theory of fixed-parameter tractability, also has the
same stagnation for graphs of size equal or greater than 8 vertices, a situation that has
changed little after nearly 15 years of research.

Should we calmly accept that “this is natural”? Would it be possible that some
combinatorial problems are “just like that”? Or, we dare to ask, is it the case that
the progress in theoretical computer science, and in this case graph theory, is indeed
limited by the human cognitive capacity for identifying structure in complex objects?

We point that Thorup (1998) structured programs (i.e. goto-free programs), “includ-
ing, for example, short circuit evaluations andmultiple exits from loops, have treewidth
at most 6”, so perhaps that is linked to human cognitive capacity for control flow of
algorithms. However, today the route to justify the lack of progress over decades is to
blame the “inherent hardness” of these problems, their “inapproximability” in some

2 http://www.csc.kth.se/~viggo/problemlist/.

123

http://www.csc.kth.se/~viggo/problemlist/

Augmented intuition: a bridge between theory and practice 501

cases, or, in the case of fixed-parameter algorithms, the increasingly more difficult
mathematical proofs required to bring new advances. Of course, we also have another
tempting escape route; we can also blame the problem. Usually, a conjecture is open,
in this case it was that there does not exist an algorithm with a fixed approximation
ratio better than 2 (Feige 2003; Hochbaum 1983).

Both routes are directions for an intellectual escapism and neither is addressing
the basic difficulty. Few researchers dare to challenge the common core of these
highly entrenched methodological practices in mathematics and computer science,
in particular, its lack of comprehensive experimentation with instances of small size.
After all, nothing seems wrong with “Fenyman’s Algorithm”. How can we blame
ourselves for “Thinking really hard”?Well, in fact, perhaps we can blame the part that
says that we should start with a blank page or a perfectly clean whiteboard. While
we acknowledge that we do not yet have a final solution, we offer an alternative for
consideration and this manuscript is, humbly speaking, perhaps the first step in that
new direction.

1.4 Structure of this paper

This paper is structured as follows: Section 2 discusses kernelization, an important
concept to understand the paper (while Appendix A presents the set of reduction rules
that have been implemented and tested in this study). In Appendix B we point at
some key surveys on current methods and practices of automated heuristics designs.
In Sect. 2.2 we present the results of these reduction rules in large scale vertex cover
benchmarking datasets. Section 3 lays out an augmented intelligence methodology for
moving beyond the traditional approach for developing reduction rules and provides
some partial conclusions. Section 4 details the design of three new heuristic algorithms
built thanks to the insights obtained thanks to the approach of Sect. 3. Section 5
presents the results of these heuristics on the benchmarking algorithms and statistical
performance tests are provided. In addition to those, we presented the results of other
metaheursitics used for BHOSLIB and DIMACS datasets in Appendices C.1, C.2
and a comparison of our heuristic with the Isolation Algorithm (IA) (Ugurlu 2012)
in Appendix C.4. Section 6 discuss possible new reduction rules for the problem;
and Sects. 7 and 8 discuss the results and limitations of the study, and present the
conclusions and future directions.

2 Fundamentals of kernelization

We will center the discussion on the k- Vertex Cover decision problem: “Given a
simple undirected graph G(V , E), is there a V ′ ⊆ V such that |V ′| ≤ k ?” Then,
from the point of view of parameterized complexity, the instance is the graph and a
parameter (i.e., (G, k)).

123

502 P. Moscato et al.

2.1 Preprocessing and reduction rules

In the area of Operations Research some polynomial-time techniques have been used
to deal with large instances of problems that have some “real-world origin” and have
been used in practice. They are called “safe data reductions”. Based on them, some
pre-processing techniques often make seemingly intractable, large instances, such
as those arising in machine learning or bioinformatics, small and tractable. A great
example of this is Karsten Weihe’s “covering trains by stations” story (see Moscato
(2019) for a detailed account of it). An example of a reduction rule for the k- Vertex
Cover is the following:

Lemma 1 Shared neighborhoods of two adjacent vertices - Let (G, k) be an instance
of k- Vertex Cover with u, v ∈ V (G) where N (u) ⊆ N (v) − u and uv ∈ E(G).
Let G ′(V ′, E ′) be the graph obtained by deleting vertex v from G. Then (G, k) is a
Yes instance of k- Vertex Cover iff (G − v, k − 1) is also a Yes instance.

Proof

(⇒) Let V ′ be a vertex cover of size k for G. We have two cases: v ∈ V ′ and
v /∈ V ′. If v ∈ V ′, then V ′ − v is a vertex cover for G − v of size k − 1. If
v /∈ V ′, we must have u ∈ V ′ to cover the edge uv. However as v /∈ V ′,
the edges wv for any w ∈ N (v) − u must be covered by w. In particular
this implies that N (u) ⊂ V ′. Therefore we can take the alternate vertex
cover V ′′ = (V ′ − u) ∪ {v} and we again have the first case.

(⇐) Let V ′ be a vertex cover of size k − 1 for G ′. V ′ covers all edges of G
except those edges wv for w ∈ N (v). Thus V ′ ∪ {v} forms a vertex cover
of size k for G.

��
We note that this reduction rule is not saying that vertex v has to be in a vertex

cover of minimum cardinality (but we are saying that it is in one of size k). If we keep
on reducing the graph until a vertex cover is found, we can then revisit this vertex
and if all vertices in N (v) are already in the vertex cover then v does not need to be.
The reduction rule is still valid as a mechanism to answer the decision version for the
value of k, and if v is actually no needed, then a vertex cover of cardinality k − 1 may
actually exist.

2.1.1 Kernelization and fixed-parameter tractability

Formal proofs rules like the one above were previously known as “preprocessing”
in the area of Operations Research. It was noted nearly three decades ago that they
can become powerful tools to reduce the dimensionality of an instance. The design
of “fixed-parameter algorithms” depends on identifying these rules and prove their
correctness. In general, in parameterized computational complexity the input is a pair
(x, k) where x corresponds to an instance of a decision problem and k > 0 is a
parameter which represents some characteristic of the instance. It is also assumed that
k is independent of the size of the instance (i.e., it is assumed to be a fixed value

123

Augmented intuition: a bridge between theory and practice 503

or “fixed parameter”). The overall aim of the application of reduction rules is then
generally to transform, in polynomial time, an instance (x, k) of a decision problem P
into an equivalent instance (x ′, k′) such that, |x ′| ≤ |x ′| and k < k′ and |x ′|+k′ ≤ f (k)

for some fixed computable function f (k).
These transformations are obtained via the application of these ‘reduction rules’

and they provide an effective tool for pre-processing instances of NP-hard problems.
This type of technique is known as kernelization. For some problems it is possible

to find a function f (k), depending only on k, bounding the size of a maximal reduced
instance (x ′, k′) (Abu-Khzam et al. 2004).

If such a function exists, then the problem is said to be ‘kernelizable’, and this
proves that it is in the computational complexity class called ‘FPT’ (the class of fixed-
parameter tractable problems).

2.1.2 Strict kernelization

When a parameterized problem is in class FPT, it is often said that the combinatorial
running-time “explosion” (currently conjectured to be something inherently unavoid-
able to most exact algorithms for NP-hard problems) has now been “confined to the
parameters”.

More recently, the concept of “diminishable problems” and “strict polynomial
kernelization” has been introduced Fernau et al. (2018). In this case it is required that
|x ′| ≤ f (k), for some function f (k) in kO(1) and k′ ≤ k + c for some constant c. This
basically means that a “strict kernelization is a kernelization that does not increase the
output parameter k′ by more than an additive constant” (Fernau et al. 2018).

2.2 Are reduction rules identified for kernelization purposes useful in practice?

This is the a fundamental question for practitioners who develop heuristics. Following
Hooker’s classic “Testing Heuristics: We have it all wrong” (Hooker 1995), we stop to
analyze the result of this computational experiment.We aim at getting some insights of
whether the best set of techniques fromfixed-parameter algorithmics fails at producing
both feasible solutions and to find the optimum for a large number of instances used
for benchmarking.

Are these safe rules coming from fixed-parameter tractability useful to reduce the
size of the instances? To address the question, we decided to benchmark the algorithm
that was is recognized as the best of its class. Since it is based on 10 reductions rules we
call it ‘the The 10-R approach’ and we provide an explicit description in Appendix A.

To test the effectiveness of The 10-R, we employed the widely known benchmark-
ing instances from the Second DIMACS Implementation Challenge. The DIMACS
datasets consist of collections of graphs initially proposed to challenge algorithmic
designers in the areas of maximum clique and graph coloring problems. For each type
of problem, we have two sets of graphs: benchmark and challenge. We have applied
our implemented reduction rules to reduce the number of vertices of these graphs. We
used the following set of instances:

– DIMACS Benchmark Clique Instances

123

504 P. Moscato et al.

Table 1 Number of successful applications of reduction rules on the DIMACS color graph’s benchmark
and volume instances over all instances

Reduction rule Successful application count

Benchmark Volume

Degree Zero 0 0

Degree One 3 5

Degree k 0 0

Degree two adjacent 4 8

Degree two non-adjacent 4 4

Complete neighborhood 13 40

Struction 52 78

Crown 0 0

Linear programming 0 5

General fold 7 13

– DIMACS Benchmark Graph Coloring Instances
– DIMACS Volume Graph Coloring Instances
– DIMACS Volume Clique Instances.

These instances go from approximately 200 nodes to 4000 and they have roughly
between 4000 and 4 million edges (e.g C4000.5).

To understand if some of the rules in The 10-R have more success than others
we have counted the number of times each of the reduction rules was able to safely
reduce the problem. We present the results in Table 1. We found that the Struction
rule is the most dominating (the one that more frequently is able to reduce the size of
the graph). The next successful reduction rule is Complete neighborhood. The Degree
Zero, Degree k and Crown rules have never been able to successfully be applied to
reduce any graph used in this experiment, and the Linear Programming one is only
able to do it five times. None of the reduction rules was able to reduce the size of the
instance of the Clique type. Overall, in the light of the amount of theoretical interest
and time dedicated to them over several decades, it is a rather disappointing, although
not entirely unexpected result. Current benchmarking challenge instances are still very
difficult in practice to established kernelization approaches. This motivates the next
step of our investigation.

3 Augmented intelligence discovery of new reduction rules

We now look at the following hypothesis: there exists another “yet to be discovered”
reduction rule that could be better suited than the ones already known. We consider
that it would be very unproductive to search for them by analyzing benchmarking data.
The instances that we have used in the previous experiment come from a variety of
sources, present different (yet unknown) structural properties, and we would not get

123

Augmented intuition: a bridge between theory and practice 505

inspiration and/or insight due to the large size and density. An alternative approach is
subsequently offered.

3.1 First step: test the current tools

We have implemented in a single piece of software all the reduction rules in Abu-
Khzam et al. (2004) and Chen et al. (2010) (i.e., The 10-R algorithm) and we extended
it to be an exact Min Vertex Cover solver. We do this by the application in tandem
of the reduction rules The 10-R followed by a reduction to an Integer Programming
model for Min Vertex Cover which uses CPLEX3 as a subroutine.

We then used this solver on the complete enumerated sets of non-isomorphic graphs
ranging from 2 to 7 vertices respectively. The union of the reduction rules of the two
papers cited above (Abu-Khzam et al. 2004; Chen et al. 2010) were able to solve all
instances with 7 vertices, as expected. This confirms that our code reduces all of them
in agreement with the existing theory.

3.2 Second step: build intuition by working at the interface

The next step is to increase the size of the instance slightly, to appreciate what may be
escaping our intuition, yet providing a relatively small instance of the basic problem.
Things became really interesting this way. After application of the The 10-R algorithm,
only 5 irreducible graphs of size 8 (i.e., irreducible by the rules The 10-R) exist from
the grand total of all non-isomorphic graphs of size 8 (which is 12,346). This means
that only five required to be solved by the Integer Programming model using CPLEX
that follows. All of these 5 irreducible graphs of size 8 have a vertex cover of size five.
They are shown in Fig. 1.

This has been an inspiring and informative experiment. We know that the The 10-
R are able to reduce any instance of size 7, and “almost” does the same job for all
instances of size 8. The existence of a relatively small subset of irreducible instances
inspires the quest of identifying one or two other rules that may reduce these instances
aswell, somethingwhich at present is an open problem. This provides the first outcome
for further theoretical development of new fixed-parameter algorithms.

3.3 Third step: look ahead

It is then perhaps logical to look one step ahead to see what are we facing. If we do
not find a reduction (or reductions) for size 8, these graphs will remain as subgraphs
of non-reducible graphs of size 9. How many of them are non-reducible by The 10-
R? We did this analysis as well. Of the 274,668 non-isomorphic graphs of size 9,
the reduction rules only failed to solve 118 instances, showing that the number of
irreducible instances has only increased by 23 times.

We think that this is also important for theoretical development. Many inductive
proofs would require to specify that a graph is free of some property, which may

3 IBM ILOG CPLEX Optimization Studio at www.cplex.com.

123

www.cplex.com

506 P. Moscato et al.

Fig. 1 Irreducible instances of size 8 graphs (n = 8 and k = 5) after application of all the reductions rules
of references Abu-Khzam et al. (2004) and Chen et al. (2010). The vertices in red indicate a minimum
cardinality vertex cover. Several vertex covers of size five exist for each of these instances (Color figure
online)

proved to be the case after a reduction rule has been executed. We thus are interested
in collecting a database of graphs that are non-reducible by the existing reductions
rules and then can be compared with others of smaller size.

3.4 Fourth step: identify common structure

We then investigated if therewas some sort of common structure (i.e., subgraph present
in some pairs of these sets). We employed a highly effective memetic algorithm for
the network alignment problem (Mathieson et al. 2019). This software has been very
useful since it is a fast heuristic and allows exploratory insights and scales well for the
tasks at hand.

Also, in this case, the results were very interesting and they promise to be infor-
mative for the theoretical development of fixed-parameter tractable algorithms. For
instance, the 5 non-reduced instances of size 8 do not seem to have a significant com-
mon isomorphic subgraph between them when taken in pairs, indicating that perhaps
several new reduction rules would be needed to fully reduce these instances (Fig. 2).

Thememetic algorithm for network alignment tries tomaximize one objective func-
tion, the so-called Edge Correctness (EC) score. Given an alignment of two networks,

123

Augmented intuition: a bridge between theory and practice 507

Fig. 2 A visual illustration of outcome from the Network Alignment of two graphs. Here, a G08-02 graph
is aligned with b G9-003. c The matching graph of Network Alignment(G8-02, G9-003) is shown. In the
matching graph, the vertex labels are formed with the labels from bigger graph to smaller graph, hence
V (G9) → V (G8). The vertex without any matching will only have the vertex label from the bigger graph,
G9. Common or matched edges are shown in bold

123

508 P. Moscato et al.

the EC score is the ratio of the number of edges from the smaller network mapped to
edges of the larger network and the number of edges in the smaller network in total.
To understand if there is some common structure between irreducible instances of size
8 (G8) and those irreducible of size 9 (G9), we computed the matrix of the EC scores
obtained by our memetic algorithm for all 5 (G8) × 118 (G9) graphs. Figure 7 shows
an example of Network alignment between a pair of G8 and G9 graphs.

We have executed the Network Alignment of G8 with G9 for 20 independent runs
of the memetic algorithm we have used. We have used the best alignment result (i.e.,
the one that maximizes the Edge Correctness score in these 20 runs). To make sense of
the results we have used the algorithm presented in Moscato et al. (2007) to produce a
permutation of rows and columns that maximizes the correlations observed. See Fig. 3
for the result.

3.5 Results of the structural analysis

In the heat map (shown in Fig. 3) the red color represents that the Edge Correctness
between a pair of graphs is 1.0 (i.e., the graph of eight vertices is a subgraph of the
graph of nine). The minimum value of observed Edge correctness is 0.75 and it is
represented by a Black colour. The average Edge Correctness is 0.96 and it is shown
using green.

3.5.1 Several non-reducible graphs of size nine have all the non-reducible graphs of
size eight as subgraphs

After executing the Network Alignment program by their types of vertex-cover match,
we found a relatively large number of (25) size nine non-reducible graphs G9 which
that have all the non-reducible graphs of size eight as subgraphs. An example of them
is G09-003 and it is shown in Fig. 7. We also show the network alignment output for
the G09-003 which has perfect alignment with all of the G8’s in Fig. 1.

3.5.2 One graph in G8 is a subgraph of 114 out of 118 graphs of G9

Since G8-01 is a graph which aligned perfectly (EC = 1.0) with most of the non-
reducible graphs of size 9 (114 out of 118) its study may be prioritized among the five
non-reducible of the same size. A reduction rule that may safely reduce G8-01 could
potentially lead to reducing almost all those of G9.

If this proves successful, we would also have to find potential reduction rules for
these four graphs. In the search for common structure, we search for the best pair align-
ment of these four graphs. The resulting six network alignments are shown in Fig. 4.
We have used the yED software editor4 to visualize the graph, with the ‘Hierarchical
Layout’ with the ‘BFS Layering’ (see5 for details of the method). It is clear that all
these graphs have an independent set of size three and a vertex cover that includes all
the nodes, not in the independent set.

4 https://www.yworks.com/yed.
5 http://docs.yworks.com/yfiles/doc/developers-guide/incremental_hierarchical_layouter.html.

123

https://www.yworks.com/yed
http://docs.yworks.com/yfiles/doc/developers-guide/incremental_hierarchical_layouter.html

Augmented intuition: a bridge between theory and practice 509

Fig. 3 Heatmap of the Edge Correctness scores obtained thanks to the best alignments of G8 with G9. The
heatmap has been chopped into two pieces to fit into the page width. The left part is placed at the bottom,
while the right part is on the top. The scores are sorted using the memetic algorithm of reference Moscato
et al. (2007) using the Euclidean distance as a measure of similarity between rows and columns (Color
figure online)

123

510 P. Moscato et al.

3.5.3 Other alignments

Among 118 G9 graphs, G8-02 aligned perfectly with 28 of them, G8-03 with 64,
G8-04 with 51 and G8-05 with 89 of the G9 graphs.

3.5.4 Other characteristics of the graphs of size 9

There are other characteristics of the graphs introduced in Sect. 3.5.2. From Fig. 4 we
can observe that G9-015 has the best alignment with G9-090 and G9-092, only
having two unmapped edges. On the other hand, G9-015 has the worst alignment
with G9-110, which contains four unmatched edges. We can see G9-090 achieved
the best alignment of having only two unmapped edges with each of the G9-092 and
G9-110. Here, G9-092 have the worst alignment with G9-110 of having seven
unmatched edges.

3.6 Partial conclusions

At this stage, it is perhaps relevant to highlight how the computationally-supported
process we introduced in this section could augment our intuition in searching for
structures that can be exploited to develop reduction rules andfixed-parameter tractable
algorithms. We have previously shown in the manuscript that computational results
on a large dataset of well-known benchmark instances helped us to illustrate that a
set of the 10 reductions rules that build a kernel with the current best fixed-parameter
algorithm (in the sense that it has the best theoretical bounds) was actually not very
useful in practice. We also questioned what other useful reductions rules have yet to
be added to the existing repertoire. Utilising a computational method to augment our
intuition, we have identified, using exhaustive enumeration of graphs of orders up
to nine, and using powerful methods for network alignment, several small instances
which contain structures that the employed reduction rules cannot dealwith.Conserved
structures can give us some clues of which type of reduction rules are still needed to
solve all instances up to size 9.

It is now time to turn our attention to what these structures can also give us in
terms of the design of heuristics for this problem. In the next section we will look at
how other properties of these graphs can give us the necessary intuition to produce
heuristics for the Min Vertex Cover problem that find the optimal solutions of all these
instances on graphs up to size 9. Later we will show how these new heuristics perform
on the same dataset of benchmarking instances used before.

4 Three new heuristics for findingminimum vertex covers based on
k-class edge scores

In this section we present three new heuristics based on the intuition we have got from
the computational experiments conducted so far. We start by introducing some basic
concepts.

123

Augmented intuition: a bridge between theory and practice 511

Fig. 4 Network Alignment outcome of Four G9 graphs. Vertex label in the aligned graph formed as “vertex
label of first graph → vertex label of second graph”. Matched edges are marked with bold edges

123

512 P. Moscato et al.

4.1 “Hierarchical optimal” layering and triangles

Another alternative offered by the software yED to layout graphs is called “Hierarchi-
cal Optimal Layering”. An illustrative example of it running for the same four graphs
aligned and implicitly presented in Fig. 4 can be found in Fig. 5. Without having an
explicit algorithmic definition of what the software is doing, we have noticed that, in
general, the method allocates a “layer” to each node of the graph. Nodes in the same
layer seem to constitute an independent set.

If such a layered arrangement can be found in polynomial time by a well-specified
algorithm, it may be possible to come up with another polynomial-time algorithm that
exploits this structure as a precondition and safely reduces the instance size.

We can also observe in Fig. 5 that the graphs have connections between layers
and that they have a relatively large number of triangles, i.e., cliques of size three in
the graph. These extra insights have motivated new heuristic approaches. Before we
discuss them we need to introduce some definitions for clarity.

4.2 The truss decomposition of a graph and other necessary definitions

With the new intuition gained from this analysis, we are now proposing several heuris-
tic approaches. We will also use the information of a triangle-based decomposition of
the graph via the k-truss (Wang and Cheng 2012).

Definition 1 (k-truss of a graph) The k-truss of a graph G = (V , E) is the largest
subgraph of G in which every edge is contained in at least (k − 2) triangles within the
subgraph.

Consequently, the k-truss decomposition of a graph G is the set of all non-empty
k-trusses of G for all k ≥ 2.

Definition 2 (Truss number): The truss number of an edge e ∈ E of a graph G(V , E)

is the number of triangles in G that contain e.

We can then define the k-class score of an edge as a function of the truss numbers as:

Definition 3 (k -class edge score): The k-class score of an edge e ∈ E , denoted as
kcEdgeScore(e), is the maximum truss number (k) of the edge obtained from the
k-truss decomposition of the graph.

We also need to define another score that will be useful later on when proposing
some heuristics in Sect. 4.6.

Definition 4 (k-class score sum of a vertex): The k-class score sum of a vertex in a
k-truss decomposition of a graph G is defined as

kcV ertex Score(u) =
∑

v∈N (u)

kcEdgeScore((uv)) (1)

123

Augmented intuition: a bridge between theory and practice 513

Fig. 5 Four The 10-R-irreducible G9 graphs displayed using the in ‘Hierarchical Optimal Layering’ option
of the yED software, revealing their edge density and an interesting structure of layers of independent sets
and a relative high density of triangles

123

514 P. Moscato et al.

Fig. 6 The G8 graphs and their k-class edges (3 ≤ k ≤ 4). The dashed-edges in G8 graphs correspond
to the non k-class edges (≤ 2). In the G8 graphs, we have two values of k-classes (3 and 4). Here 3-class
edges are coloured with green and 4-class edges are with red (Color figure online)

for all v ∈ N (u), i.e., the sum of the k-class edge scores for all of the incident edges
of node u.

We show the k-truss decomposition of the G8 graphs in Fig. 6. Here, the graph G8-
01 does not have any triangles, so it has no k-truss decomposition available. Here, an
edge with k-class score of 4 denotes that it is incident with a maximum of (4−2) = 2
triangles in the graph. Now we describe the algorithm in detail.

4.3 The Extended Berra“Lemma”

Although we are not aware of any contributions to the mathematics of professional
baseball player and coach Mr. Lawrence Peter “Yogi” Berra, he is well known due to
many of his quotes, many of them hilarious, which are nowadays famous in popular
culture. One that in particular motivates the name to our branching strategy:

123

Augmented intuition: a bridge between theory and practice 515

“When you come to a fork in the road, take it.”

so in the context of celebrating this quote we can write:

Lemma 2 (Berra “Lemma”) Let (G, k) be a reduced instance of k- Vertex Cover
and uv ∈ E(G). If (G − v − u, k − 2) is completely reducible, take it.

In fact, Gavril’s 2-approximation ratio can be seen as a randomized heuristic that finds
at random “a fork in the road” (an edge) and includes the nodes that it connects in the
vertex cover. However, it does it without any guarantee that the remaining graph is
reducible. There is also no guarantee that the endpoints should be both in an optimal
vertex cover.

An extension into a three-way branching seems natural:

Lemma 3 (Extended Berra “Lemma”) Let (G, k) be a reduced instance of k- Vertex
Cover and uv ∈ E(G). If (G − u, k − 1) or (G − v, k − 1), or (G − v − u, k − 2)
is completely reducible, take it.

meaning that, when considering an edge (u, v), we will search in parallel both param-
eterized problem alternatives (i.e., either u or v can be part of a vertex cover).

4.4 Final check for redundancies: the necessary final step

Take any one of the non-reducible graphs of size 8 (G8) and apply the Extended Berra
“Lemma” to an arbitrarily chosen edge. We are in one of the three-way splits; assume
that u is assigned to be in the vertex cover. The resulting graph is reducible by the
The 10-R algorithm because it is of size 7, and we know that any graph of that size is
reducible. Still, we need to check that the nodes of this vertex cover of this graph of
size 7 do not contain the neighborhood of u in the original graph of size 8 as a subset.
If that is the case, it is not necessary to include u. This means that the decisions after
the application of the Berra “Lemma” necessarily need to be revisited. Our heuristic
will then use a final pass to check that no vertex in the cover is “redundant” since all
its neighbors are already in the cover.

4.5 Greediness guided by a function of the k-class edge scores

Note also that an arbitrary edge of a graph in G8 would lead to a reducible graph,
so the Berra “Lemma” only needs to be applied once. However, for a larger graph,
we may need to have a guiding function to decide on which edge to “fork”. Several
heuristics for Min Vertex Cover have used a number of strategies, e.g. selecting a node
of maximum degree and, when there are ties, the node u that minimizes the number
of edges among N (u). While other more complicated branching rules exist (see for
instance Akiba and Iwata 2016), we present one here based on triangles and the k-class
edge scores which is novel in the area. More importantly, it is directly motivated by
our computational experiment, which has clearly augmented our intuition about the
problem, and this is a main research theme of our study.

123

516 P. Moscato et al.

4.6 Three proposed heuristics

To illustrate the results of the experimental process, we present three heuristics moti-
vated specifically by empirical observation of the structure of these instances. Later,
in Sect. 5 we demonstrate their effectiveness in comparison to the prior results of the
exact reduction algorithms on the benchmarking datasets.

4.6.1 Heuristic 1

The first heuristic employs the k-class score sum of the vertex (defined in Eq. 4.2)
to prioritise vertices for inclusion in the vertex cover. Given a graph G = (V , E) as
input, the heuristic first sorts the vertices into a list L by k-class score sum of vertex
(highest first), then by highest degree among vertices with the same k-class score sum
and finally with ties broken uniformly at random.

The heuristic then proceeds to build a vertex cover by successively selecting the
next available vertex v from the list and examining its neighborhood. If v has the
highest k-class score sum among its neighbors, it is added to the cover and removed
from the graph (along with its incident edges, of course). If there is at least one other
vertex with the same k-class score sum in its neighborhood, all such neighbors are
collected into a set N k

v and the heuristic branches on either adding v to the cover and
removing it and all its incident edges, or adding a randomly selected w ∈ N k

v to the
cover and removing it and all its incident edges. In all cases, the removed vertex is
also deleted from L , the degrees and k-class score sum of the remaining vertices are
updated and L is resorted.

A branch of the heuristic terminates successfully when either a cover is found in
some sub-branch (i.e., when all edges in G have been removed), or unsuccessfully
when the size of the cover exceeds the parameter k in all sub-branches. Finally, we
do a final check to remove any vertices where all of its neighbors are already in cover
and return the smallest cover C .

The pseudocode is given in Heuristic 1.

4.6.2 Heuristic 2

The second heuristic for Min Vertex Cover is based on k-class edge score (defined in
Eq. 3), the maximum degree of the vertices and the number of edges among neighbors
of a vertex. Heuristic 2 gives the pseudocode.

The heuristic receives the graphG = (V , E) as the input. It iteratively adds a vertex,
v, into the cover C and removes the vertex and all its incident edges from G. This
process repeats until the graph is completely disconnected. To chose a vertex to add to
the cover C , the heuristic considers several scores. First, it selects the set of edges E ′
with the maximum k-class edge score and chooses the endpoint with the maximum
degree from those edges. If there are multiple vertices with the maximum degree, then
we select the vertex whose neighbors have the minimum number of common edges.
Any further tie is broken by choosing a vertex uniformly at random. The chosen vertex
v is added to the cover C . Then we remove v and its incident edges from the graph,
and update associated scores (k-class edge score, degree etc.).

123

Augmented intuition: a bridge between theory and practice 517

Heuristic 1:
Data: A graph G = (V , E)

Result: A vertex cover C ⊆ V of size at most k for G
1 initialization: Compute the k-class score sum for each vertex
2 C := ∅
3 while E �= ∅ and |C | ≤ k do
4 L := V sorted first by highest k-class score sum, then by highest degree
5 v := first element of L

6 N k
v := {u ∈ N (v) | kcV ertex Score(u) = kcV ertex Score(v)}

7 if N k
v = ∅ then

8 C := C ∪ {v}
9 G := G \ {v}

10 else
11 Select w ∈ N k

v uniformly at random
12 Branch: on adding v to C or adding w to C
13 case v

14 C := C ∪ {v}
15 G := G \ {v}
16 case w

17 C := C ∪ {w}
18 G := G \ {w}

19 if All branches give |C | > k then
20 return NO COVER
21 else

// Final Check to remove vertices already covered
22 Remove all Vertex c from C where N (c) ∈ C
23 return Smallest C

After themain loop is complete theC is checked for vertices whose entire neighbor-
hood is also in C . Such redundant vertices are removed. The cover C is then removed.

4.6.3 Heuristic 3

The third heuristic is based on considering the degree of the vertices, the degree
imbalance of edge end-points, the k-class edge score. The whole process is illustrated
by the pseudocode of Heuristic 3.

This heuristic receives the graph G = (V , E) as the input. It iterates by adding a
vertex, v, at a time into the cover C and by removing the vertex from G. This process
repeats until all edges are being removed. To chose a vertex in the coverC , the heuristic
considers several scores. Initially it finds the set of vertices Vm with minimum degree.
Form Vm , we compute the set of edges E ′ = {(u, v) ∈ E} where at least one vertex
of the edge is at Vm and we compute the absolute degree imbalance (|d(u) − d(v)|)
between the two endpoints of the edges in E ′. If |E ′| = {e} (i.e., if there is a unique
edge with the maximum degree imbalance), the endpoint of e with the highest degree
is chosen as the vertex to be added in the cover. If |E ′| > 1, we consider the k-class
edge score. From E ′ we select the set of edges E ′′ with the maximum k-class edge
score and we add the end-point with the maximum degree into the cover C . Any

123

518 P. Moscato et al.

Heuristic 2:
Data: A graph G = (V , E)

Result: A vertex cover C ⊆ V
1 initialization: k-class edge score and degree of Vertices
2 C := ∅
3 while E �= ∅ do

// Consider the k-class edge scores
4 E ′ := {(u, w) ∈ E ′ | ∀(x, y) ∈ E ′, kcEdgeScore((u, w)) ≥ kcEdgeScore((x, y))}

// Consider Max Deg vertices from k-class edges
5 V ′ := {w ∈ V (E ′) | ∀w ∈ V (E ′), d(w) = max{u∈V (E ′)} d(u)}
6 if V ′ = {w} then
7 v := w

8 else
// Consider vertex with Min #common edges among neighbors

9 V ′′ := {w ∈ V ′ | ∀u ∈ V ′, min
(w,u)∈V ′(E ′)

{C(w),C(u)}, where C(z) =
count the number of edges (x, y) ∈ N (z)}

10 if V ′′ = {w} then
11 v := w

12 else
13 Choose vertex v from V ′′ uniformly at random

// add v to cover, update graph and scores
14 C := C ∪ {v}
15 G := G \ {v}
16 Update: k-Class Edge Score and degree for both v and N (v)

// Final Check to remove vertices already covered
17 Remove all Vertex c from C where N (c) ⊆ C

18 Return C

remaining tie is broken uniformly at random. The chosen vertex, v, is then added into
the cover C . We then remove v from G, and update associated scores (k-class edge
score, degree imbalance, etc.). We continue this process until the graph is completely
disconnected. Finally, if there exists any vertex v ∈ C where N (v) ⊂ C such that the
deletion of it from cover does not leave an edge uncovered, then we remove v from
C . We then return the cover C .

5 Results of the proposed heuristics on benchmark datasets

We have applied the three proposed heuristics for Min Vertex Cover problem on
the Complement graphs of Clique Instances form DIMACS challenge datasets. We
executed the algorithms on the Research Compute Grid (RCG)6 allocated with 2 CPU
cores, 8GB memory and 100 hours of CPU wall time per instances. We report the
best performance of the proposed heuristics over the branch-and-reduce based exact
algorithm (FPT) implemented in Akiba and Iwata (2016). For some instances, the
FPT-based exact solution method or the heuristics exhausted the maximum allocated

6 The description and configuration of the RCG of University of Newcastle, Australia can
be accessed at: https://www.newcastle.edu.au/research-and-innovation/resources/research-computing-
services/advanced-computing.

123

https://www.newcastle.edu.au/research-and-innovation/resources/research-computing-services/advanced-computing
https://www.newcastle.edu.au/research-and-innovation/resources/research-computing-services/advanced-computing

Augmented intuition: a bridge between theory and practice 519

Heuristic 3:
Data: A graph G = (V , E)

Result: A vertex cover C ⊆ V
1 C := ∅
2 while E �= ∅ do

// Find the vertices with minimum degree
3 Vm = {v ∈ V : d(v) = minu∈V d(u)}

// Candidate Edges for Maximum Degree Imbalance Score with at
least one vertex of the edge has a vertex with min degree

4 E ′ := {(u, w) ∈ E : ∀(x, y) ∈ E : (x ∈ Vm) ∨ (y ∈ Vm), |d(u) − d(w)| ≥ |d(x) − d(y)|}
5 if E ′ = {(u, w)} then
6 if d(u) > d(w) then
7 v := u
8 else
9 v := w

10 else
// Consider Cand. Edge with Max k-class edge score

11 E ′′ := {(u, w) ∈ E ′ : ∀(x, y) ∈ E ′, kcEdgeScore((u, w)) ≥ kcEdgeScore((x, y))}
// Consider Max Deg Vertex from Cand. Edges

12 V ′ := {w ∈ V (E ′′) : ∀w ∈ V (E ′′), d(w) = max{u∈V (E ′′)} d(u)}
13 if V ′ = {w} then
14 v := w

15 else
16 Choose a vertex v uniformly at random from V ′

// add v to cover, update graph and scores
17 C := C ∪ {v}
18 G := G \ {v}
19 Update: k-Class Edge Score and degree for both v and N (v)

// Final Check to remove vertices already covered
20 Remove all Vertex v from C where N (v) ⊆ C

21 Return C

CPU-time before it reached any solution. In that case, we put a dash ‘–’ mark in a cell
of the reported table.

5.1 Reduction outcome by the proposed heuristics on BHOSLIB Dataset

Ke Xu from the Beihang University, Beijing, China maintains a benchmark dataset
for graph problems, named BHOSLIB,7 which contains 40 instances for Min Vertex
Cover problem. We have used those instances to compare the performance of our
proposed Heuristics in Table 2. In the comparison of the best results obtained by the
three proposed heuristics, the Heuristic 1 (h1) achieved the best performances in 8,
Heuristic 2 (h2) in 21 and Heuristic 3 (h3) in 19 instances from the BHOLIB dataset.
The runtime requirements for th3 are significantly lower than that of th1 and th2.

7 BHOSLIB: “Benchmarks with Hidden Optimum Solutions for Graph Problems” can be accessed at:
http://sites.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm.

123

http://sites.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm

520 P. Moscato et al.

Table 2 Execution outcome of proposed heuristics for Min Vertex Cover problem on the BHOSLIB
instances

Instance |V| |E| C Ch1 th1 Ch2 th2 Ch3 th3

frb30-15-1 450 17827 420 424 387.29 422 2.904 425 0.042

frb30-15-2 450 17874 420 425 388.685 427 2.867 426 0.037

frb30-15-3 450 17809 420 426 324.272 423 2.513 425 0.033

frb30-15-4 450 17831 420 422 331.084 428 2.695 425 0.041

frb30-15-5 450 17794 420 424 328.129 427 4.496 424 0.041

frb35-17-1 595 27856 560 567 1058.915 566 7.57 566 0.053

frb35-17-2 595 27847 560 567 1056.902 568 9.304 565 0.053

frb35-17-3 595 27931 560 565 1031.078 566 8.997 566 0.049

frb35-17-4 595 27842 560 565 1043.462 566 7.335 567 0.057

frb35-17-5 595 28143 560 566 1070.425 569 6.988 566 0.06

frb40-19-1 760 41314 720 727 2673.72 729 17.369 728 0.073

frb40-19-2 760 41263 720 726 2209.123 729 16.624 727 0.067

frb40-19-3 760 41095 720 728 2322.429 728 13.349 727 0.071

frb40-19-4 760 41605 720 728 2569.759 729 18.048 727 0.062

frb40-19-5 760 41619 720 727 2451.046 732 16.304 726 0.071

frb45-21-1 945 59186 900 909 5636.558 904 24.452 910 0.089

frb45-21-2 945 58624 900 908 5381.902 904 27.533 907 0.093

frb45-21-3 945 58245 900 910 6972.466 908 30.093 909 0.103

frb45-21-4 945 58549 900 910 6596.334 906 24.871 907 0.079

frb45-21-5 945 58579 900 909 6934.587 908 25.622 908 0.091

frb50-23-1 1150 80072 1100 1110 12756.98 1109 47.294 1111 0.112

frb50-23-2 1150 80851 1100 1110 12771.76 1108 40.975 1109 0.109

frb50-23-3 1150 81068 1100 1109 14931.49 1114 39.817 1108 0.119

frb50-23-4 1150 80258 1100 1110 12410.98 1108 44.708 1108 0.108

frb50-23-5 1150 80035 1100 1110 13259.71 1101 41.368 1109 0.292

frb53-24-1 1272 94227 1219 1230 23487.67 1227 62.186 1227 0.137

frb53-24-2 1272 94289 1219 1230 19483.75 1227 45.042 1229 0.146

frb53-24-3 1272 94127 1219 1229 22736.39 1227 60.461 1227 0.131

frb53-24-4 1272 94308 1219 1229 22992.61 1227 59.624 1227 0.135

frb53-24-5 1272 94226 1219 1232 28264.63 1227 46.994 1229 0.132

frb56-25-1 1400 109676 1344 1355 36604.91 1355 82.179 1353 0.138

frb56-25-2 1400 109401 1344 1356 32926.01 1354 65.224 1353 0.148

frb56-25-3 1400 109379 1344 1356 30681.63 1355 67.709 1353 0.151

frb56-25-4 1400 110038 1344 1357 32807.77 1348 71.012 1354 0.154

frb56-25-5 1400 109601 1344 1356 29201 1356 68.598 1353 0.149

123

Augmented intuition: a bridge between theory and practice 521

Table 2 continued

Instance |V| |E| C Ch1 th1 Ch2 th2 Ch3 th3

frb59-26-1 1534 126555 1475 1488 41895.53 1479 89.848 1487 0.189

frb59-26-2 1534 126163 1475 1488 40358.87 1484 87.702 1487 0.187

frb59-26-3 1534 126082 1475 1489 60933.59 1486 80.33 1485 0.372

frb59-26-4 1534 127011 1475 1488 52556.86 1480 80.023 1485 0.203

frb59-26-5 1534 125982 1475 1487 68168.12 1487 71.455 1484 0.16

Here we show the size of Exact cover (C) and the running time (thi) required to find the Cover size (Chi)
found by our heuristics hi (where i = 1, . . . , 3)

5.2 Reduction outcome by the proposed heuristics on the DIMACS graphs for
clique (complement instances) problem

We have applied the heuristics on complement graph of theMaximumClique problem
of DIMACS Challenge. The results are shown in Table 3. In the comparison of the
best results obtained by the three proposed heuristics, Heuristic 1 (h1) achieved the
best performances for 27 instances, Heuristic 2 (h2) in 26 and Heuristic 3 (h3) in 59
instances from the DIMACS dataset. Both h1 and h2 were unable to complete the
execution for 10 and 1 instances respectively, in the allocated time of 360,000s. In
contrast, h3 was able to produce the results within a fraction of the time.

5.3 Statistical test of the performances of proposed three heuristics

Weused the vertex cover size obtained for each of the heuristics (h1, h2, h3) presented
in Tables 2 and 3. We consolidated only results of those instances where all three
heuristics were able to complete the execution within the allocated CPU times for the
statistical test (since it is already clear that h3 was the most successful in delivering a
cover for all instances). Now we want to find if there are any significant differences
in the performances of finding the size of a vertex cover by the heuristics on the
consolidated 108 instances from BHOSLIB and DIMACS datasets. A Friedman rank-
sum test on those data returned the Friedman chi-squared statistic = 28.155556 with
a p-value = 7.693054 10−7. This p-value rejects the omnibus null hypothesis, hence,
“Significant Differences exist in the ranking of the heuristics”.

The omnibus p-value is way below the respectable critical threshold of 0.05, so we
conduct a post-hoc test to find which of the pairs have significant differences in their
performances. The p-value obtained for the pairwise comparisons using Nemenyi
post hoc test is presented in heatmap shown in Fig. 7a. We also computed a critical
difference plot [as proposed in Demsar (2006)] to show the significant differences of
the heuristics for their ranking in Fig. 7b.

Both the heatmap and critical difference plot revealed that there exist no significant
differences between h1 and h2. However, the h3 shows significant differences in the
performance than both h1 and h2. The critical plot illustrates the median ranking of
both heuristics h1 and h2 are within the rank of 2 and 3. The median ranking of the h3

123

522 P. Moscato et al.

Ta
bl
e
3

E
xe
cu
tio

n
ou

tc
om

e
of

pr
op

os
ed

he
ur
is
tic

s
fo
r
M
in

V
er
te
x
C
ov
er

pr
ob

le
m

on
th
e
co
m
pl
em

en
tg

ra
ph

s
of

C
liq

ue
in
st
an
ce
s
fr
om

D
IM

A
C
S
ch
al
le
ng

e
da
ta
se
t

In
st
an
ce

|V
|

|E|
C

C
h
1

t h
1

C
h
2

t h
2

C
h
3

t h
3

br
oc
k2

00
_1

20
0

50
66

17
9

18
2

11
.8

18
2

0.
6

18
1

0.
5

br
oc
k2

00
_2

20
0

10
02

4
18

8
19

1
43

.4
19

2
4.
5

19
1

0.
6

br
oc
k2

00
_3

20
0

78
52

18
5

18
8

26
.4

19
0

1.
4

18
7

0.
5

br
oc
k2

00
_4

20
0

68
11

18
3

18
7

25
.5

18
8

1.
4

18
5

0.
6

br
oc
k4

00
_1

40
0

20
07

7
37

3
37

7
38

9.
3

38
0

5.
2

37
8

1.
7

br
oc
k4

00
_2

40
0

20
01

4
37

1
37

9
38

5.
2

38
3

3.
2

37
8

1.
4

br
oc
k4

00
_3

40
0

20
11

9
36

9
38

0
40

2.
4

38
0

3.
5

37
9

0.
9

br
oc
k4

00
_4

40
0

20
03

5
36

7
37

8
36

9.
3

38
2

3
37

7
1

br
oc
k8

00
_1

80
0

11
20

95
77

7
78

4
22

49
0.
3

78
5

25
9.
1

78
2

4.
9

br
oc
k8

00
_2

80
0

11
14

34
77

6
78

2
18

58
3.
1

77
9

24
6.
2

78
2

5

br
oc
k8

00
_3

80
0

11
22

67
77

5
78

4
63

18
6.
5

77
8

27
8.
6

78
3

5.
6

br
oc
k8

00
_4

80
0

11
19

57
77

4
78

5
27

00
4.
7

78
0

25
2.
1

78
3

7.
6

C
10

00
.9

10
00

49
42

1
–

94
8

61
09

.9
94

8
12

.8
94

1
3.
3

C
12

5.
9

12
5

78
7

91
94

1.
6

94
1

93
0.
3

C
20

00
.5

20
00

99
91

64
19

84
–

–
19

86
73

30
5.
8

1,
98

7
64

.2

C
20

00
.9

20
00

19
94

68
–

–
–

19
31

16
3.
5

19
31

14
.6

C
25

0.
9

25
0

31
41

20
6

21
0

11
.3

21
3

1.
2

21
1

0.
5

C
40

00
.5

40
00

39
97

73
2

–
–

–
–

–
39

85
49

3.
9

C
50

0.
9

50
0

12
41

8
–

45
1

23
3

45
5

1.
9

44
8

1.
3

123

Augmented intuition: a bridge between theory and practice 523

Ta
bl
e
3

co
nt
in
ue
d

In
st
an
ce

|V
|

|E|
C

C
h
1

t h
1

C
h
2

t h
2

C
h
3

t h
3

c-
fa
t2
00

-1
20

0
18

36
6

18
8

18
8

11
5.
4

18
8

16
18

8
4.
9

c-
fa
t2
00

-2
20

0
16

66
5

17
6

17
6

95
.8

17
8

14
.5

17
6

3.
4

c-
fa
t2
00

-5
20

0
11

42
7

14
2

14
2

47
.8

14
2

79
.2

14
2

4.
1

c-
fa
t5
00

-1
50

0
12

02
91

48
6

48
6

12
87

0
48

6
14

62
.3

48
6

59
.6

c-
fa
t5
00

-1
0

50
0

78
12

3
37

4
37

4
48

69
37

4
26

5.
2

37
4

14
0.
9

c-
fa
t5
00

-2
50

0
11

56
11

47
4

47
4

13
14

8.
1

47
6

13
25

.8
47

4
32
.2

c-
fa
t5
00

-5
50

0
10

15
59

43
6

43
6

72
49

43
8

70
7.
3

43
6

72
.8

ge
n2

00
_p

0.
9_

44
20

0
19

90
15

6
16

5
4.
8

16
6

1.
1

16
3

0.
4

ge
n2

00
_p

0.
9_

55
20

0
19

90
14

5
15

6
6.
1

16
3

0.
7

16
2

0.
3

ge
n4

00
_p

0.
9_

55
40

0
79

80
34

5
35

3
81

.1
35

6
1.
1

35
3

0.
7

ge
n4

00
_p

0.
9_

65
40

0
79

80
33

5
35

3
88

.4
35

6
1.
4

35
5

0.
7

ge
n4

00
_p

0.
9_

75
40

0
79

80
32

5
33

5
85

.7
34

3
1

35
2

0.
7

ha
m
m
in
g1

0-
2

10
24

51
20

51
2

57
7

98
04

2.
2

55
6

27
0.
2

51
2

1.
1

ha
m
m
in
g1

0-
4

10
24

89
60

0
–

99
2

17
72

9.
9

99
3

45
05

8.
3

99
2

16
.2

ha
m
m
in
g6

-2
64

19
2

32
34

0.
4

32
0.
5

32
0.
1

ha
m
m
in
g6

-4
64

13
12

60
60

1.
2

60
2

60
0.
5

ha
m
m
in
g8

-2
25

6
10

24
12

8
14

0
66

.9
12

8
3.
6

12
8

0.
3

ha
m
m
in
g8

-4
25

6
11

77
6

24
0

24
0

79
.1

24
1

14
0.
3

24
0

1.
8

123

524 P. Moscato et al.

Ta
bl
e
3

co
nt
in
ue
d

In
st
an
ce

|V
|

|E|
C

C
h
1

t h
1

C
h
2

t h
2

C
h
3

t h
3

jo
hn

so
n1

6-
2-
4

12
0

16
80

11
2

11
2

3.
2

11
2

9.
2

11
2

0.
9

jo
hn

so
n3

2-
2-
4

49
6

14
88

0
48

0
48

0
78

1.
9

48
3

40
52

48
0

19
.6

jo
hn

so
n8

-2
-4

28
16

8
24

24
0.
1

24
0.
5

24
0.
1

jo
hn

so
n8

-4
-4

70
56

0
56

57
0.
5

56
1

56
0.
2

ke
lle

r4
17

1
51

00
16

0
16

2
11

.2
16

1
5.
5

16
3

1

ke
lle

r5
77

6
74

71
0

74
9

75
8

69
26

.2
75

7
91

.5
76

0
5.
7

ke
lle

r6
33

61
10

26
58

2
–

–
–

32
33

23
32

8
33

29
10

7.
7

M
A
N
N
_a
27

37
8

70
2

25
2

26
1

52
4.
3

26
0

6.
7

25
3

0.
9

M
A
N
N
_a
45

10
35

19
80

69
0

70
5

10
61

62
.2

70
5

13
9.
5

69
3

2

M
A
N
N
_a
81

33
21

64
80

–
–

–
22

41
70

72
.6

22
25

8.
7

M
A
N
N
_a
9

45
72

29
29

0.
2

29
0.
7

29
0.
1

p_
ha
t1
00

0-
1

10
00

37
72

47
99

0
–

–
99

1
13

26
7.
4

99
1

13
.4

p_
ha
t1
00

0-
2

10
00

25
47

01
95

4
–

–
95

9
34

21
95

5
7.
1

p_
ha
t1
00

0-
3

10
00

12
77

54
–

94
1

25
14

2.
3

94
1

31
4.
6

93
8

4

p_
ha
t1
50

0-
1

15
00

83
93

27
14

88
–

–
14

92
10

15
85

.9
14

90
35
.3

p_
ha
t1
50

0-
2

15
00

55
52

90
14

35
–

–
14

41
26

74
3.
3

14
38

22
.3

p_
ha
t1
50

0-
3

15
00

27
70

06
–

–
–

14
15

21
65

.4
14

13
11
.4

p_
ha
t3
00

-1
30

0
33

91
7

29
2

29
3

54
7.
7

29
4

53
.2

29
3

1.
4

p_
ha
t3
00

-2
30

0
22

92
2

27
5

27
6

24
5.
1

27
8

15
.9

27
5

1.
1

p_
ha
t3
00

-3
30

0
11

46
0

26
4

26
6

76
.8

27
1

1.
8

26
6

0.
6

p_
ha
t5
00

-1
50

0
93

18
1

49
1

49
2

69
73

.2
49

3
54

4.
2

49
2

2.
5

p_
ha
t5
00

-2
50

0
61

80
4

46
4

46
4

25
28

.2
46

7
14

9.
2

46
6

1.
8

p_
ha
t5
00

-3
50

0
30

95
0

45
0

45
2

82
7.
5

45
8

14
45

5
1.
3

p_
ha
t7
00

-1
70

0
18

36
51

68
9

69
2

38
46

9.
1

69
3

22
50

69
2

5.
2

123

Augmented intuition: a bridge between theory and practice 525

Ta
bl
e
3

co
nt
in
ue
d

In
st
an
ce

|V
|

|E|
C

C
h
1

t h
1

C
h
2

t h
2

C
h
3

t h
3

p_
ha
t7
00

-2
70

0
12

29
22

65
6

65
7

13
44

8.
2

66
2

71
1.
9

65
7

3.
5

p_
ha
t7
00

-3
70

0
61

64
0

63
8

64
2

42
43

.1
64

4
54

.3
64

1
1.
9

sa
n1

00
0

10
00

24
90

00
98

5
99

2
10

86
94

99
2

21
84

.8
99

0
88
.9

sa
n2

00
_0

.7
_1

20
0

59
70

17
0

18
5

15
.5

18
4

0.
7

18
4

0.
6

sa
n2

00
_0

.7
_2

20
0

59
70

18
2

18
8

14
18

7
0.
8

18
5

0.
8

sa
n2

00
_0

.9
_1

20
0

19
90

13
0

15
5

6.
4

15
1

0.
7

15
2

0.
3

sa
n2

00
_0

.9
_2

20
0

19
90

14
0

16
5

6.
5

16
3

0.
5

15
9

0.
3

sa
n2

00
_0

.9
_3

20
0

19
90

15
6

16
7

5
16

6
0.
5

16
5

0.
4

sa
n4

00
_0

.5
_1

40
0

39
90

0
38

7
39

3
85

0.
8

39
2

29
.3

39
2

3.
7

sa
n4

00
_0

.7
_1

40
0

23
94

0
36

0
38

0
40

4.
6

36
2

11
37

8
1.
3

sa
n4

00
_0

.7
_2

40
0

23
94

0
37

0
38

5
34

6.
2

37
6

5.
6

38
2

1.
7

sa
n4

00
_0

.7
_3

40
0

23
94

0
37

8
38

8
50

8.
2

38
1

7
38

5
2.
2

sa
n4

00
_0

.9
_1

40
0

79
80

30
0

31
5

86
.8

32
8

1.
3

31
8

0.
8

sa
nr
20

0_
0.
7

20
0

60
32

18
2

18
4

15
.4

18
5

0.
7

18
3

0.
4

sa
nr
20

0_
0.
9

20
0

20
37

15
8

16
2

5.
6

16
5

1.
1

16
0

0.
3

sa
nr
40

0_
0.
5

40
0

39
81

6
38

7
39

0
11

61
.6

38
9

28
.3

38
8

1.
4

sa
nr
40

0_
0.
7

40
0

23
93

1
37

9
38

3
38

8.
9

38
3

4.
4

38
2

1.
1

H
er
e
w
e
sh
ow

th
e
si
ze

of
E
xa
ct
co
ve
r
(C

)
an
d
th
e
ru
nn

in
g
tim

e
(t

hi
)
re
qu

ir
ed

to
fin

d
th
e
C
ov
er

si
ze

(C
hi
)
fo
un

d
by

ou
r
he
ur
is
tic

s
hi

(w
he
re

i
=

1,
..

.,
3)

123

526 P. Moscato et al.

Fig. 7 Visual illustration of statistical significance test for the rankings of the proposed heuristics
(h1, h2, h3) on BHOSLIB (in Table 2) and DIMACS (in Table 3) instances. Here, a The Heatmap showing
the p-value obtained for Nemenyi post hoc test. b Critical Difference (CD) plot showing the heuristics
ordered on a line for their median ranking and statistically non-significant heuristics are connected by
horizontal line where Critical difference = 0.279282

is between 1 and 2. Form these statistical tests, it is evident that both of the h1 and h2
are outperformed by h3. So, we will use the proposed heuristic h3 in the remaining
sections of the paper.

5.4 Reduction outcome by the proposed h3 heuristic on a small subset of DIMACS
Datasets used by Asgeirsson and Stein (2005)

A small subset form DIMACS instances and the Clique complements are used
in Asgeirsson and Stein (2005). We have compared the outcome of our h3 with their
results in Table 4. We refer to Asgeirsson and Stein’s method as hp. The name of
clique, coloring and clique-complement instances are ended with .clq, .col and .clq′,
respectively.

5.4.1 Statistical test of results obtained for datasets used by Asgeirsson and Stein
(2005)

Wilcoxon signed-ranks test (Wilcoxon 1992), is a non-parametric statistical hypothesis
test, is being suggested as a useful statistical test to compare two algorithms over
multiple datasets (Demsar 2006). We used the Wilcoxon signed-ranks test8 to find if
there any difference exists between hp and h3 for the results presented in Table 4.

We have calculated both the W -value and z-value and we are reporting them here.
However, sincewe have less than 20 pairs of samples to compare in Table 4, wewill use
the W -value to evaluate the hypothesis. We found three cases of the tie, which yields
the number of samples N = 12. For those samples with a confidence level α = 0.05,
the Two-sided Wilcoxon Signed-Rank test revealed the W -value=9.5. According to
the table of exact critical values for the Wilcoxon’s test, the critical value for W at
N = 12 (for p < 0.05) is smaller or equal to 13. Hence, the result is significant at

8 https://www.socscistatistics.com/tests/signedranks/.

123

https://www.socscistatistics.com/tests/signedranks/

Augmented intuition: a bridge between theory and practice 527

Table 4 Execution outcome of
proposed heuristic 3 for Min
Vertex Cover problem on a small
subset of DIMACS datasets used
by Asgeirsson and Stein (2005)

Instance C Chp Ch3 th3

brock800_3.clq 789 794 791 7.7

c-fat500-2.clq 480 481 480 2.9

C4000.5.clq – 3989 3985 555.2

johnson32-2-4.clq 465 465 465 341.2

MANN_a81.clq 3318 3318 3319 19971.5

p_hat1500-2.clq – 1473 1439 21

C1000.9.clq′ – 952 940 1.5

hamming10-2.clq′ – 512 512 0.7

keller6.clq′ – 3330 3328 107.7

MANN_a45.clq′ – 990 705 1.2

DSJC1000.1.col – 945 943 3.8

flat1000_50_0.col 980 980 987 10.3

le450_25a.col 359 370 360 0.4

R250.1.col 180 190 184 0.1

zeroin.i.2.col 84 84 84 0.1

Here we show the known size of Exact cover (C) and the running time
(th3 in seconds) required to find the Cover size (Ch3) by our heuristics
h3 compared with the cover size (Chp) mentioned in their paper

p < 0.05 and “the difference between the rankings of the methods (hp and h3) is
significant”.

Nowweused a formof binomial test, known as the sign test (Salzberg 1997; Sheskin
2000), to find which method is significantly better. To do so, we counted the number
of wins, losses and ties for h3 over hp (win = 10, loss = 2, tie = 2). The 10 times
win of h3 over hp (in the N = 12 datasets, not considering the ties) supports with
95% confidence that “h3 is significantly better than hp”.

6 New reduction rules for k-VERTEX COVER?

We now return briefly to the augmented intuition approach for the development of
reduction rules for vertex cover proposed in Sect. 4. The exploration of the graphs of
size 9 remaining after reduction and their analysis using network alignment techniques
to help identify common substructure now suggests the following two rules:

Lemma 4 Let (G, k) be an instance of k- Vertex Cover with α(G) = 2. (G, k) is
a Yes instance iff k ≥ |V (G)| − 2.

Proof This result is a simple corollary of the classical k- Vertex Cover/Independent
Set NP-completeness reduction. ��

123

528 P. Moscato et al.

Lemma 5 Let (G, k) be a reduced9 instance of k- Vertex Cover with a vertex v not
in any independent set of size at least 3, then (G, k) is a Yes instance iff (G −v, k −1)
is a Yes instance.

Proof As α(G) ≥ 3, v cannot be in the complement of the minimum vertex cover,
i.e., it must be in the minimum vertex cover. Therefore it is safe to include this vertex
in any vertex cover. ��
While these rules are only a small step for the field of fixed-parameter tractability, they
offer a proof-of-concept for the augmented intuition approach for algorithm design in
this context. What is particularly interesting is to consider the more advanced version
whereby we employ computational approaches to not only hint at common substruc-
ture, but to propose reduction rules directly, and perhaps even prove them.While there
are reduction rules that would evade this approach (certainly there are reduction rules
which require at least first order logic to be expressed), many rules can be expressed
in logics that are amenable to computer aided proof techniques.

7 Discussion and limitations of the study

The first limitation we would like to discuss is an interesting one since it has been
self-imposed. We got an intuition of what may be needed to design a heuristic that
would reduce to optimality every single graph of the The 10-R-non-reducible ones
of sizes 8 and 9. This means that we could have empowered our three heuristics in
the following way. Whenever the iterative application of the heuristic disconnects the
graph by creating a subgraph of size 7, we could have resorted to the The 10-R set to
get the exact solution for this component (since we know that any graph of size 7). In
terms of our Berra “Lemma”, we could have redesigned the three heuristics so that
it will try to find a connected component of size 7 and safely reduce it via The 10-R.
Therefore, the results of such a combined approach could have then been better than
the one presented, but we abstained to include them in the heuristic because wewanted
to evaluate the power of the new heuristics without resorting to the existing previous
practice (the The 10-R set). Isolating our heuristic gave us some confidence on its
merits by experimentally evaluating it in absence of the more sophisticated complex
methods involved in the The 10-R.

Another reason for only presenting the results of the new heuristics by running
them iteratively without the use of the wide set of reduction rules is due to the possible
gains that can be obtained by an adequate permutation in the order they are applied.
This situation is well illustrated in the study of Asgeirsson and Stein (2005) which also
is based on the use of a triangle-approach (although highly different from us). Their
claim is that: “If vertices v, u and w form a triangle, then we can include all three
vertices in a vertex cover for a 3/2-approximation”. One entire section of their paper
is just dedicated to discussing the relationship between this procedure to eliminate
triangles and the order in which they are executed interspaced with other reductions.
They say: “After much experimentation, we settled on using the following order of

9 In particular with the crown rule, struction rule, the LP reduction and the rule implicit in Lemma 4.

123

Augmented intuition: a bridge between theory and practice 529

reductions to automate the approximation process.” (Sec. 3 of Asgeirsson and Stein
(2005), p 552), thus recognizing that their results may be been the result of manual
tuning with either a smaller set of instances (or with the same they are reporting results
with). Without knowing the details of this experimentation, and because the use of
the other reductions rules may be a confounding factor, we opted not to follow that
approach. In addition, for some instances, and for some of the reduction rules they
used, the choice of reductions may lead to a situation in which the algorithm gets
“stuck” and can not finish (see Table 2 of Asgeirsson and Stein 2005). We decided
to avoid this experimental confounder and just present the results of our heuristics
in isolation from safe reductions rules. It is, however, an open area for research how
to best intersperse the heuristics presented in this paper with other reduction rules
existing in the literature [such as those in Akiba and Iwata (2016), Asgeirsson and
Stein (2005), Stege (2000) and/or the extended network flow approach Akiba and
Iwata (2016), Iwata et al. (2014)].

We also note that our approach is not undermining any of the current practices,
but instead calls for a confluence of techniques in a common purpose. Benchmarking
instances, for example, have been able to reveal the practical limitations of the The
10-R set (Table 1) in spite of its theoretical interest as a worst-case analysis. However,
the relatively large size of these instances does not allow us to benefit from them. We
argue that perhaps evolutionary algorithms can be used to find small yet hard to solve
instances for particular algorithms such as inCotta andMoscato (2003), Ahammed and
Moscato (2011), or by construction using specific graph grammars (such as done for
the TSP Mariano et al. 1995; Moscato and Norman 1998). Automation may also play
a role here by generating instances via folding and mirroring, an approach that goes
all the way back to pioneering work by David Hilbert (Norman and Moscato 1995).
The automated co-evolution of the generation of the worst-case scenarios of the small
size of instances for the existing safe-reduction reduction rules (and approximation
algorithms) seems to guarantee future research due to its core role in augmenting our
intuition. Again, we envision a man-machine approach as “Thinking really hard” will
always have a role to generate difficult instances for benchmarking Hougardy and
Zhong (2020).

8 Conclusions

It is obvious that the quest of presenting a compelling case of why an augmented intu-
ition computational-based approach to algorithm and heuristic design is far from being
completed.However,wehave some interesting conclusions and also some lessons from
this study that are worth sharing. We will summarize here some of the most relevant
ones at this stage of our research endeavour.

First, as shown in Sect. 3.2, we tested the reduction rules from one of the best
fixed-parameter algorithms for the k- Vertex Cover as of 2006 [Abu-Khzam et al.
(2004) and Chen et al. (2010)], with some of the tightest worst-case analysis. We thus
scientifically tested Hooker (1995) both our implementations and the theory behind
what we called ‘The 10-R’, the ten safe reductions rules in Abu-Khzam et al. (2004)
and Chen et al. (2010) (we refer to Sect. 3.1). By a comprehensive approach that tested

123

530 P. Moscato et al.

all non-isomorphic graphs of size 8, we created an intuition of what may be the core
problem to develop further fixed-parameter algorithms based on kernelization. We
observed that only five graphs of medium density can not be reduced by The 10-R.
Without automation, we conjecture that the task of identifying such a small subset
of non-reducible instances in the large number of non-isomorphic graphs of size 8
(a ratio of 5/12346 ≈ 0.000405) could have not happened by human intuition alone
or, alternatively, it would have possibly taken several decades until all five are finally
identified. Computer-based scientific enquire clearly plays a big role here. In addition,
“looking ahead”, also supported by automation (Sect. 3.3), shows that the ratio of non-
reducible graphs by the set The 10-R is just slightly higher (118/274668 ≈ 0.00043).
Here is then our first claim for an augmented intelligence approach to algorithmdesign.

Second, the identification of new properties of graphs may require, in turn, the
identification of common structures in existing graphs which are conjectured to be
of the same type. Again, this seems to be another call for innovative automation if
we wish to augment the mathematical intuition of the human designer. In that sense
our analysis presented in Sect. 3.4 is based on the evidence obtained by the inductive
step of Sect. 3.3 (incrementing the size of the graphs by just one node). The use of
algorithms for subgraph isomorphism and network alignment algorithms seems to be
required; we were well positioned to do this by having a highly-effective memetic
algorithm for this NP-complete and W[1]-complete problem (Mathieson et al. 2019).
On the positive side for theory formation, only one of the five graphs of size eight
(G8-01) is a subgraph of many The 10-R-non-reducible subgraphs of size 9 (114 out
of 118), there are only four types of new “structures” of interest in The 10-R-non-
reducible graphs of size 9. This may indicate that only one or two new reduction rules
may be required to reduce all these 114 graphs.

Third, we obviously are well aware that the approach of systematically employing
the generation of non-isomorphic graphs in the quest of obtaining non-reducible graphs
can continue “ad infinitum” (or we should say, an arbitrarily large order). It also poses
a known consideration for kernelization algorithms; a similar situation will likely
occur in all FPT-algorithm design tasks for problems in class FPT. This is hardly
being discussed but “hitting the wall” is likely to be the most common issue with
the paradigm of kernelization for some instance size. We propose that an alternative
scientific approach needs to be created. On the positive side, we showed that our
study was feasible to do with our available university computing systems and we have
obtained some new leads for further investigation. Notably, not only our work took us
to the final line, we are leveraging on the expertise and work of others, for instance,
Brendan McKay from ANU and his collection of non-isomorphic graphs available
online. Then, our collection of non-reducible graphs gave us the intuition that the use
of a truss decomposition could guide new types of heuristics, and we presented our
tests in thismanuscript. FollowingHooker’s guidelines (Hooker 1995), three heuristics
were designed that optimally solved to optimality all The 10-R-non-reducible graphs
of size 8 and 9; to give context to our heuristics we presented the results of tests with
challenging instances used in the literature. Once again, the process we proposed has
been backed by the use of automation to gain new intuition and the results also look
very promising.

123

Augmented intuition: a bridge between theory and practice 531

There is another intuitive insight we have obtained, which we would like to share,
and that we leave for further exploration. With the exception of graph G08-01, all
the other four The 10-R-non-reducible graphs of size 8 have a connected vertex cover
(Escoffier et al. 2010), so the “price of connectivity” (Camby et al. 2014) is 1 for these
graphs. This leads us to conjecture that some kind of extremal graph theory argument
can be applied for graphs having some property that these graphs share (aside of being
The 10-R-non-reducible), leading to perhaps to a new heuristic via the computation
of a spanning tree subgraph that maximizes the number of leaves while minimizing
the maximum degree observed in the leaf in the original graphs [e.g. a parameterized
generalization of the problem studied in Binkele-Raible and Fernau (2014)]. If this
new problem is also in class FPT, perhaps it can provide interesting new reduction
rules applicable to k- Vertex Cover (if we can characterize those for which the prize
of connectivity is equal to 1). Both from exact and heuristic perspectives, this is an
interesting area that guarantees further research and we have obtained a new intuition
thanks to the proposed method. We thus claim that the approach could also trigger
new theory formation.

Before we conclude our observations we may also say that the use of graph layout
algorithms (Sect. 4.1) provides another type of insights. It may be the case that one of
the results of applying theThe 10-R set of reduction rules is the creation of graphswhich
can be arranged in “layers” of nodes such that each layer contains an independent set,
and nodes in one layer are connected to other nodes “only a few layers apart” (perhaps
an emergent new parameter for parameterized complexity analysis). This seems to be
an indirect result of the relatively large number of triangles present in these graphs but
also about its global structure, which in turn motivated the introduction of our heuris-
tics. The outputs of the yEd software shown in Figs. 5 and 6 show this characteristic.
In addition, from Fig. 1 the reader can observe that for all these graphs the vertices in
the minimal vertex cover can be located in the same layer that is connected to another
layer which is composed entirely of vertices in an independent set. From this figure, as
well as Fig. 4 we got the intuition that perhaps another reduction rule, similar in spirit
to the crown reduction (see Appendix A), which is part of the The 10-R set but which
may not been “covered” by the network flow-based procedure of Iwata et al. (2014).
This is another area that would benefit from future theoretical research, particularly
since the recent results on “layered graphs” (Chitturi 2017; Chitturi et al. 2018). If we
can test in polynomial time (or if an FPT-algorithm can be developed that can test if
the precondition is true), perhaps a dynamic programming approach, such as the one
proposed in Chitturi et al. (2018), can be used in tandem thus leading to a combined
set of reduction rules of great power. A tight complexity result would then be required
to prove that all non-reducible graphs (of some set of reduction rules such as The
10-R) is guaranteed to produce a graph having the required precondition. Once again,
this makes a bridge to theory formation by collecting evidence of required structure
in small, yet hard to identify, instances of the problem.

Finally, to develop a research enterprise such as that requested almost a quar-
ter of a century ago by Hooker (1995), and in “Needed: An Empirical Science of
Algorithms” (Hooker 1994), we are convinced that extramural and international coop-
eration is going to be necessary. While we think there is still a role for benchmarking,
particularly as a component of the cooperative design of challenges to the field, this

123

532 P. Moscato et al.

“empirical science” would need to collect evidence by generating large amounts of
well annotated datasets. It is “as if” algorithm design may soon be entering a field
such as high-energy particle physics, with international collaboration in generating
data, interpretations and new theory. We base our belief in the relatively complex set
of tools we have used and developed for this research project which involved using
integer programming solvers, develop state-of-the-art network alignment algorithms,
use of libraries of annotated non-isomorphic graphs, employ visualization and layout
algorithms, coding efficient implementations of kernelization algorithms, etc.An inter-
national collaborative effort in developing the set of tools needed for automating parts
of algorithmic design across the globe would be essential for this global virtual lab of
collaboration. We thus hope that our work will stir the interest both of theoreticians
and practitioners and perhaps be catalytic for the confluence of a new international
research alliance and a novel scientific paradigm for algorithm and heuristic design
based on augmented intuition and through international collaboration.

Acknowledgements We are very thankful to Yoichi Iwata who kindly gave access to the code developed
with Takuya Akiba for reference Akiba and Iwata (2016). The authors thank Michael Fellows to point out
some safe reduction rules in Stege (2000) which are often overlooked. This also pointed at the need of an
international cooperation for the annotation of complexity results and useful implementations in code. P.M.
wants to dedicate his work to the memory of the late Jon Borwein (1951–2016), a world-class champion
for an experimental approach in mathematics, with fond memories of the work they were planning to do
together in this area.

A The 10 reduction rules used to test the kernelization performance
on benchmark instances

In parameterized complexity, for a problem that is in class FPT, it is possible to obtain,
under some circumstances and after “thinking really hard”, an algorithm for which a
tight upper bound on the complexity can be found.

This algorithm is obtained after the combined effort of the repeated application of
the ten reduction rules for k- Vertex Coverwhich concentrate ondifferent properties
of the graph. We have implemented all of them and we used the reduction rules one
after another on the output from the previously applied reduction rule. We will apply
these rules repeatedly until no more reduction possible. We will call the resulting
method The 10-R and we will analyze their performance on some sets of instances.

The ten reduction rules of the The 10-R are:

– Degree Zero
– Degree One
– Degree k
– Degree Two Adjacent
– Degree Two Non-adjacent
– Complete neighborhood
– Crown
– Linear-Programming (LP)
– Struction
– General Fold

123

Augmented intuition: a bridge between theory and practice 533

In this section we will describe those reduction rules for a graph G = (V , E) where
we have n = |V | and m = |E |. It is then useful to explicitly define them here as
follows:

Reduction Rule 1 (Degree Zero) If G contains a vertex u such that |N (u)| = 0, then
remove u.

An isolated vertex is not incident on any edge. Hence, it can not be in a optimal vertex
cover. We can eliminate a degree zero vertices form G and reduce the problem size n
by one, but the parameter size remains at k.

Reduction Rule 2 (Degree One Balasubramanian et al. (1998)) If G contains a vertex
u such that N (u) = {v}, then add v to the vertex cover and remove u and v from the
graph.

A vertex with single degree can be removed form the graph if and only if its unique
neighbor is included in the vertex cover. Removing u from G and adding v to the
vertex cover will reduce size of the instance n by two and parameter to k − 1.

Reduction Rule 3 (Degree k Buss and Goldsmith (1993)) If G contains a vertex u with
|N (u)| ≥ k, then add u to the vertex cover and remove it from the graph.

Selecting u to the vertex cover of the graph reduces the problem size to n − 1 and
the parameter size to k − 1.

Reduction Rule 4 (Degree Two Adjacent Balasubramanian et al. (1998)) If G con-
tains a vertex u such that N (u) = {v,w} and (vw) ∈ E, then add v and w to the
vertex cover and remove u, v and w from the graph.

At least two of three vertices u, v, w of a triangle should be selected to the vertex
cover, and any optimal solution that does not choose v and w can be changed to one
that does. It will reduce the problem size to n − 3 and the parameter size reduces to
k − 2.

Reduction Rule 5 (Degree Two Non-adjacent Balasubramanian et al. (1998)) If G
contains a vertex u such that N (u) = {v,w} and (vw) /∈ E, then we can fold u by
contracting edges uv and uw. We can achieve this by replacing u, v, w with a new
vertex u′, where N (u′) = N (v) ∪ N (w).

Either u is chosen to cover the edges (uv) and (uw) and neither of v or w are
chosen, or at least one of v or w is chosen, in which case it is sufficient to choose both
and not u to be in the vertex cover Chen et al. (2001). If the new vertex u′ is chosen to
be in the vertex cover, this corresponds to the case where v and w are chosen, if not,
u is chosen. It will reduce the problem size to n − 2 and the parameter size to k − 1.

Reduction Rule 6 (Complete neighborhood) If G contains a vertex u such that N (u)

is a clique (i.e. for every v,w ∈ N (u) we have vw ∈ E), add N (u) to the vertex cover
and remove u and N (u) from the graph.

123

534 P. Moscato et al.

This is an extension of the Degree Two Adjacent rule above. A complete graph
requires all but one of its vertices to cover its edges, and as u is only adjacent to no
other vertices, an optimal solution will never require it to cover anything. It will reduce
the problem size to n − |N (u)| − 1 and the parameter size to k − 1.

Reduction Rule 7 (Crown Rule Abu-Khzam et al. (2004, 2007)) If G is a graph with
a crown (I , H), then there is a vertex cover of G of minimum size that contains all
the vertices in H and none of the vertices in I .

A crown decomposition (I , H , B) of a graph G is a partition of V into sets I , B
and H such that

– the crown I is a non-empty independent set,
– the head H = N (I), and
– the rest of the graph body B = V \ (I ∪ H), and
– there is a matching of size |H | in G[H ∪ I].
Hence, we can remove all vertices in I and H from the graph G. The problem size

is reduced to n − |I | − |H |, and parameter to k − |H | after adding H to the vertex
cover.

Reduction Rule 8 (Linear-Programming Chen et al. (2001)) Theorem 1 If P, Q and
R are defined as below, there is an optimal vertex cover that is a superset of P and
that is disjoint from R.

We can formulate the vertex cover problems as an Integer Linear-Programming in
the following manner.

For each vertex u ∈ V we assign a value Xu ∈ {0, 1} such that the following
conditions hold:

– Minimize
∑

u Xu

– Satisfy Xu + Xv ≥ 1 whenever uv ∈ E

As solving integer linear programming is NP-Hard, we use Linear Programming
(LP) to approximate the optimal solution for the problem. We can relax constraint
Xu ∈ {0, 1} to Xu ∈ [0, 1], which can further simplified as Xu ≥ 0,∀u ∈ V . Hence,
the LP formulation for Min Vertex Cover is:

– Minimize
∑

u Xu

– Satisfy Xu + Xv ≥ 1 whenever uv ∈ E and Xu ≥ 0.

To simplify this LP problem, let assume

– N (S) denote the neighborhood of S,
– P = {u ∈ V |Xu > 0.5},
– Q = {u ∈ V |Xu = 0.5} and
– R = {u ∈ V |Xu < 0.5}.
Finally, we remove P , R and their adjacent edges from the graph G. The problem

size is reduced to n − |P| − |R|, and the parameter size becomes k − |P| after adding
P to the vertex cover.

123

Augmented intuition: a bridge between theory and practice 535

Reduction Rule 9 (Struction Chen et al. (2010)) Given a vertex v with neighborhood
N (v) = {u1, . . . , u p} and with at most p − 1 non-edges between its neighbors. For
every pair ui , u j of non-adjacent vertices in N (v) add a new vertex ui u j with edges
to every vertex in N (ui) ∪ N (u j) \ {v}. Remove v and N (v) from the graph.

This rule is a generalization of the Degree Two Non-adjacent rule, and reduces the
size of the graph to at most n − 1, and reduces the parameter to k − 1.

Reduction Rule 10 (General Fold Chen et al. (2010)) Given an independent set I ,
and its neighborhood N (I) where |N (I)| = |I | + 1, with the property that for every
∅ ⊂ S ⊆ I |N (S)| > |S|, either

1. N (I) induces an independent set, we can remove I and N (I), add I to the
vertex cover, add a new vertex u and add the edge uv whenever v was a
neighbor of some vertex w ∈ N (I), and reduce k by |I |, or

2. N (I) does not induce an independent set, and we may remove I and N (I)
from the graph, and add N (I) to the vertex cover and reduce k by N (I).

B Current methods and practices of automated heuristics design

In relation to the toolkit of techniques to design metaheuristics, Crainic and Toulouse
(2003) in Crainic and Toulouse (2003) presented a survey on parallel metaheuristic
developments. It mainly focused on the parallel design and implementation principles
of metaheuristics for larger problems to solve in reasonable computing times. It pre-
sented the parallel design principles for genetic algorithm, simulated annealing and
tabu search. Birattari et al. (2006) reviewed about the analysis of problem of evaluat-
ing metaheuristics proposed in theory and used in practice Birattari et al. (2006). The
experimental practice in machine learning for evaluating the performances of meta-
heuristics weremainly reported in this article. Zhang et al. (2017) edited a special issue
of “Journal of Optimization” Zhang et al. (2017), focused on various applications of
algorithmic design for metaheuristic optimization algorithms. We found following
complex metaheuristics (mostly dependent on population-based search techniques)
being applied on some classical and real-life problems:

– Genetic Algorithm: The Genetic Algorithm (GA) was used for solving the Mini-
mum Dominating Set of Queens Problem and image processing problem to detect
spots or disease on the plant.

– Particle Swarm Optimizers: Hybrid Particle Swarm Optimizers (PSO) was
applied for software engineering optimization in MapReduce programming, iden-
tifying genetic signature for cancer classification and for solving (with help of
memetic algorithm) a complex military problem.

– Memetic Algorithm:Memetic algorithm (MA) is popular in combinatorial opti-
mization problems Berretta et al. (2003); França et al. (1999); Moscato et al.
(2010); Naeni et al. (2014); Moscato (2012); Berretta et al. (2012) and Multi-
objective variation of memetic algorithms were employed to solve an examination
timetabling problems and a complex real-world military problem (in conjunction
with hybrid PSO to solve the problem).

123

536 P. Moscato et al.

– A*Search: SparseA* Search (SAS)was used for unmanned combat aerial vehicle
(UCAV) path planning problem.

Sörensen et al. (2008) in Sörensen et al. (2018) presented a brief history of meta-
heuristics for five development periods. The authors highlighted the paradigm shift in
development of heuristic methods from method-centric to framework-centric period
and to further explore the succession into the scientific period. They expected to see
morework in the research field of this scientific period to generate structure knowledge
to benefit both the researchers and practitioners. Zufferey (2012) in Zufferey (2012)
proposed a set of 17 rules to use for metaheuristics design. Among them, eight rules
being proposed for designing themetaheuristic. They also proposed rules for designing
local search and evolutionary methods for metaheuristics. The author illustrated each
of the rules for three types of well-known optimization problems: graph coloring, vehi-
cle routing and job-shop scheduling problems. Their analysis of the literature showed
that the complex metaheuristic methods which combined the population search and
efficient local search procedures were seemed to be the most promising. Nakib et al.
(2017) in Nakib et al. (2017) proposed a complex framework to design metaheuristic
using machine learning method evolved on the mutual information metric until the
stopping criteria were meet. The maximum likelihood principle was used to imple-
ment the framework. The method was tested only on a set of functions in the literature
of large scale continuous optimization.

More recent reviews by references Stützle and López-Ibáñez (2018, 2019); Hussain
et al. (2019) summarised the latest advances inmetaheuristic algorithms.Among them,
Stützle and López-Ibáñez (2019) focused on the automatic design and configuration
of metaheuristics algorithms and Hussain et al. (2019) presented a comprehensive sur-
vey of metaheuristics for 33 years (starting from 1983 to 2006) in Ref. Hussain et al.
(2019). In their both publications Stützle and López-Ibáñez (2018, 2019), Stützle and
López–Ibáñez mainly focused on the drawbacks of the manual, labor-intensive and
intuition-based approach of algorithm design, and the recent advancement on auto-
matic design and configuration of metaheuristic algorithms. However, in Hussain et al.
(2019) the authors discussed the trends of metaheuristics by application area, types
of metaheuristics and the theoretical and mathematical foundations of metaheuristic
design.

All of these works of literature presented the methods and practices of automated
heuristics design. We have found mainly two basic approaches of heuristic design and
configuration. The first category is self-tuning and self-adapting heuristics driven by
search techniques (local search and/or population-based method, e.g., Ref. Zufferey
(2012)). The other group learns from a set of training instances and then generalises
to unseen instances (often denoted as the Machine Learning-based approach, e.g.,
in Nakib et al. (2017)). There are some methods which combined both approaches
(it is worth noting that Zufferey (2012) found the combined methods to be the most
promising) to create complex heuristic.

In contrast, the more practically oriented field of Heuristics, and particularly the
modern practice of developing metaheuristics employs a much more experimentally
driven approach, including toolkits based around adversarially developed heuristics,
machine learning and so forth. Unfortunately, the loop back to Algorithmics (i.e.

123

Augmented intuition: a bridge between theory and practice 537

mathematical procedures that have theorem-proven guarantees) is not closed, and
while many well tested and effective heuristics and metaheuristics that work well
in practice have been produced Birattari et al. (2006); Crainic and Toulouse (2003);
Nakib et al. (2017); Stützle and López-Ibáñez (2019); Zhang et al. (2017); Zufferey
(2012), the advancement of the algorithmic understanding of the problem is at best
slow.

C Current trends inmetaheuristics for this problem

We offer here a brief survey of metaheuristics for the vertex cover problem where the
results are presented for BHOSLIB andDIMACS benchmarking dataset. However, we
note that most of the metaheuristics reported results only for a subset of the instances
of the BHOSLIB and DIMACS benchmark datasets.

Guturu and Dantu in Guturu and Dantu (2008) presented an impatient EA with
probabilistic tabu search (IEA-PTS) for the Min Vertex Cover (VC) problem. The
proposedmethodworks in two stages. First, the problem ismapped onto themaximum
clique-finding problem (MCP), which is then solved using an evolutionary strategy.
The EA learns not only form previously successful search directions but also from pre-
vious failures. The probabilistic tabu-search (PTS approach is used to discourage the
search of earlier unfruitful directions. They have used 37 instances form the DIMACS
benchmark set for VC problems. Along with the minimum cover size obtained by
the IEA-PTS, they also reported the results for two other metaheuristics: a stochastic
local search algorithm named Cover Edges Randomly (COVER) Richter et al. (2007)
and CycleKernelized Ant Colony System (CKACS) Gilmour and Dras (2006). The
COVER Richter et al. (2007) is a Stochastic Local Search (SLS) method for that uses
an edge weighting-based heuristic. It starts from a uniformly random initial candidate
solution which is iteratively improved by small step thus creating neighboring candi-
date solutions. The method increases the weights of yet uncovered edges at each step
of the iteration. The CKACS is an Ant Colony System (ACS) metaheuristic which
continually reinforces the kernelization information as the global pheromone update
rule Gilmour and Dras (2006).

A multi-start metaheuristic called Greedy Randomized Adaptive Search Procedure
for the variant of the core problem called Connected Vertex Cover (GRASP-CVC)
has been proposed in Zhang et al. (2018). We review it here since any feasible solution
of this method is also one of the unrestricted version and it can give an idea of the
power of this method. Also, some of the heuristics proposed in this paper (in Sect. 4.6)
can be useful as part of a GRASP strategy. GRASP-CVC used a greedy function
and a restricted candidate list to construct high-quality initial solutions. The initial
solution is then iteratively improved and a neighborhood of solutions is explored via a
local search mechanism. This method was only tested on a small subset of DIMACS
data instances. O. Ugurlu proposed an Isolation Algorithm (IA) Ugurlu (2012) based
on isolating the vertex with a minimum degree and followed by the addition of the
neighboring vertices of the isolated vertex into in the covering set. They applied the
proposed algorithm on the BHOSLIB and DIMACS instances. In Cai et al. (2013),
a metaheuristic for VC with two new strategies, called NuMVC, is proposed. First,

123

538 P. Moscato et al.

a strategy for selecting two vertices (one vertex from the current candidate solution
for removal, then uniformly at random selects another vertex from uncovered edges
for addition) to exchange separately. The exchange of those vertices is performed in
two stages: one at the remove stage and another in the add stage. Next, the strategy
is to periodically increase and decrease the edge weighting. This algorithm has been
applied to both the BHOSLIB and DIMACS instances.

C.1 More complex heuristics on BHOSLIB Dataset

We found several local search basedmore complex heuristics for theMinVertex Cover
problemwhich reported results on theBHOSLIBbenchmarkdatasets. Thevertex cover
size and runtime reported by COVERRichter et al. (2007), CKACSGilmour and Dras
(2006), IEA-PTSGuturu andDantu (2008), GRASP-CVCZhang et al. (2018), and the
times they took are surveyed here to give some context in comparisonwith constructive
heuristics like IAUgurlu (2012) and our h3. The results on the BHOSLIB instances are
shown in Table 5. Note that, generally speaking, iterative improvement based schemes
require orders of magnitude more CPU time.

C.2 Complexmetaheuristics on a subset of DIMACS instances

The vertex cover results reported by threemetaheuristics (GRASP-CVC, IA,NuMVC)
on a subset of DIMACS instances are shown in Table 6.

C.3 Summary of results

From the result on BHOSLIB instances in Table 5, we can see that the COVER
approach exhibited comparatively better performances in finding the optimal solution
reported by Guturu and Dantu (2008). It has found the exact solution for 18 instances.
However, in Richter et al. (2007) the COVER method was being applied on DIMACS
instances and it did not perform well on the brock family of graphs where the
algorithm failed to escape local minima Richter et al. (2007). In this regard, our
heuristic h3 seemed to be an effective constructive method in finding high quality
solutions form different types of graphs. Theymay give researchers new insights about
how to improve their metaheuristics (e.g. the heuristic can be used as an initialization
approach and to help recombination in evolutionary algorithms).

The compiled results forMinVertex Cover by different metaheuristics on the subset
of DIMACS instances are shown in Table 6. Here we can see that NuMVC (Cnu)
exhibits the best performance. However, the runtimes have not been reported. Only
the GRASP-CVC and IAmethods reported their runtimes. The runtimes are presented
here as a guideline, but they are not comparable, because these algorithms being
executed in completely different computers.

123

Augmented intuition: a bridge between theory and practice 539

Ta
bl
e
5

T
he

co
ve
r
si
ze

(C
)
an
d
ru
nt
im

e
(t

in
se
co
nd
s)

re
po
rt
ed

fo
r
B
H
O
SL

IB
in
st
ac
es

by
th
e
fiv

e
co
m
pl
ex

m
et
ah
eu
ri
st
ic
s
[w

e
us
ed

su
bs
cr
ip
te
d
sh
or
t
na
m
e
of

er
fo
r

C
O
V
E
R
(R

ic
ht
er

et
al
.
20

07
),

ck
fo
r
C
K
A
C
S
(G

ilm
ou

r
an
d
D
ra
s
20

06
),

ea
fo
r
IE
A
-P
T
S
(G

ut
ur
u
an
d
D
an
tu

20
08

),
as

fo
r
G
R
A
SP

-C
V
C
(Z
ha
ng

et
al
.
20

18
)
an
d

ia
fo
r

IA
(U

gu
rl
u
20

12
)]

In
st
an

ce
C

C
er

C
ck

C
ea

C
as

C
ia

t e
r

t c
k

t e
a

t a
s

t i
a

fr
b3

0-
15

-1
42

0
42

0
42

4
42

0
42

4
42

4
0.
08

N
R

0.
40

9
11

.3
73

5
0.
01

6

fr
b3

0-
15

-2
42

0
42

0
42

4.
5

42
0

42
5

42
3

0.
1

N
R

0.
41

75
7.
87

3
0.
03

1

fr
b3

0-
15

-3
42

0
42

0
42

4.
6

42
0.
71

42
4

42
4

0.
08

N
R

1.
46

49
13

.4
26

6
0.
01

6

fr
b3

0-
15

-4
42

0
42

0
42

4
42

0
42

4
42

2
0.
05

N
R

0.
14

64
15

.2
35

5
0.
03

1

fr
b3

0-
15

-5
42

0
42

0
42

3.
6

42
0.
44

42
3

42
4

0.
17

N
R

2.
21

8
25

.6
11

8
0.
01

5

1b
35

-1
7-
1

56
0

56
0

56
5.
5

56
0.
88

56
5

56
5

0.
9

N
R

3.
47

26
29

.4
48

6
0.
01

6

fr
b3

5-
17

-2
56

0
56

0
56

6.
5

56
0.
81

56
5

56
5

0.
84

N
R

1.
84

95
8.
54

06
0.
04

7

fr
b3

5-
17

-3
56

0
56

0
56

4.
4

56
0

56
5

56
4

0.
27

N
R

0.
72

29
2.
70

05
0.
06

3

fr
b3

5-
17

-4
56

0
56

0
56

5.
5

56
1.
05

56
5

56
4

1.
12

N
R

2.
17

53
17

2.
98

33
0.
04

6

fr
b3

5-
17

-5
56

0
56

0
56

4.
1

56
0.
44

56
5

56
5

0.
49

N
R

3.
96

34
34

.4
83

5
0.
03

1

fr
b4

0-
19

-1
72

0
72

0
72

5.
6

72
0.
18

72
8

72
5

0.
62

N
R

5.
01

49
18

7.
74

04
0.
06

3

fr
b4

0-
19

-2
72

0
72

0
72

6.
8

72
1.
01

72
6

72
5

10
.2
1

N
R

2.
34

75
21

3.
66

16
0.
07

8

fr
b4

0-
19

-3
72

0
72

0
72

7.
6

72
0.
92

72
5

72
4

3.
17

N
R

4.
00

84
10

1.
07

95
0.
03

1

fr
b4

0-
19

-4
72

0
72

0
72

6.
1

72
0.
88

72
6

72
5

8.
81

N
R

3.
51

01
8.
38

77
0.
07

8

fr
b4

0-
19

-5
72

0
72

0.
04

72
5.
3

72
1

72
5

72
3

63
.4
7

N
R

2.
36

18
33

.3
23

5
0.
04

6

123

540 P. Moscato et al.

Ta
bl
e
5

co
nt
in
ue
d

In
st
an

ce
C

C
er

C
ck

C
ea

C
as

C
ia

t e
r

t c
k

t e
a

t a
s

t i
a

fr
b4

5-
21

-1
90

0
90

0
90

8.
2

90
1.
21

90
8

90
7

8.
48

N
R

10
.1
25

1
66

5.
53

43
0.
06

2

fr
b4

5-
21

-2
90

0
90

0
90

8.
5

90
1.
13

90
8

90
4

28
.4
6

N
R

8.
97

96
83

.9
04

0.
06

3

fr
b4

5-
21

-3
90

0
90

0.
01

90
8.
3

90
1.
17

90
8

90
6

70
.1
3

N
R

8.
68

2
47

9.
14

47
0.
12

4

fr
b4

5-
21

-4
90

0
90

0
90

8.
4

90
1.
01

90
7

90
5

12
.2
8

N
R

4.
50

54
13

5.
21

91
0.
10

9

fr
b4

5-
21

-5
90

0
90

0.
01

90
9.
1

90
1.
18

90
9

90
6

66
.5
3

N
R

8.
08

62
23

5.
14

95
0.
06

2

fr
b5

0-
23

-1
11

00
11

00
.1
1

11
10

.4
11

01
.6
3

11
09

11
08

17
1.
92

N
R

18
.7
69

40
9.
09

72
0.
14

fr
b5

0-
23

-2
11

00
11

00
.7

11
09

.7
11

01
.3

11
10

11
08

54
3.
56

N
R

14
.3
68

2
87

.4
73

1
0.
09

4

fr
b5

0-
23

-3
11

00
11

00
.7
6

11
08

.3
11

01
.6

11
10

11
05

2.
61

N
R

16
.9
70

3
41

4.
18

94
0.
10

9

fr
b5

0-
23

-4
11

00
11

00
11

09
.6

11
01

.2
4

11
10

11
08

16
.9
4

N
R

19
.9
20

6
43

1.
32

35
0.
09

4

fr
b5

0-
23

-5
11

00
11

00
.0
2

11
10

.3
11

01
.3

11
09

11
06

88
.9
4

N
R

14
.3
11

2
83

7.
10

14
0.
09

4

fr
b5

3-
24

-1
12

19
12

19
.9
1

12
29

.9
12

21
.4
4

12
30

12
26

11
.3
1

N
R

22
.8
64

8
69

5.
53

86
0.
12

5

fr
b5

3-
24

-2
12

19
12

19
.6
6

12
29

.3
12

20
.9
5

12
30

12
24

40
3.
98

N
R

24
.6
49

9
39

0.
44

01
0.
14

1

fr
b5

3-
24

-3
12

19
12

19
.0
9

12
31

.6
12

21
.1
3

12
29

12
26

15
7.
8

N
R

17
.3
54

8
55

2.
57

61
0.
12

5

fr
b5

3-
24

-4
12

19
12

19
.7
6

12
30

.5
12

21
.4
5

12
29

12
27

10
.7
4

N
R

23
.9
46

2
58

8.
65

73
0.
10

9

fr
b5

3-
24

-5
12

19
12

19
.1
6

12
31

.8
12

21
.4
2

12
30

12
27

25
3.
05

N
R

26
.2
34

95
.6
66

7
0.
10

9

123

Augmented intuition: a bridge between theory and practice 541

Ta
bl
e
5

co
nt
in
ue
d

In
st
an

ce
C

C
er

C
ck

C
ea

C
as

C
ia

t e
r

t c
k

t e
a

t a
s

t i
a

fr
b5

6-
25

-1
13

44
13

44
.8
5

13
56

.8
13

46
.7
6

13
57

13
52

20
.7
3

N
R

30
.0
98

6
90

.5
45

1
0.
15

6

fr
b5

6-
25

-2
13

44
13

44
.8
8

13
55

.7
13

46
.7
4

13
53

13
53

30
.3
3

N
R

36
.0
43

2
41

2.
38

0.
15

6

fr
b5

6-
25

-3
13

44
13

44
.2
4

13
55

.6
13

46
.4
6

13
56

13
53

43
5.
3

N
R

35
.8
52

2
19

0.
64

17
0.
15

6

fr
b5

6-
25

-4
13

44
13

44
.1
6

13
54

.8
13

46
.7
8

13
56

13
53

29
1.
11

N
R

29
.6
23

2
47

.1
68

7
0.
21

8

fr
b5

6-
25

-5
13

44
13

44
.0
2

13
54

.6
13

46
.4
8

13
55

13
52

89
.5
8

N
R

29
.9
07

2
61

6.
92

86
0.
26

5

fr
b5

9-
26

-1
14

75
14

75
.8
9

14
86

.8
14

78
.0
6

14
87

14
81

30
.7
6

N
R

35
.8
52

2
65

6.
14

94
0.
23

4

fr
b5

9-
26

-2
14

75
14

75
.9
4

14
86

.4
14

78
.2
5

14
88

14
83

40
.8
6

N
R

32
.1
62

8
10

0.
06

0.
37

4

fr
b5

9-
26

-3
14

75
14

75
.8
8

14
87

.8
14

78
.3
5

14
89

14
83

65
.0
4

N
R

32
.2
28

2
49

5.
52

81
0.
35

9

fr
b5

9-
26

-4
14

75
14

75
.9
9

14
87

.3
14

78
.2
6

14
87

14
84

75
.9
2

N
R

36
.5
01

4
31

9.
40

73
0.
17

2

fr
b5

9-
26

-5
14

75
14

75
.1
1

14
86

.3
14

77
.4
4

14
87

14
82

29
2.
6

N
R

30
.7
9

66
2.
72

02
0.
20

3

A
va
lu
e
of

‘N
R
’
in

a
ce
ll
de
no
te
th
at

th
e

m
et

ho
d

us
ed

th
at

in
st

an
ce

bu
td

id
no

tr
ep

or
tt

he
va

lu
e

123

542 P. Moscato et al.

Table 6 The cover size (C) and runtime (t in seconds) reported in the papers for a subset of DIMACS
instaces by the three complex metaheuristics

Instance C Cas Cnu Cia tas tnu tia

brock200_2 188 190 188 191 0.04 NR 0

brock200_4 183 184 183 – 1.4 NR –

brock400_2 371 376 371.16 378 6.2 NR 0

brock400_4 367 376 367 – 10.29 NR –

brock800_2 776 780 779 781 35.04 NR 0.438

brock800_4 774 780 779 – 174 NR –

C125.9 91 91 91 91 <0.01 NR 0

C250.9 206 207 206 207 2.38 NR 0.094

C500.9 443 448 443 447 12.05 NR 0.016

C1000.9 932 939 932 941 66.33 NR 0.047

C2000.9 1920 1933 1920 – 96.85 NR –

C2000.5 1984 1986 1984 1987 942.59 NR 0.219

C4000.5 3982 3986 3982 3985 400.23 NR 0.969

DSJC500.5 487 487 487 487 2.42 NR 0.282

DSJC1000.5 985 986 985 987 887.52 NR 0.062

gen200_p0.9_44 156 164 156 156 0.06 NR 0.109

gen200_p0.9_55 145 156 145 145 0.06 NR 0.015

gen400_p0.9_55 345 358 345 – 72.48 NR –

gen400_p0.9_65 335 354 335 350 18.81 NR 0.015

gen400_p0.9_75 325 357 325 325 2.8 NR 0.64

hamming8-4 240 240 240 240 0.02 NR 0

hamming10-4 984 990 984 989 273.01 NR 0.078

keller4 160 160 160 160 3.93 NR 0

keller5 749 756 749 752 4.64 NR 0.453

keller6 3302 3324 3302 3316 82.16 NR 0.813

MANN_a27 252 260 252 375 0.05 NR 0

MANN_a45 690 704 690 1032 0.85 NR 0.047

MANN_a81 2221 2241 2221.94 3318 5.1 NR 0.453

p_hat300-1 292 292 292 292 0.11 NR 0.062

p_hat300-2 275 275 275 276 0.64 NR 0

p_hat300-3 264 264 264 266 0.34 NR 0.203

p_hat700-1 689 689 689 692 7.78 NR 0.031

p_hat700-2 656 656 656 657 1.79 NR 0.062

p_hat700-3 638 638 638 638 176.31 NR 0.063

p_hat1500-1 1488 1489 1488 1491 19.73 NR 0.125

p_hat1500-2 1435 1438 1435 1435 27.61 NR 0.438

p_hat1500-3 1406 1409 1406 1412 210.48 NR 0.36

Themetaheuristics areGRASP-CVC (Zhang et al. 2018) (denoted as as), NuMVC (Cai et al. 2013) (denoted
as nu) and IA (Ugurlu 2012) (ia) in the table. A dash mark ‘–’ in a cell denotes that the particular method
did not use that instance and ‘NR’ is used to denote that the method used that instance, but had not reported
the value

123

Augmented intuition: a bridge between theory and practice 543

Table 7 Number of times the Proposed Heuristic 3 wins, loses and had a tie with Heuristic IA (Ugurlu
2012)

Instance H3.Wins H3.Loses H3.Ties

DIMACS 23 9 46

BHOSLIB 13 13 14

Asgeirsson and Stein (2005) 2 2 11

Network data 2 0 5

C.4 Performance comparison with Isolation Algorithm (IA) proposed in Ugurlu
(2012)

O. Ugurlu proposed a simple heuristic, Isolation Algorithm (IA), in Ugurlu (2012),
based on adding all the neighbors of the minimum degree vertex into the cover. They
presented both the size of vertex cover and the runtime of the heuristic for BHOSLIB
and a subset of DIMACS instances. However, we noticed that some of the exact covers
reported in the paper do not match known values of the optimal cover. For instance, the
reported optimum vertex cover size of 345 for gen400_p0.9_65, is problematic
since it is known to be smaller (335). The optimumcover reported forMANN instances
are also not matching with NuMVC in Cai et al. (2013). NuMVC reported that 252 and
690 are optimum values for MANN_a27 and MANN_a45, respectively; IA reported
them as 375 and 1032. They also reported the best-known cover size of MANN_a81
as 2221; however, IA reported it as 3318. This cover size is more than 1000 vertex
larger than the known size. These large differences in the known cover sizes used in
the paper presents some problems to directly compare with the published values.

To address this problem, we have implemented the IA algorithm following Ugurlu
(2012). However, from their description, it is also unclear how ties are meant to be
brokenwhenmore than one vertex have theminimumdegree. In our implementation of
the heuristic IA, we took a vertex uniformly at random from those with the minimum
degree. We then executed both our Heuristic 3 and the IA method on BHOSLIB,
DIMACS, the small subset of DIMACSDatasets used by Asgeirsson and Stein (2005)
and also on seven instances form Network Data.10 Here we report the summary of the
comparison in terms of the number of times H3 wins, loses and tie with IA in Table 7.

In the work of Cai et al. (2013), the brock graphs are referred as one of the hardest
types of instances for vertex cover in DIMACS database. Among the 12 brock
instances, I A ties with h3 in 7 cases and h3 wins in the remaining 5 cases. The
most difficult instances from DIMACS are C2000.5, MANN_a81, keller6 and
MANN_a45 Cai et al. (2013); Grosso et al. (2008); Richter et al. (2007). While we
compare the vertex cover sizes found by I A and h3 for these instances, the I A has a tie
with h3 for both of the MANN instances, wins on C2000.5, and loses on keller6.
These clearly indicate that h3 is competitive with I A.

10 Seven instances (adjnoun, as-22july06, celegansneural, dolphins, football, karate and lesmis) are taken
from Network Data at http://www-personal.umich.edu/~mejn/netdata/.

123

http://www-personal.umich.edu/~mejn/netdata/

544 P. Moscato et al.

Finally, to find if h3 is statistically better than I A, we conducted a one-tailed
Wilcoxon signed ranked test.11 Among the combined 140 instances from four sources
(in Table 7). We found 76 cases of the tie, which yields the number of samples to
N = 64. For those samples with a confidence level α = 0.05, the one-tailedWilcoxon
Signed-Rank test revealed the W -value=788.5. As the distribution is approximately
normal, the z-value is used. The value of z is −1.6819 with the p-value = 0.04648.
Hence, the result is significant at p < 0.05 and “h3 is significantly better or equal
than I A”.

References

Abu-Khzam, F.N., Collins, R.L., Fellows, M.R., Langston, M.A., Suters, W.H., Symons, C.T.: Kerneliza-
tion algorithms for the vertex cover problem: Theory and experiments. In: Arge, L., Italiano, G.F.,
Sedgewick, R. (eds.) Proceedings of the Sixth Workshop on Algorithm Engineering and Experiments
and the First Workshop on Analytic Algorithmics and Combinatorics, New Orleans, LA, USA, 10
January, 2004, pp. 62–69. SIAM (2004)

Abu-Khzam, F.N., Fellows, M.R., Langston, M.A., Suters, W.H.: Crown structures for vertex cover kernel-
ization. Theory Comput. Syst. 41(3), 411–430 (2007)

Ahammed, F., Moscato, P.: Evolving L-systems as an intelligent design approach to find classes of difficult-
to-solve traveling salesman problem instances. In: Applications of Evolutionary Computation—
EvoApplications 2011: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM,
and EvoSTOC, Torino, Italy, 27–29 April 2011, Proceedings, Part I, pp. 1–11 (2011)

Akiba, T., Iwata, Y.: Branch-and-reduce exponential/FPT algorithms in practice: a case study of vertex
cover. Theor. Comput. Sci. 609, 211–225 (2016)

Asgeirsson, E., Stein, C.: Vertex cover approximations: experiments and observations. In: Nikoletseas, S.E.
(ed.) Experimental and Efficient Algorithms, pp. 545–557. Springer, Berlin (2005)

Balasubramanian, R., Fellows, M.R., Raman, V.: An improved fixed-parameter algorithm for vertex cover.
Inf. Process. Lett. 65(3), 163–168 (1998)

Berretta, R., Cotta, C.,Moscato, P.: Enhancing the performance of memetic algorithms by using amatching-
based recombination algorithm. In: Resende, M.G.C., de Sousa, J.P. (eds.) Metaheuristics: Computer
Decision-Making, pp. 65–90. Springer, Boston (2003)

Berretta, R., Cotta, C., Moscato, P.: Memetic algorithms in bioinformatics. In: Neri, F., Cotta, C., Moscato,
P. (eds.) Handbook of Memetic Algorithms, Studies in Computational Intelligence, vol. 379, pp.
261–271. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-23247-3_16

Binkele-Raible, D., Fernau, H.: A parameterizedmeasure-and-conqueranalysis for finding a k-leaf spanning
treein an undirected graph. Discrete Math. Theor. Comput. Sci. 16(1) (2014)

Birattari, M., Zlochin, M., Dorigo, M.: Towards a theory of practice in metaheuristics design: a machine
learning perspective. RAIRO Theor. Inform. Appl. 40(2), 353–369 (2006). https://doi.org/10.1051/
ita:2006009

Buss, J.F., Goldsmith, J.: Nondeterminism within P∗. SIAM J. Comput. 22(3), 560–572 (1993). https://
doi.org/10.1137/0222038

Cai, S., Su, K., Luo, C., Sattar, A.: NuMVC: an efficient local search algorithm for minimum vertex cover.
J. Artif. Int. Res. 46(1), 687–716 (2013)

Camby, E., Cardinal, J., Fiorini, S., Schaudt, O.: The price of connectivity for vertex cover. Discrete Math.
Theor. Comput. Sci. 16(1), 207–224 (2014)

Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further improvements. J. Algorithms
41(2), 280–301 (2001)

Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40), 3736–
3756 (2010). https://doi.org/10.1016/j.tcs.2010.06.026

Chitturi, B.: Layered graphs: a class that admits polynomial time solutions for some hard problems. CoRR
arXiv:abs/1705.06425 (2017)

11 https://www.socscistatistics.com/tests/signedranks.

123

https://doi.org/10.1007/978-3-642-23247-3_16
https://doi.org/10.1051/ita:2006009
https://doi.org/10.1051/ita:2006009
https://doi.org/10.1137/0222038
https://doi.org/10.1137/0222038
https://doi.org/10.1016/j.tcs.2010.06.026
http://arxiv.org/abs/abs/1705.06425
https://www.socscistatistics.com/tests/signedranks

Augmented intuition: a bridge between theory and practice 545

Chitturi, B., Balachander, S., Satheesh, S., Puthiyoppil, K.: Layered graphs: applications and algorithms.
Algorithms 11, 7 (2018). https://doi.org/10.3390/a11070093

Cotta, C., Moscato, P.: A mixed evolutionary-statistical analysis of an algorithm’s complexity. Appl. Math.
Lett. 16(1), 41–47 (2003). https://doi.org/10.1016/S0893-9659(02)00142-8

Crainic, T.G., Toulouse, M.: Parallel Strategies for Meta-Heuristics, pp. 475–513. Springer, Boston (2003).
https://doi.org/10.1007/0-306-48056-5_17

Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)
Dinur, I., Safra, S.: The importance of being biased. In: Proceedings of the Thiry-fourth Annual ACM

Symposium on Theory of Computing, STOC ’02, pp. 33–42. ACM, New York (2002). https://doi.org/
10.1145/509907.509915

Escoffier, B., Gourvès, L., Monnot, J.: Complexity and approximation results for the connected vertex
cover problem in graphs and hypergraphs. J. Discrete Algorithms 8(1), 36–49 (2010). https://doi.org/
10.1016/j.jda.2009.01.005

Feige, U.: Vertex cover is hardest to approximate on regular graphs. Technical ReportMCS03-15, Computer
Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel (2003)

Fernau, H., Fluschnik, T., Hermelin, D., Krebs, A.,Molter, H., Niedermeier, R.: Diminishable parameterized
problems and strict polynomial kernelization. In: Manea, F., Miller, R.G., Nowotka, D. (eds.) Sailing
Routes in the World of Computation, pp. 161–171. Springer International Publishing, Cham (2018)

França, P., Mendes, A., Moscato, P.: Memetic algorithms to minimize tardiness on a single machine with
sequence-dependent setup times. In: Proceedings of the 5th International Conference of the Decision
Sciences Institute, Athens, Greece, pp. 1708–1710 (1999)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.
H. Freeman & Co., New York (1979)

Gell-Mann, M.: The Quark and the Jaguar: Adventures in the Simple and the Complex. W. H. Freeman &
Co., New York (1995)

Gilmour, S., Dras, M.: Kernelization as heuristic structure for the vertex cover problem. In: Dorigo, M.,
Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) Ant Colony Optimization
and Swarm Intelligence, pp. 452–459. Springer, Berlin (2006)

Grosso,A., Locatelli,M., Pullan,W.: Simple ingredients leading to very efficient heuristics for themaximum
clique problem. J. Heuristics 14(6), 587–612 (2008)

Guturu, P.,Dantu,R.:An impatient evolutionary algorithmwith probabilistic Tabu search for unified solution
of some NP-hard problems in graph and set theory via clique finding. IEEE Trans. Syst. Man Cybern.
Part B (Cybern.) 38(3), 645–666 (2008). https://doi.org/10.1109/TSMCB.2008.915645

Hochbaum, D.S.: Efficient bounds for the stable set, vertex cover and set packing problems. Discrete Appl.
Math. 6(3), 243–254 (1983). https://doi.org/10.1016/0166-218X(83)90080-X

Hooker, J.N.: Needed: an empirical science of algorithms. Oper. Res. 42(2), 201–212 (1994). https://doi.
org/10.1287/opre.42.2.201

Hooker, J.N.: Testing heuristics: we have it all wrong. J. Heuristics 1(1), 33–42 (1995). https://doi.org/10.
1007/BF02430364

Hougardy, S., Zhong, X.: Hard to solve instances of the euclidean traveling salesman problem. Math.
Program. Comput. 1–24 (2020)

Hussain, K., Mohd Salleh, M.N., Cheng, S., Shi, Y.: Metaheuristic research: a comprehensive survey. Artif.
Intell. Rev. 52(4), 2191–2233 (2019). https://doi.org/10.1007/s10462-017-9605-z

Iwata, Y., Oka,K., Yoshida,Y.: Linear-time FPT algorithms via network flow. In: Proceedings of the Twenty-
fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’14, pp. 1749–1761. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA (2014). URL http://dl.acm.org/citation.
cfm?id=2634074.2634201

Karakostas, G.: A better approximation ratio for the vertex cover problem. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) Automata, Languages and Programming, pp. 1043–
1050. Springer, Berlin (2005)

Mariano, A., Moscato, P., Norman, M.G.: Using L-systems to generate arbitrarily large instances of the
euclidean traveling salesman problem with known optimal tours. In: In Anales del XXVII Simposio
Brasileiro de Pesquisa Operacional, pp. 6–8 (1995)

Mathieson, L., de Vries, N.J., Moscato, P.: Using network alignment to identify conserved consumer
behaviourmodelling constructs, pp. 513–541. Springer International Publishing, Cham (2019). https://
doi.org/10.1007/978-3-030-06222-4_12

123

https://doi.org/10.3390/a11070093
https://doi.org/10.1016/S0893-9659(02)00142-8
https://doi.org/10.1007/0-306-48056-5_17
https://doi.org/10.1145/509907.509915
https://doi.org/10.1145/509907.509915
https://doi.org/10.1016/j.jda.2009.01.005
https://doi.org/10.1016/j.jda.2009.01.005
https://doi.org/10.1109/TSMCB.2008.915645
https://doi.org/10.1016/0166-218X(83)90080-X
https://doi.org/10.1287/opre.42.2.201
https://doi.org/10.1287/opre.42.2.201
https://doi.org/10.1007/BF02430364
https://doi.org/10.1007/BF02430364
https://doi.org/10.1007/s10462-017-9605-z
http://dl.acm.org/citation.cfm?id=2634074.2634201
http://dl.acm.org/citation.cfm?id=2634074.2634201
https://doi.org/10.1007/978-3-030-06222-4_12
https://doi.org/10.1007/978-3-030-06222-4_12

546 P. Moscato et al.

Moscato, P.: Memetic algorithms: the untold story. In: Neri, F., Cotta, C., Moscato, P. (eds.) Handbook of
Memetic Algorithms, Studies in Computational Intelligence, vol. 379, pp. 275–309. Springer, Berlin
(2012). https://doi.org/10.1007/978-3-642-23247-3_17

Moscato, P.: Business Network Analytics: From Graphs to Supernetworks, pp. 307–400. Springer Interna-
tional Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-06222-4_7

Moscato, P., Berretta, R., Cotta, C.: Memetic Algorithms. Wiley Encyclopedia of Operations Research and
Management Science (2010)

Moscato, P., Mendes, A., Berretta, R.: Benchmarking a memetic algorithm for ordering microarray data.
Biosystems 88(1), 56–75 (2007). https://doi.org/10.1016/j.biosystems.2006.04.005

Moscato, P., Norman, M.G.: On the performance of heuristics on finite and infinite fractal instances of the
euclidean traveling salesman problem. INFORMS J. Comput. 10(2), 121–132 (1998). https://doi.org/
10.1287/ijoc.10.2.121

Naeni, L.M., de Vries, N.J., Reis, R., Arefin, A.S., Berretta, R., Moscato, P.: Identifying communities of
trust and confidence in the charity and not-for-profit sector: A memetic algorithm approach. In: 2014
IEEE Fourth International Conference on Big Data and Cloud Computing, BDCloud 2014, Sydney,
Australia, 3–5 December 2014, pp. 500–507. IEEEComputer Society (2014). https://doi.org/10.1109/
BDCloud.2014.83

Nakib, A., Hilia,M., Heliodore, F., Talbi, E.G.: Design ofmetaheuristic based onmachine learning: a unified
approach. In: 2017 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 510–518. IEEE (2017)

Norman, M.G., Moscato, P.: The euclidean traveling salesman problem and a space-filling curve. Chaos
Solitons Fractals 6, 389–397 (1995). https://doi.org/10.1016/0960-0779(95)80046-J

Richter, S., Helmert, M., Gretton, C.: A stochastic local search approach to vertex cover. In: Hertzberg,
J., Beetz, M., Englert, R. (eds.) KI 2007: Advances in Artificial Intelligence, pp. 412–426. Springer,
Berlin (2007)

Salzberg, S.L.: On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min. Knowl.
Discov. 1(3), 317–328 (1997)

Sheskin, D.J.: Parametric and Nonparametric Statistical Procedures. Chapman & Hall/CRC, Boca Raton
(2000)

Skiena, S.S.: The Algorithm Design Manual. Springer, London (2008)
Sörensen, K., Sevaux, M., Glover, F.: A History of Metaheuristics, pp. 1–18. Springer International Pub-

lishing, Cham (2018). https://doi.org/10.1007/978-3-319-07153-4_4-1
Stege, U.: Resolving Conflicts in Problems from Computational Biology. Ph.D. thesis, ETH Zurich (2000)
Stützle, T., López-Ibáñez, M.: Automated design of metaheuristic algorithms. Technical Report

TR/IRIDIA/2018-008, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2018)
Stützle, T., López-Ibáñez, M.: Automated Design of Metaheuristic Algorithms, pp. 541–579. Springer

International Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_17
Thorup, M.: All structured programs have small tree-width and good register allocation. Inf. Comput.

142(2), 159–181 (1998). https://doi.org/10.1006/inco.1997.2697
Ugurlu, O.: New heuristic algorithm for unweighted minimum vertex cover. In: 2012 IV International

Conference “Problems of Cybernetics and Informatics” (PCI), pp. 1–4 (2012). https://doi.org/10.
1109/ICPCI.2012.6486444

Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–823 (2012). https://doi.
org/10.14778/2311906.2311909

Wilcoxon, F.: Individual Comparisons by RankingMethods, pp. 196–202. Springer, New York, NY (1992).
https://doi.org/10.1007/978-1-4612-4380-9_16

Zhang, G., Pan, L., Neri, F., Gong, M., Leporati, A.: Metaheuristic optimization: Algorithmic design and
applications. J. Optim. 2017, (2017)

Zhang, Y., Wu, J., Zhang, L., Zhao, P., Zhou, J., Yin, M.: An efficient heuristic algorithm for solving
connected vertex cover problem. Math. Probl. Eng. 2018, (2018)

Zufferey, N.: Metaheuristics: some principles for an efficient design. Comput. Technol. Appl. 3(6), 446-462
(2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/978-3-642-23247-3_17
https://doi.org/10.1007/978-3-030-06222-4_7
https://doi.org/10.1016/j.biosystems.2006.04.005
https://doi.org/10.1287/ijoc.10.2.121
https://doi.org/10.1287/ijoc.10.2.121
https://doi.org/10.1109/BDCloud.2014.83
https://doi.org/10.1109/BDCloud.2014.83
https://doi.org/10.1016/0960-0779(95)80046-J
https://doi.org/10.1007/978-3-319-07153-4_4-1
https://doi.org/10.1007/978-3-319-91086-4_17
https://doi.org/10.1006/inco.1997.2697
https://doi.org/10.1109/ICPCI.2012.6486444
https://doi.org/10.1109/ICPCI.2012.6486444
https://doi.org/10.14778/2311906.2311909
https://doi.org/10.14778/2311906.2311909
https://doi.org/10.1007/978-1-4612-4380-9_16

Augmented intuition: a bridge between theory and practice 547

Affiliations

Pablo Moscato1 · Luke Mathieson2 ·Mohammad Nazmul Haque1

B Pablo Moscato
Pablo.Moscato@newcastle.edu.au

Luke Mathieson
luke.mathieson@uts.edu.au

Mohammad Nazmul Haque
Mohammad.Haque@newcastle.edu.au

1 College of Engineering, Science and Environment, The University of Newcastle, Callaghan,
NSW 2308, Australia

2 School of Software, University of Technology Sydney, Ultimo, NSW 2007, Australia

123

http://orcid.org/0000-0003-2570-5966

	Augmented intuition: a bridge between theory and practice
	Abstract
	1 Introduction
	1.1 The vertex cover problem: much more than a case in point
	1.2 Fixed-parameterized tractability: a new hope and a new stagnation
	1.3 Is lack of progress ``natural''?
	1.4 Structure of this paper

	2 Fundamentals of kernelization
	2.1 Preprocessing and reduction rules
	2.1.1 Kernelization and fixed-parameter tractability
	2.1.2 Strict kernelization

	2.2 Are reduction rules identified for kernelization purposes useful in practice?

	3 Augmented intelligence discovery of new reduction rules
	3.1 First step: test the current tools
	3.2 Second step: build intuition by working at the interface
	3.3 Third step: look ahead
	3.4 Fourth step: identify common structure
	3.5 Results of the structural analysis
	3.5.1 Several non-reducible graphs of size nine have all the non-reducible graphs of size eight as subgraphs
	3.5.2 One graph in G8 is a subgraph of 114 out of 118 graphs of G9
	3.5.3 Other alignments
	3.5.4 Other characteristics of the graphs of size 9

	3.6 Partial conclusions
	4 Three new heuristics for finding minimum vertex covers based on k-class edge scores
	4.1 ``Hierarchical optimal'' layering and triangles
	4.2 The truss decomposition of a graph and other necessary definitions
	4.3 The Extended Berra ``Lemma''
	4.4 Final check for redundancies: the necessary final step
	4.5 Greediness guided by a function of the k-class edge scores
	4.6 Three proposed heuristics
	4.6.1 Heuristic 1
	4.6.2 Heuristic 2
	4.6.3 Heuristic 3

	5 Results of the proposed heuristics on benchmark datasets
	5.1 Reduction outcome by the proposed heuristics on BHOSLIB Dataset
	5.2 Reduction outcome by the proposed heuristics on the DIMACS graphs for clique (complement instances) problem
	5.3 Statistical test of the performances of proposed three heuristics
	5.4 Reduction outcome by the proposed h3 heuristic on a small subset of DIMACS Datasets used by asgeirsson2005vertex
	5.4.1 Statistical test of results obtained for datasets used by asgeirsson2005vertex

	6 New reduction rules for k-Vertex Cover?
	7 Discussion and limitations of the study

	8 Conclusions
	Acknowledgements
	A The 10 reduction rules used to test the kernelization performance on benchmark instances
	B Current methods and practices of automated heuristics design
	C Current trends in metaheuristics for this problem
	C.1 More complex heuristics on BHOSLIB Dataset
	C.2 Complex metaheuristics on a subset of DIMACS instances
	C.3 Summary of results
	C.4 Performance comparison with Isolation Algorithm (IA) proposed in HeurspsIA
	References

