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Abstract
In this paper, we propose a heuristic search algorithm based on maximum conflicts
to find a weakly stable matching of maximum size for the stable marriage problem
with ties and incomplete lists. The key idea of our approach is to define a heuristic
function based on the information extracted from undominated blocking pairs from
the men’s point of view. By choosing a man corresponding to the maximum value of
the heuristic function, we aim to not only remove all the blocking pairs formed by the
man but also reject as many blocking pairs as possible for an unstable matching from
the women’s point of view to obtain a solution of the problem as quickly as possible.
Experiments show that our algorithm is efficient in terms of both execution time and
solution quality for solving the problem.
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1 Introduction

The stable marriage (SM) problem, introduced by Gale and Shapley (1962), is a well-
known two-sided matching problem. An SM instance of size n consists of n men and
n women in which each person ranks all members of the opposite sex in strict order
of preference. The problem aims to find a one-to-one-matching between the men
and the women to meet criteria such as egalitarian and sex-equal stable matchings
(Nakamura et al. 1995; Viet et al. 2016, 2020). However, requiring each member
to rank all members of the opposite sex in strict order is obviously unrealistic for
practical applications. Therefore, several extensions of the SM problem have been
proposed (Iwama and Miyazaki 2008). The first popular one is the stable marriage
problem with incomplete lists (SMI) (Irving 1994; Gent et al. 2001), in which each
person may rank only somemembers of the opposite sex, i.e. each person’s preference
list may be incomplete. The second popular one is the stable marriage problem with
ties (SMT) (Iwama et al. 1999; Halldórsson et al. 2003b), in which each person may
rank somemembers of the opposite sexwith indifference, i.e. each person’s preference
list may include ties. If these extensions are combined simultaneously, then we obtain
the stable marriage problem with ties and incomplete lists (SMTI) (Iwama et al. 1999;
Manlove et al. 2002).

Recently, the SMTI problem has received a great deal of attention from the research
community due to its important role in a wide range of applications such as the Hos-
pitals/Residents with Ties (HRT) problem (Irving and Manlove 2009; Munera et al.
2015a;Askalidis et al. 2013), the Student-ProjectAllocation (SPA) problem (Abraham
et al. 2003; Diebold and Bichler 2017) or the Stable Marriage and Roommates prob-
lems (Cseha and Manlove 2016; Cseha et al. 2019). With ties given in preference lists
of SMTI instances, three stability criteria of a matching are defined, including weak
stability, strong stability, and super-stability (Iwama and Miyazaki 2008; Manlove
et al. 2002). Among these definitions, weak stability has received the most attention in
the literature (Adil et al. 2018; Gelain et al. 2010; Manlove et al. 2002; Munera et al.
2015b).

Irving et al. (2009) showed that a weakly stable matching of an SMTI instance
is found by breaking the ties in an arbitrary way and applying the Gale-Shapley
algorithm (1962). Accordingly, we may obtain weakly stable matchings of different
sizes. The aim of the problem is to find a stable matching with maximum size, known
asMAX- SMTI problem (Gent and Prosser 2002; Manlove et al. 2002). However, the
MAX- SMTI problem is NP-hard (Iwama et al. 1999; Irving et al. 2009) and therefore,
finding an efficient algorithm to solve the problem of large sizes is a challenge for
researchers.

In this paper, we propose a max-conflicts based heuristic search algorithm, called
MCS, to solve theMAX- SMTI problem. Our key idea is that, at each iteration,MCS
eliminates some blocking pairs to improve stability of an unstable matching. MCS
repeats until either a perfect matching is found or a maximum number of search steps
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is reached. In the latter case, the found matching is either a maximum stable matching
or an unstable matching. Experimental results show that our algorithm is efficient in
terms of execution time and solution quality for the MAX- SMTI problem of large
sizes.

The rest of this paper is organized as follows. Section 2 presents the definitions
related to the problem, Sect. 3 describes the related work, Sect. 4 presents our MCS
algorithm, Sect. 5 discusses the experimental results, and Sect. 6 concludes our work.

2 Preliminaries

This section gives formal definitions related to the SMTI problem (Gelain et al. 2010;
Iwama et al. 2008). An SMTI instance of size n involves a setM = {m1,m2, . . . ,mn}
of men and a setW = {w1, w2, . . . , wn} of women in which each person ranks some
members of the opposite sex in an order of preference, i.e. the preference list of
each person may include ties and be incomplete. If a man mi ∈ M and a woman
w j ∈ W rank each other in their preference lists, then we say mi and w j find each
other acceptable, or (mi , w j ) is an acceptable pair. We denote rmi (w j ) be the rank of
w j in mi ’s preference list and rw j (mi ) be the rank of mi in w j ’s preference list.

Amatching,M , of anSMTI instance is a set of acceptable pairs such that eachperson
belongs to at most one pair. If a man, mi ∈ M, and a woman, w j ∈ W , form a pair
(mi , w j ) ∈ M , then we saymi andw j are partners inM , denoted byM(mi ) = w j and
M(w j ) = mi . Otherwise, we saymi andw j are singles in M , denoted by M(mi ) = ∅

and M(w j ) = ∅, respectively, and we set rmi (∅) = rw j (∅) = n + 1.
Given a matching M , a man mi ∈ M and a woman w j ∈ W form a blocking pair

(mi , w j ) for M if (i) mi and w j find each other acceptable, (ii) mi is either single in
M or strictly prefers w j to M(mi ), and (iii) w j is either single in M or strictly prefers
mi to M(w j ).

A blocking pair (mi , w j ) dominates a blocking pair (mi , wk) (resp. (mk, w j )) from
the men’s (resp. women’s) point of view if mi (resp. w j ) prefers w j (resp. mi ) to wk

(resp.mk). A blocking pair (mi , w j ) is undominated if there is no other blocking pairs
dominating (mi , w j ) from the men’s (resp. women’s) point of view.

Amatching, M , in an SMTI instance is calledweakly stable if it admits no blocking
pair, otherwise, it is called unstable. A weakly stable matching, M , is called perfect
if all men and women are matched in M , otherwise, it is called non-perfect. The size
of a non-perfect matching, M , is the number of men or women matched in M .

As we will consider only weakly stable matchings, in this paper, we will simply call
a weakly stable matching a stable matching and therefore, the MAX- SMTI problem
is to find a stable matching of maximum size.

We consider an SMTI instance consisting of eight men and eight women with their
preference lists given in Table 1. In the preference lists, for example, we write m3:
w4 (w2 w5) meaning that man m3 strictly prefers woman w4 to women w2 and w5,
which are equally preferred. Some examples of matchings are as follows:

(i) Matching M = {(m1, w1), (m2, w5), (m3,∅), (m4, w6), (m5, w2), (m6, w4),
(m7, w3), (m8,∅), (∅, w7), (∅, w8)} is unstable besause it has five blocking
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Table 1 An SMTI example of size 8

Men’s preference list Women’s preference list

m1: w1 w1: m1 (m5 m6)

m2: w5 (w3 w4 w6) (w7 w8) w2: (m3 m5 m6)

m3: w4 (w2 w5) w3: m6 (m7 m8) m5 m2

m4: (w5 w6) w8 w7 w4: m3 (m2 m6 m7) m5

m5: (w1 w3) (w4 w5) w2 w5: (m5 m7 m8) (m3 m4) m2

m6: (w4 w7) w1 (w2 w3 w8) w6: m2 m7 (m4 m8)

m7: w4 w6 (w3 w5 w7) w7: (m2 m6) m7 m4

m8: w5 w6 w3 w8: (m2 m4) m6

pairs {(m3, w4), (m3, w5), (m5, w5), (m7, w6), (m8, w8)}. Moreover, the block-
ing pair (m3, w4) dominates the blocking pair (m3, w5) from the men’s point of
view since m3 prefers w4 to w5 and the blocking pair (m3, w4) is undominated
since there is no other blocking pairs dominating it from the men’s point of view.

(ii) Matching M = {(m1, w1), (m2, w6), (m3, w4), (m4, w8), (m5, w5), (m6, w7),
(m7, w3), (m8,∅), (∅, w2)} is stable because it admits no blocking pair, where
manm8 and womanw2 are singles. In other words, M is a non-perfect matching
of size 7.

(iii) Matching M = {(m1, w1), (m2, w6), (m3, w4), (m4, w8), (m5, w2), (m6, w7),
(m7, w3), (m8, w5)} is a perfect matching.

3 Related work

In the last few years, theMAX- SMTI problemhas been attractingmuch attention from
both the Operations Research and the Artificial Intelligence communities. Iwama et al.
(1999) proved thatMAX- SMTI isNP-complete, while Manlove et al. (2002) showed
thatMAX- SMTI isNP-complete even if ties occur only on one side of preference lists
and they presented a 2–approximation algorithm for the problem. Irving and Manlove
(2009) introduced a (p, q)–MAX- SMTI problem, i.e. each man’s preference list is
of length at most p and each woman’s preference list is of length at most q. They
presented a (2,∞)–MAX- SMTI algorithm in O(n3/2log(n)) time for MAX- SMTI
instances of size n, where q = ∞ means that the women’s preference lists are of
unbounded length. Then, they also showed that (3, 3)–MAX- SMTI is NP-hard, even
if ties are on one side of preference lists only.

There are several approximation algorithms proposed to consider lower bounds
for theMAX- SMTI problem. An algorithm is called r -approximation for theMAX-
SMTI problem if it always finds a stable matching M with |M | ≥ |Mopt |/r , where
Mopt is a stable matching of maximum size (Király 2013). Halldórsson et al. (2003a)
provided a lower bound on the approximation ratio of 21

19 for MAX- SMTI by using
a reduction from the minimum vertex cover problem. Iwama et al. (2004) proposed
an approximation algorithm based on local search for MAX- SMTI that achieves an
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approximation ratio of (2−c log(n)n ), where c is an arbitrarily positive constant and n is
the size of SMTI instances. Then, Iwama et al. (2005, 2008) improved their algorithm
to achieve a (2 − c 1√

n
)–approximation algorithm forMAX- SMTI, where c is a con-

stant such that c ≤ 1
4
√
6
. Next, the same authors improved their previous algorithms

to achieve the approximation ratio of 1.875 (Iwama et al. 2007). Halldórsson et al.
(2007) extended their algorithm (Halldórsson et al. 2003a) for MAX- SMTI with an
approximation ratio of 13/7(< 1.858) if the lengths of ties in the preference lists are
limited to two. McDermid (2009) proposed a 3

2–approximation algorithm that runs in
O(n3/2L) time, where n is the sum of men and women, and L is the sum of lengths of
the preference lists. While Király (2013) and Paluch (2011, 2014) modified the Gale
and Shapley (1962) algorithm to achieve a 3

2—approximation algorithm that runs in
linear time. Unfortunately, all of the above works do not give experimental evaluations
on SMTI instances.

Constraint programming approaches to solve the variants of the SM problem have
also been studied by several researchers. Gent and Prosser (2002) proposed an empir-
ical study of theMAX- SMTI problem. First, they proposed an algorithm to randomly
generate SMTI instances of three parameters (n, p1, p2), where n is the number of
men or women, p1 is the probability of incompleteness and p2 is the probability of
ties. Then, they applied a constraint programming approach to consider the influence
of parameters p1 and p2 to solution quality. However, their experiments ran for only
SMTI instances of small size (10).Manlove andO’Malley (2005)modeled a givenSMI
instance in terms of a constraint satisfaction problem and applied the arc consistency
propagation (Bessière and Régin 1997) to find all stable matchings.

Recently, local search approaches to deal with the MAX- SMTI problem have
been applied by some researchers. Gelain et al. (2010, 2013) proposed a local search
algorithm, namelyLTIU, forMAX- SMTI. Starting at a randomly generatedmatching,
LTIU tries to find a better one in the neighborhoods of the matching. If a better
matching is found, the current matching is moved to the better one and LTIU repeats
for the current matching. However, since the number of neighborhoods is large and
the computational time to evaluate each neighborhood is O(n2), LTIU is inefficient
for SMTI instances of large sizes. Munera et al. (2015b) modeled MAX- SMTI as
a permutation problem and applied the adaptive search method (Codognet and Diaz
2001), calledAS, to solve the problem. At each iteration,AS selects a variable with the
highest error in a matching and fixes it by moving to a new matching. AS re-evaluates
the new matching to check whether or not it gets stuck in a local minimum and if so,
it calls a reset procedure to overcome this situation. They showed by experiments that
AS is efficient in terms of execution time and is able to solve MAX- SMTI of large
sizes.

4 Algorithm for SMTI

In this section, we propose a max-conflicts based heuristic search, called MCS, to
solve the MAX- SMTI problem. To obtain a stable matching of maximum size, our
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idea is to improve stability of an unstable matching by eliminating some blocking
pairs in iterations of MCS.

4.1 Heuristic definition

Given an unstable matching M , denoted by M = {(· · · ), (mi ,M(mi )), (· · · ),
(M(w j ), w j ), (· · · ), (M(wk), wk), (· · · )}, in which we assume that there exist two
blocking pairs (mi , w j ) and (mi , wk) forM , where (mi , w j ) dominates (mi , wk) from
the men’s point of view. If we remove the blocking pair (mi , w j ) for M to obtain a
matching M ′ in which mi is matched to w j , both M(mi ) and M(w j ) become singles
and the other pairs remain unchanged, i.e. M ′ = {(· · · ), (mi , w j ), (· · · ), (M(w j ),∅),
(· · · ), (M(wk), wk), (∅,M(mi ))}, then the blocking pair (mi , wk) for M ′ is removed.
This is because if (mi , wk) is a blocking pair for M ′, then rmi (wk) < rmi (w j ) and
rwk (mi ) < rwk (M

′(mk)). However, this is a contradiction since (mi , w j ) dominates
(mi , wk) from the men’s point of view, i.e. rmi (w j ) < rmi (wk). As a result, when
(mi , w j ) is an undominated blocking pair (UBP) from the men’s point of view for M
and if we remove (mi , w j ), then all the blocking pairs formed by manmi are removed
for M ′. Likewise, if we remove an UBP (mi , w j ) from the women’s point of view,
then all the blocking pairs formed by woman w j are removed for M ′.

Let X = {(mi , w j ) | mi ∈ M, w j ∈ W} denote a set of UBPs from the men’s
point of view for an unstable matching M . For each (mi , w j ) ∈ X , there exist no
blocking pairs dominating (mi , w j ) from the men’s point of view, meaning that mi

appears once, while w j may appear many times in X . Let ubp(w j ) be the number of
UBPs formed by woman w j ∈ X , we define a heuristic function as follows:

h(mi ) = n × ubp(w j ) − rw j (mi ), for all (mi , w j ) ∈ X .

At each search step, we choose a pair (mi , w j ) ∈ X such that h(mi ) has the maximum
value. Since (mi , w j ) is a UBP, (mi , w j ) is an acceptable pair or 0 < rw j (mi ) ≤ n.
This means that h(mi ) ≥ 0 for all (mi , w j ) ∈ X . If a pair (mi , w j ) is chosen such
that h(mi ) is maximum, meaning that n × ubp(w j ) is maximum, while rw j (mi )

is minimum. Moreover, since ubp(w j ) is weighted with n, meaning that woman w j

making the maximum number ofUBPs is selected first. Then, among pairs (mi , w j ) ∈
X formed by w j , a man mi is selected such that rw j (mi ) is minimum. By removing
such a selected pair (mi , w j ) at each search step, all the blocking pairs formed by man
mi are removed. Moreover, since womanw j most prefersmi to the others inUBPs, if
we remove (mi , w j ), all the blocking pairs formed by w j and men, mk , in which w j

prefers mi to mk will be removed, meaning that we remove as many blocking pairs as
possible from the women’s point of view in the current matching.

We will show that our heuristic will return a stable matching after a finite number
of steps of removing UBPs. Indeed, when we remove an UBP (mi , w j ) ∈ X for M to
obtain a matching M ′, then M(w j ) and M(mi ) become singles in M ′.

i. If w j is single in M , i.e. M(w j ) = ∅, then mi is matched to w j and mi does not
form any blocking pair for M ′.
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ii. Ifw j is not single in M , then M(w j ) is single in M ′ and keeps single until a some
matching M ′′ is reached, i.e. rM(w j )(∅) = n + 1, in which:

– If there exists no woman wz in M ′′ such that rwz (M(w j )) < rwz (M
′′(wz)),

then M(w j ) keeps single and does not form any blocking pair for M ′′.
– If there exists a woman wz in M ′′ such that rwz (M(w j )) < rwz (M

′′(wz)),
then M(w j ) andwz form a blocking pair for M ′′. After removing the blocking
pair (M(w j ), wz) for M ′′, M(w j ) is matched to wz and all the blocking pair
formed by M(w j ) is removed for M ′′.

Consequently, if there exist blocking pairs formed by a man mi for a matching
M , meaning that there exists an UBP (mi , w j ) ∈ X for M . After a finite number of
steps of removingUBPs, M(w j )will become single or be matched to a some woman,
and both mi and M(w j ) do not form any blocking pair. This means our heuristic will
return a stable matching after a finite number of steps.

We consider an SMTI example in which the preference lists given in Table 1. We
assume that given amatchingM = {(m1, w1), (m2, w6), (m3, w4), (m4, w8), (m5,∅),
(m6, w2), (m7, w7), (m8,∅), (∅, w3), (∅, w5)}, then the set of UBPs from the men’s
point of view for M is X = {(m2, w5), (m4, w5), (m5, w3), (m6, w7), (m8, w5)}.
Therefore, we have ubp(w3) = 1, ubp(w5) = 3, ubp(w7) = 1 and h(m2) = 21,
h(m4) = 22, h(m5) = 5, h(m6) = 7, h(m8) = 23. Table 2 shows five cases for
removing (mi , w j ) ∈ X to obtain a matching M ′ and a set X ′ of UBPs for M ′.
Obviously, if (m8, w5) is chosen to remove, i.e. h(m8) is maximum, then M results
in a matching M ′ which has the smallest number of UBPs for M ′.

4.2 MCS algorithm

The aim of the MAX- SMTI problem is to find a stable matching of maximum size,
meaning that we have to define a function to evaluate the quality of matchings. Given
a matching M , we define an evaluation function, f (M), for M is as follows. If M is a
stable matching, then f (M) is the number of singles in M , otherwise, f (M) = n. As
such, a stable matching M of maximum size has the smallest value of f (M) and if M
is perfect then f (M) = 0. Our MCS algorithm is shown in Algorithm 1. MCS starts
to find a maximum stable matching, Mbest , from a randomly generated matching, M
(lines 1–2). At each iteration,MCS runs as follows. First, it finds a set X of UBPs for
M by Algorithm 2 (line 6). Second, it checks if X is empty, i.e. M is a stable matching,
then if Mbest is worse than M in terms of the number of singles, it assigns M to Mbest

(lines 8–10). If it reaches a local minimum, it overcomes this situation by Algorithm 3
and continues the next iteration (lines 11–13), otherwise, it returns a perfect matching,
Mbest . Third, it counts the number ofUBPs, ubp(w j ), formed by eachwomanw j ∈ X
(lines 18–20) and determines heuristic values, h(mi ), for every man mi ∈ X (lines
21–23). Fourth, it takes a randommanm j ∈ X with a small probability of p, or takes a
man m j ∈ X corresponding to the maximum value of h(m j ) (lines 24–28). However,
if several men have the samemaximum value of h(m j ), it randomly picks one. Finally,
it removes the UBP (m j ,M(m j )) for M to obtain a new matching (line 29). MCS
performs iteratively until either a perfect matching is found (line 15) or a maximum
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Algorithm 1: Max-Conflicts based Heuristic Search Algorithm
Input: - An SMTI instance I of size n.

- A small probability p.
- The maximum number of iterations max_i ters.

Output: A matching M .
1. function Main(I)
2. M := a randomly generated matching;
3. Mbest := M ;
4. iter := 0;
5. while (i ter ≤ max_iters) do
6. X := Find_UBPs(M);
7. if (X = ∅) then
8. if ( f (Mbest ) > f (M)) then
9. Mbest := M ;
10. end
11. if ( f (Mbest ) > 0) then
12. M := Escape_Local_Minima(M);
13. continue;
14. else
15. break;
16. end
17. end
18. for (each mi ∈ X) do
19. ubp(w j ) := ubp(w j ) + 1, where (mi , w j ) ∈ X ;
20. end
21. for (each mi ∈ X) do
22. h(mi ) := n ∗ ubp(w j ) − rw j (mi ), where (mi , w j ) ∈ X ;

23. end
24. if (a small probability of p) then
25. m j := a random man mi ∈ X ;
26. else
27. m j := argmax(h(mi )), ∀mi ∈ X ;
28. end
29. M := removing the bloking pair (m j ,M(m j ));
30. i ter := i ter + 1;
31. end
32. return Mbest ;
33. end function

number of iterations is reached. In the latter case, MCS returns either a maximum
stable matching or an unstable matching. It should be noted that there always exists a
stablematching for an SMTI instance (Irving et al. 2009) and therefore, ifMCS returns
an unstable matching, then we have to increase the maximum number of iterations so
that MCS returns either a non-perfect or perfect matching.

The function to determine a set X ofUBPs for a matching is shown in Algorithm 2.
For each man mi ∈ M, the function sorts the mi ’s rank list in ascending order. Then,
it considers each woman wk in mi ’s rank list such that man mi most prefers wk to his
partner w j , i.e. rmi (wk) < rmi (w j ). If (mi , wk) forms a blocking pair, meaning that
(mi , wk) is an UBP, the function adds the pair (mi , wk) to X and repeats for the next
man.We note that if a man,mi , is being single in M thenw j = ∅ and rmi (∅) = n+1.
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Table 2 Removal of UBPs for matching M with SMTI given in Table 1

Remove M ′ X ′

(m2, w5) (m1, w1), (m2, w5), (m3, w4), (m4, w8),
(m5,∅), (m6, w2), (m7, w7), (m8,∅),
(∅, w3), (∅, w6)

(m4, w5), (m5, w3), (m6, w7),
(m7, w6), (m8, w5)

(m4, w5) (m1, w1), (m2, w6), (m3, w4), (m4, w5),
(m5,∅), (m6, w2), (m7, w7), (m8,∅),
(∅, w3), (∅, w8)

(m5, w3), (m6, w7), (m8, w5)

(m5, w3) (m1, w1), (m2, w6), (m3, w4), (m4, w8),
(m5, w3), (m6, w2), (m7, w7), (m8,∅),
(∅, w5)

(m2, w5), (m4, w5), (m6, w7),
(m8, w5)

(m6, w7) (m1, w1), (m2, w6), (m3, w4), (m4, w8),
(m5,∅), (m6, w7), (m7,∅), (m8,∅),
(∅, w3), (∅, w5), (∅, w2)

(m2, w5), (m4, w5), (m5, w3),
(m7, w3), (m8, w5)

(m8, w5) (m1, w1), (m2, w6), (m3, w4), (m4, w8),
(m5,∅), (m6, w2), (m7, w7), (m8, w5),
(∅, w3)

(m5, w3), (m6, w7)

Algorithm 2: Find a set of UBPs for a matching
Input: A matching M .
Output: a set X of UBPs.

1. function Find_UBPs(M)
2. X := ∅;
3. for (each man mi ∈ M) do
4. w j := M(mi ); � w j is the partner of mi ∈ M
5. sort mi ’s rank list in ascending order;
6. for (each wk ∈ mi ’s rank list | rmi (wk ) < rmi (w j )) do
7. if ((mi , wk ) is a blocking pair) then
8. X := X ∪ (mi , wk );
9. break;
10. end
11. end
12. end
13. return X ;
14. end function

In our approach, we consider two cases of local minima. The first one is whenMCS
gets stuck in an unstable matching by using the heuristic function, and it performs a
random walk with a small probability of p to overcome this problem. The second
one is when MCS gets stuck in a non-perfect matching with bad quality in terms
of matching size, and we propose the function shown in Algorithm 3 to solve this
problem. Specifically, when MCS found a non-perfect matching, it has no way of
knowing whether or not it has reached a maximum stable matching. Therefore, we
improve this matching to obtain a better one in terms of larger size.When amatching is
non-perfect, the number of single men is equal to that of single women. Therefore, the
ability to escape a local minimum of choosing randommen is equal to that of choosing
random women. To escape from a local minimum, the function checks if a probability
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Algorithm 3: Escape from local minima
Input: A matching M .
Output: A matching M .

1. function Escape_Local_Minima(M)
2. if (a probability p ≤ 0.5) then
3. U := {mi | M(mi ) = ∅};
4. m j := a random man mi ∈ U ;
5. for (each wk ∈ m j ’s pref. list) do
6. if (wk is not single in M) then
7. break pair (M(wk ), wk ) into two singles, M(wk ) and wk ;
8. end
9. end
10. else

11. end
12. V := {wi | M(wi ) = ∅};
13. w j := a random woman wi ∈ V ;
14. for (each mk ∈ w j ’s pref. list ) do
15. if (mk is not single in M) then
16. break pair (mk ,M(mk )) into two singles, mk and M(mk );
17. end
18. end
19. return M ;
20. end function

of p ≤ 0.5, then it takes a random man, m j , in the set of single men (lines 3–4).
Otherwise, it takes a random woman, w j , in the set of single women (lines 11–12). If
a manm j is chosen, the function selects every woman,wk , inm j ’s preference list and
breaks pair (M(wk), wk) into two singles, M(wk) and wk (lines 5–9). Otherwise, if a
woman w j is chosen, the function selects every man, mk , in w j ’s preference list and
breaks pair (mk,M(mk)) into two singles,mk and M(mk) (lines 13–17). By doing so,
our approach generates a new matching, in which the number of blocking pairs for the
matching is much smaller than that for a randomly generated matching. This allows
MCS to find a maximum stable matching much more quickly than if it were to restart
from a matching generated randomly.

4.3 Example

We reconsider the SMTI instance consisting of eight men and eight women with
their preference lists given in Table 1. We assume that the probability to choose
a random UBP of MCS is p = 0 and MCS starts from a random matching M
= {(m1, w1), (m2, w6), (m3, w4), (m4, w8), (m5,∅), (m6, w2), (m7, w7), (m8,∅),
(∅, w3), (∅, w5)}, where f (M) = 8. MCS assigns M to Mbest and runs iterations
given in Table 3. At the first iteration, MCS finds a set X of UBPs for M , counts the
number of blocking pairs formed by each woman w j ∈ X , finds h(mi ) for each man
mi ∈ X . Because h(m8) has themaximumvalue at 23,MCS removes the pair (m8, w5)

inM to obtain a newmatchingM = {(m1, w1), (m2, w6), (m3, w4), (m4, w8), (m5,∅),
(m6, w2), (m7, w7), (m8, w5), (∅, w3)}. MCS repeats until the fifth iteration, where
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X is empty and f (M) = 0. Since f (Mbest ) > f (M), M is assigned to Mbest , i.e.
f (Mbest ) = 0, and therefore, MCS returns a perfect matching Mbest = {(m1, w1),
(m2, w6), (m3, w4), (m4, w8), (m5, w2), (m6, w7), (m7, w3), (m8, w5)}.

5 Experiments

In this section, we present experimental results to evaluate the efficiency of ourMCS
algorithm. To do so, we compared the execution time and solution quality found by
MCS with those found by LTIU (Gelain et al. 2010, 2013) and AS (Munera et al.
2015b). Both LTIU and AS are chosen to compare with MCS since they are local
search algorithms that solve efficiently the MAX- SMTI problem. In addition, we
performed experiments to consider the behaviour ofMCS for SMTI instances of large
sizes. We ran the experiments of MCS, LTIU and AS algorithms in Matlab R2017a
software environment on a laptop computer with Core i7-8550U CPU 1.8 GHz and
16 GB RAM on Windows-10.1

For experiments, we used the random problem generator given in Gent and Prosser
(2002) to generate SMTI instances with three parameters (n, p1, p2), where n is the
size, p1 is the probability of incompleteness and p2 is the probability of ties. It should
be noted that the problem generator creates SMTI instances in which the men’s and
women’s preference lists of each instance have only acceptable pairs. For example,
Table 1 shows an SMTI instance of parameters (8, 0.5, 0.5), where ties in preference
lists are given in braces.

In our experiments, SMTI instances of size n are generated by letting p1 vary
in [0.1, 0.8] with step 0.1 (the preference lists of SMTI instances are mostly empty
for p1 > 0.8), p2 vary in [0.0, 1.0] with step 0.1. Because MCS, LTIU and AS
find maximum stable matchings of SMTI instances from random matchings, for each
instance, we generated a random matching as an input used for both MCS, LTIU
and AS algorithms. We ran MCS in which the probability to take a random UBP is
p = 0.03.

5.1 Comparison with LTIU

We first compare the execution time and solution quality ofMCS with those of LTIU.
For each combination of parameters (p1, p2), we generated 50 SMTI instances of size
100 and averaged the results. The maximum number of iterations in MCS and LTIU
is 3000.

Figure 1a shows the average execution time ofMCS andLTIU for findingmaximum
stablematchings of the instances. The execution time of bothMCS andLTIU increases
significantly when p1 increases from 0.1 to 0.8, but it increases slightly when p2
increases from 0.0 to 1.0. Moreover, this experiment shows that MCS runs about 90
times faster than LTIU for p1 varying from 0.1 to 0.8, as shown in Fig. 1b (thus, we
use a log10 scale of execution time). These results can be explained as follows. For
an SMTI instance of size n, at each iteration LTIU takes O(n2) time to determine the

1 Source codes are available at https://github.com/vietjho/heur.
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Fig. 1 The average execution time ofMCS and LTIU algorithms

set of UBPs for a matching. By removing each blocking pair in the set of UBPs to
generate a neighborhood, LTIUwill achieve the set of neighborhoods of the matching.
Since the cost of a matching is computed in O(n2) time, LTIU has to take O(n3)
time to determine the cost of neighborhoods for finding the best matching in the set
of neighborhoods of the current matching. Obviously, the larger the size of SMTI
instances is, the slower LTIU runs. However, at each iteration,MCS takes only O(n2)
time to determine the set of UBPs and removes only one in the set of UBPs based on
the heuristic function to generate a new matching for the next iteration. This allows
MCS to run much faster than LTIU.

Figure 2 shows the percentage of stable matchings found byMCS and LTIU algo-
rithms. MCS finds 100% of stable matchings, while LTIU does not always find such
matchings, especially for p2 varying from 0.1 to 0.6. Figure 3 shows the percentage
of perfect matchings found byMCS and LTIU. For p1 varying from 0.1 to 0.5,MCS
always finds 100% of perfect matchings. For p1 varying from 0.6 to 0.8, MCS finds
the percentage of perfect matchings that are higher than those found by LTIU. This
can be explained as follows. When a found matching is non-perfect, LTIU applies a
restart strategy to generate a new randommatching for the next iteration. This means if
the maximum number of iterations is very large, LTIU can find perfect matchings with
a higher percentage, but it also takes much more runtime for this task. However, in
these experiments, the maximum number of iterations is 3000, therefore LTIU cannot
obtain a higher percentage of perfect matchings, but by such maximum number of
iterations,MCS outperforms LTIU in terms of execution time and solution quality.

5.2 Comparison with AS

As shown in Munera et al. (2015b), SMTI instances of size 100 are easy to solve with
the AS algorithm. Therefore, for each combination of parameter values (p1, p2), we
generated 50 SMTI instances of size 500 and averaged the results to compare MCS
with AS. The maximum number of iterations inMCS and AS is 3000.

Figure 4 shows the average execution time of both MCS and AS for finding max-
imum stable matchings of the instances. For p2 varying from 0.0 to 0.9, MCS runs
about 2 times faster than AS. When p2 = 1.0, both MCS and AS run much slower
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Fig. 2 The percentage of stable matchings found byMCS and LTIU algorithms
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Fig. 3 The percentage of perfect matchings found by MCS and LTIU algorithms

compared with p2 varying from 0.0 to 0.9. These results can be explained as follows.
At each iteration, AS takes O(n2) time to determine both a set of UBPs and the cost
of a matching. After removing the worst blocking pair, i.e. a man with the highest
error, in the set of UBPs to obtain a new matching, AS has to compute the cost of
the new matching to compare to the previous one for checking whether or not it has
reached a local minimum. This meansAS takes O(n2) time to findUBPs and is added
to O(n2) time to evaluate the quality of two matchings at each iteration. In contrary,
as explained before,MCS takes only O(n2) time to find a set ofUBPs for a matching.
Therefore, MCS runs about 2 times faster than AS in general.

Figure 5a shows the average number of iterations used byMCS and AS for finding
a maximum stable matching. Excepting for p2 = 1.0, AS needs a fewer number
of iterations (about 650 iterations) than MCS (about 850 iterations). However, the
average execution time of MCS is smaller than that of AS, meaning that at each
iteration AS takes much more computational time than MCS. Figure 5b shows the
average number of calling the functions to escape from local minima inMCS and AS
(i.e. the reset number). When p2 varies from 0.0 to 0.9,MCS always overcomes local
minima without calling the escape function.MCS only calls the escape function a few
times when p2 = 1.0. In contrary, AS calls the escape function about 400 times for
any given p2. This also contributes to increase the execution time of AS compared to
that of MCS.
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Next, we compare the quality of matchings found by MCS and AS algorithms.
The experimental results show that for any given values of parameters (p1, p2),MCS
always finds all the stable matchings, while AS still finds some unstable matchings
on the SMTI instances. When p2 varies from 0.0 to 0.9, MCS always finds all the
perfect matchings, butAS still finds a few non-perfect matchings. When p2 = 1.0 and
p1 varies from 0.1 to 0.7, MCS finds more than 90% of perfect matchings as shown
in Fig. 6a, and the others are non-perfect matchings which have only one single as
shown in Fig. 6b. In contrary, AS finds less than 90% of perfect matchings as shown
in Fig. 6a, and the others are non-perfect matchings which have more than one single
as shown in Fig. 6b. Especially, when p1 = 0.8 and p2 = 1.0, AS does not find
any perfect matchings, while MCS finds about 55% of perfect matchings as shown
in Fig. 6a. The experimental results demonstrate that although AS always evaluates
the cost of the new matching to compare to the previous one to avoid getting stuck in
a local minimum at each iteration, MCS outperforms AS in terms of finding perfect
matchings. This is because, at each iteration, MCS always selects a woman making
the maximum numbers of UBPs and a man in the woman’s preference list so that
the woman most prefers the man to the others in UBPs, then MCS removes the UBP
formed by the man and woman, therefore MCS can remove as many blocking pairs
as possible for a matching to achieve a new matching not only more quickly than AS
but also better than that found by AS by mean of the matching cost.
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Fig. 6 The percentage of perfect matchings and the average number of singles in non-perfect matching
found byMCS and AS algorithms when p2 = 1

5.3 Experiments for SMTI of large sizes

In this section, we aim to evaluate the behaviour of our MCS for SMTI instances of
large sizes. To do this, we randomly generated SMTI instances of sizes n = 500, 700,
900 and 1200 in which p1 = 0.5 and p2 varying from 0.0 to 1.0 with step 0.1. For
each combination of parameters (n, p1, p2), we randomly generated 50 instances and
averaged the results. The maximum number of iterations in MCS is 5000.

First, we consider the execution time of MCS. Figure 7a shows that, for each
given value of n, the average execution time of MCS is almost the same when p2
varies from 0.0 to 0.9. However, when p2 = 1.0 the average execution time of MCS
increases rapidly, especially for n = 1200. It should be emphasized that when the
size of SMTI instances is 1200, the SMTI problem has a huge search space (1200! =
103175) but MCS takes only about 230 s when p2 varies from 0.0 to 0.9 and about
500 s when p2 = 1.0. Figure 7b shows the average number of iterations used by
MCS. We see that the average number of iterations used by MCS decreases when p2
increases. Moreover, MCS does not exceed 2500 iterations for n = 1200. It should
be reminded that, as shown in Fig. 7a, when p2 = 1.0, the average execution time
of MCS suddenly increases, especially for n = 1200, while the average number
of iterations decreases. This is explained as follows. In MCS, at each iteration, the
time complexity to determine a set of UBPs is O(n2), while the time complexity to
determine ubp(w j ), as well as h(mi ), is O(n) only. Therefore, the time complexity of
MCS depends strongly on the time complexity of determining UBPs for a matching.
When p2 = 1.0, i.e. ties are generated with the probability of 1.0, the rank list of
all of the men consists of value 1. Therefore, the function to determine UBPs for a
matching has to consider all the women, wk , in every rank list of every man, mi , to
check whether or not man mi prefers wk to his partner w j for finding a set of UBPs.
This contributes significantly to the increasing in execution time when p2 = 1.0.

Next, we consider local minima detected in iterations of MCS. Figure 8a shows
that in a small number of iterations as shown in Fig. 7b, MCS calls a few times the
escape function to overcome local minima. Figure 8b gives an example of the average
number ofUBPs for matchings found in iterations. The average number ofUBPs does
not exceed the size of SMTI instances. When p2 varies from 0.0 to 0.9, the number of
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Fig. 8 The average number of calling the escape function and the average number of UBPs

UBPs decreases when the number of iterations increases, meaning thatMCS does not
meet any local minimum while searching for perfect matchings of SMTI instances.
However, when p2 = 1.0, the number of UBPs suddenly increases at a few iteration
steps, meaning thatMCS meets local minima and it has to call the escape function to
avoid getting stuck in such situations. However, the number of UBPs for a matching
generated by the escape function is much smaller than that of the matching generated
randomly at the beginning ofMCS andmoreover, the average number to call the escape
function, as shown in Fig. 8a, of MCS is just a few times. These reasons contribute
significantly to accelerate the search for perfect matchings of SMTI instances.

Finally, we consider the quality ofmatchings found byMCS for theSMTI instances.
As shown in Fig. 3, when the size ofSMTI instances is 100,MCSfinds 100%of perfect
matchings for only p1 varying from 0.1 to 0.5 and p2 varying from 0.0 to 1.0. But
when the size of SMTI instances is 500,MCS finds 100% of perfect matchings for p1
varying from 0.1 to 0.8 and only p2 varying from 0.0 to 0.9. However, the experimental
results for SMTI instances of sizes 700, 900 and 1200 show that MCS always finds
100% of perfect matchings. This means that MCS finds easily perfect matchings for
SMTI instances of large sizes. These results can be explained as follows. If the size of
SMTI instances is small, when the values of p1 and p2 increase, the preference lists of
men and women become sparse and contain many ties. However, if the size of SMTI
instances is large, when the values of p1 and p2 increase, the men’s and women’s
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preference lists contain many ties but they are not sparse as those in SMTI instances
of small sizes, and therefore MCS is easily to find perfect matchings than those for
SMTI instances of small sizes.

6 Conclusions

This paper proposed a max-conflicts based heuristic search algorithm, called MCS,
to solve the MAX- SMTI problem. Our algorithm starts to search a solution of the
problem from a random matching. At each iteration, we define a heuristic function
based on undominated blocking pairs of an unstable matching from the men’s point of
view. Then, we remove an undominated blocking pair corresponding to the maximum
value of the heuristic function to not only remove all the blocking pairs formed by the
man but also reject as many blocking pairs as possible from the women’s point of view.
Our algorithm repeats until it finds a perfectmatching or reaches amaximumnumber of
search steps. In the latter case, the foundmatching is either amaximumstablematching
or an unstable matching. Experiments showed that our algorithm outperforms LTIU
andAS algorithms in terms of execution time and solution quality for theMAX- SMTI
problem. In the future, we plan to extend the proposed approach to the StableMatching
with Uncertain Linear Preferences (Aziz et al. 2020) or Hospitals/Residents with Ties
(HRT) problems (Askalidis et al. 2013).
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