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Abstract
In Software Product Lines, it may be difficult or even impossible to test all the products
of the family because of the large number of valid feature combinations that may exist
(Ferrer et al. in: Squillero, Sim (eds) EvoApps 2017, LNCS 10200, Springer, The
Netherlands, pp 3–19, 2017). Thus, we want to find a minimal subset of the product
family that allows us to test all these possible combinations (pairwise). Furthermore,
when testing a single product is a great effort, it is desirable to first test products
composed of a set of priority features. This problem is called Prioritized Pairwise
Test Data Generation Problem. State-of-the-art algorithms based on Integer Linear
Programming for this problem are faster enough for small and medium instances.
However, there exists some real instances that are too large to be computed with these
algorithms in a reasonable time because of the exponential growth of the number of
candidate solutions. Also, these heuristics not always lead us to the best solutions. In
this workwe propose a new approach based on a hybridmetaheuristic algorithm called
Construct, Merge, Solve & Adapt. We compare this matheuristic with four algorithms:
aHybrid algorithmbased on Integer Linear Programming, aHybrid algorithmbased on
Integer Nonlinear Programming, the Parallel Prioritized Genetic Solver, and a greedy
algorithm called prioritized-ICPL. The analysis reveals that CMSA is statistically
significantly better in terms of quality of solutions in most of the instances and for
most levels of weighted coverage, although it requires more execution time.
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1 Introduction

Software Product Lines (SPLs) are used to achieve a more efficient software devel-
opment and management of the variability of software products, reducing the costs
and time to market, as well as maintenance costs (Pohl et al. 2005). These product
lines carry a great variability within products of the same family of products. This
variability is due to the mass customization and it implies a great challenge when
we face the task of testing because of the combinatorial explosion in the number of
products (Engström and Runeson 2011).

Many proposals have arisen having into account these difficulties (Cohen et al.
2008). Some of these are based on pairwise testing (Lopez-Herrejon et al. 2013; Oster
et al. 2010; Perrouin et al. 2012), where each possible combination of two features
must be present in at least one product. Some combinations can be more important
than others, introducing a priority among configurations or features. In this case, a
weight is assigned to each configuration, which can be derived from weights assigned
to products. The optimization problem that we want to solve consists in finding a set
of products with the minimum cardinal covering all weighted configurations. Addi-
tionally, we want to sort the products in such a way that we first test the products
containing higher priority features.

Recent state-of-the-art proposals on pairwise testing include hybrid algorithms,
mixing heuristics with exact algorithms (Ferrer et al. 2017). Henard et al. (2014) pro-
posed a similarity measure to build test suites by adding the most dissimilar products.
In this way, they designed a very fast search-based algorithm for t-wise test data gen-
eration. Also, there are other proposals dealing with multiple objectives (Henard et al.
2015;Xue andLi 2018), however, none of them take into account feature priorities (nor
weights) like we do in this work. Other many-objective approaches such as Hierons
et al. (2016) define the violation of model constraints as an objective. This approach
might lead us to a solution which violates some constraints.

The hypothesis for this work is that a hybrid matheuristic approach can improve
the performance on large instances of the problem, particularly, generating in a prob-
abilistic way new sub-instances of the problem that are combined and solved with an
exact algorithm in order to find the best solutions to the whole problem.

Our main contribution is the adaptation of a new approach based on a matheuris-
tic named Construct, Merge, Solve and Adapt to solve the Prioritized Pairwise
Test Data Generation Problem. In order to validate the benefits of our proposal we
compare the results with four algorithms: two hybrid algorithms based on integer pro-
gramming (Ferrer et al. 2017), one with a linear formulation (HILP) and the other
one with a nonlinear formulation (HINLP); the Parallel Prioritized Genetic Solver
(PPGS) (Lopez-Herrejon et al. 2014); and a greedy algorithm called prioritized-ICPL
(Johansen et al. 2012).

The rest of the article is divided into seven sections. In the next section we introduce
the background required to understand both the problem and the algorithm that we
propose. Section 3 is devoted to the formalization of the Prioritized Pairwise Test
Data Generation Problem. In Sect. 4, we explain the design and implementation of
the CMSA adaptation to the Prioritized Pairwise Test Data Generation Problem. In
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Fig. 1 Graph Product Line feature model

Sect. 5, we briefly explain the algorithms in the comparison and the experimental
setup. Results are analyzed in Sect. 6 and we present our conclusions in Sect. 7.

2 Background

2.1 Feature models

Feature models are used in SPLs to define the functionality of a product within a
software family as a single combination of features. Models can also represent the
constraints that exist between features. A hierarchical tree structure is used to charac-
terize a feature model, where the nodes of the tree are features and the edges represent
relationships between these features.

Figure 1 represents the feature model of a classical problem in the evaluation
of product-line methodologies, the Graph Product Line (GPL) (Lopez-Herrejon and
Batory 2001).

There exist four types of relationships between features, differentiated graphically
in the feature model:

– Mandatory These features are selected when their parent is selected. For example,
in the Graph Product Line model, Driver, Benchmark, GraphType and Algorithms
are present in all the products of the family.

– Optional They can be or not be selected, like for example, the Weight or Search
features.

– XOR relations In these cases only one of the features of the group must be selected
when the parent feature is selected. DFS and BFS features are of this kind in the
Graph Product Line model.

– Inclusive-or This last kind of relation indicates that at least one of the features
of the group must be selected when its parent feature is selected. In the example,
when the feature Algorithms is selected, at least one of the group {Num, CC, SCC,
Cycle, Shortest, Prim and Kruskal} must be selected.
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Fig. 2 CMSA flow graph (image by C. Blum)

There are two other types of constraints over the model, called Cross-Tree Con-
straints (CTC): requires and excludes. In the Graph Product Line feature model, we
can observe these kind of constraints below the tree structure. For example “Num
requires Search” implies that when the Num feature is selected, the Search feature
must be selected as well. On the other hand, “Kruskal excludes Prim” implies that
when the Kruskal feature is selected, the Prim feature must not be selected.

It can easily be seen that these constraints can be formalized using propositional
logic.

2.2 Construct, merge, solve and adapt

Matheuristics are techniques that combine metaheuristics and mathematical program-
ming techniques. The Construct, Merge, Solve & Adapt (CMSA) algorithm is a
matheuristic for combinatorial optimization introduced by Blum et al. (2016). Before
describing the algorithm we present some concepts.

Given a problem P , let C be the set of all possible components of the solution to
the instance of our problem I . C is called the complete set of solution components
with respect to I . A valid solution S to I is represented as a subset of the solution
components, that is, S ⊆ C . Finally, a sub-instance C ′ of I is a subset of the set of
solution components, so C ′ ⊆ C . The idea of the algorithm is the following (flow
graph in Fig. 2).

While the time limit established is not reached:

1. First, it generates na solutions of the main instance of the problem I .
2. All the components belonging to the generated solutions are merged to form a

sub-instance of the problem, C ′.
3. An exact algorithm is applied to the sub-instance C ′, expecting that the solution

for C ′ is (quasi-)optimal for C .
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4. The solution is compared with the best solution found at the moment and C ′ is
updated accordingly with a defined aging policy, mostly deleting useless solution
components.

The algorithm (see Algorithm 1) has two key components that have to be defined
accordingly for the target problem:

– A solution generator: based on some randomized strategy and providing high
quality solutions.

– An exact solver for the sub-instances: for example, based on ILP or other exact
algorithm.

Algorithm 1: Construct, Merge, Solve & Adapt (CSMA)
1 input: set of problem components C , values for parameters na and agemax
2 best Solution := C
3 subI nstance := ∅

4 age[c] := 0 for all c ∈ C
5 while CPU time limit not reached do
6 for t = 1, …, na do
7 probSolution := ProbabilisticSolution(C)
8 for all x ∈ probSolution and x /∈ subI nstance do
9 age[x] := 0

10 subI nstance := subI nstance ∪ {x}
11 end
12 end
13 exact Solution := ExactSolver(subI nstance)
14 if exact Solution is better than best Solution then
15 best Solution := exact Solution
16 end
17 Adapt(subI nstance, exact Solution, agemax ) //aging and discard mechanisms
18 end
19 output: best Solution

With the aim of clarifying the behaviour of the algorithm, we are going to describe it
informally. Once the algorithm has an initial population (several test suites), it merges
all the different productswhich comprises the test suites. Then, an exact solver selects a
test suite, from the set of products, with minimum cardinality aiming at total weighted
coverage, which is at least as good as the best known. Then, the algorithm execute
the Adapt method (Algorithm 1, Line 17). The algorithm increments the age of the
products not used in the new solution.When the age of a product is over a threshold, the
product is discarded. In Sect. 4, we explain how we adapt the algorithm to prioritized
SPL.

3 Problem formalization: prioritized pairwise test data generation

Now we present the terminology related to Combinatorial Interaction Testing (CIT).
This approach builds a set of samples that allow to test different system configurations
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(Nie and Leung 2011).When we apply this approach to SPL testing, the set of samples
is a subset of the products of the family. Next, we introduce the concepts that will lead
us to the Prioritized Pairwise Test Data Generation Problem.

Definition 1 (Feature list) A feature list F L is the list of all the features in a feature
model. The feature list of the running example shown in Fig. 1 is the following:

F L = {GPL, Driver, Benchmark, GraphType, Directed, Undirected, Weight,
Search, DFS, BFS, Algorithms, Num, CC, Prim, SCC, Kruskal, Cycle, Shortest}.

Definition 2 (Product) A product is represented by a pair (S, S̄), where S is a subset
of a feature list F L , S ⊆ F L . Thus, S̄ = F L − S. For example, a product p could be
Benchmark selected and the rest of features unselected.

p=({Benchmark},{GPL,Driver,GraphType,Directed,Undirected,Weight, Search,
DFS, BFS, Algorithms, Num, CC, Prim, SCC, Kruskal, Cycle, Shortest})

Definition 3 (Valid product) We say that a product p is valid with respect a feature
model f m iff p.S and p.S̄ do not violate any constraint described by the featuremodel.
The set of all valid products of a feature model is denoted by P f m . For example, a
valid product vp is GPL, Driver, Benchmark, GraphType, Directed, Algorithms, Num,
Search, and DFS selected and the rest of features unselected.

vp=({GPL, Driver, Benchmark, GraphType, Directed, Algorithms, Num, Search,
DFS},{Undirected, Weight, BFS, CC, Prim, SCC, Kruskal, Cycle, Shortest})

Definition 4 (Pair) A pair pr is a tuple (s, s̄), where s and s̄ represent two disjoint
feature sets from a feature list F L , which union has two different features. That is,
pr .s ∪ pr .s̄ ⊆ F L , pr .s ∩ pr .s̄ = ∅ and |pr .s ∪ pr .s̄| = 2. A pair pr is covered by
a product p iff pr .s ⊆ p.S ∧ pr .s̄ ⊆ p.S̄. For example, a pair pa is Directed and
Undirected both selected.

pa = ({Directed,Undirected},∅)
Definition 5 (Valid Pair) A pair pr is valid within a feature model f m if there exists
a product that covers pr . The set of all valid pairs in a feature model f m is denoted
with V P R f m . For example, a valid pair vpa is Directed selected and Undirected
unselected.

vpa = ({Directed}, {Undirected})
Based on the previous definitions of feature list, product, valid product, pair and

valid pair, we define higher levels concepts related to the problem formulation. In
the following we define the concept of test suite, prioritized product, configuration,
covering array and coverage.

Definition 6 (Test suite) A test suite ts for a featuremodel f m is a set of valid products
of f m. A test suite ts is complete if it covers all the valid pairs in V P R f m , that is,
∀pr ∈ V P R f m → ∃p ∈ ts such that p covers pr

Definition 7 (Prioritized product) A prioritized product pp is a tuple (p, w), where
p represents a valid product in a feature model f m and w ∈ R represents its weight.
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Definition 8 (Configuration) A configuration c is a tuple (pr , w) where pr is a valid
pair and w ∈ R represent its weight. w is computed as follows. Let P P be the set
of all prioritized products and P Ppr a subset of P P , such that P Ppr contains all the
prioritized products of P P that cover pr , that is, P Ppr = { p ∈ P P | p covers pr }.
Then w = ∑

p∈P Ppr
p.w

Definition 9 (Covering Array) A covering array C A for a feature model f m and a
set of configurations C is a set of valid products P that covers all configurations in C
whose weight is greater that zero: ∀c ∈ C (c.w > 0 → ∃p ∈ C A such that p covers
c.pr ).

Definition 10 (Coverage) Given a covering array C A and a set of configurations C ,
we define cov(C A) as the sum of all configuration weights in C covered by any
configuration in C A divided by the sum of all configuration weights in C , that is:

cov(CA) =
∑

c∈C, ∃p∈CA, p covers c.pr c.w
∑

c∈C c.w
. (1)

The optimization problem of our interest consists in finding a covering array C A
with the minimum number of products |C A| for a given coverage, cov(C A). This
problem is defined as single-objective, but it is possible to formulate the problem
as bi-objective, where we want to maximize coverage and minimize the number of
products. We can even add more objectives to the formulation, like the cost of build-
ing a product for testing (we are considering in this work that all the products have
the same construction cost). Adding new objectives to the problem does not prevent
CMSA of being used. Although CMSA solves single-objective problems, there are
high level algorithms that can be applied to solve a multi-objective problem using
single-objective solvers. One interesting example in the case of multi-objective Inte-
ger Linear Programming is the one proposed by Dächert and Klamroth in Dächert and
Klamroth (2015). Thus, neither the use of ILP solvers inside CMSA nor the use of
CMSA itself pose a serious limitation to the number of objectives we can add to our
current formulation.

4 Applying CMSA to prioritized SPL

In order to apply the CMSA algorithm to our problemwe have to define the threemeth-
ods described in Algorithm 1: ProbabilisticSolution, ExactSolver and Adapt methods.
Before that, we have to guess what is a solution component for the prioritized pair-
wise test data generation in the CMSA algorithm. In this case, given that we want
to minimize the cardinality of the set of products that entirely covers all the possible
configurations in the feature model, a solution component is a valid product from the
feature model F M , being P the set of all valid products of F M .

Coming up next we introduce the idea of the three components of the CMSA
adaptation to our problem. First, we explain the ProbabilisticSolution method, then
we present the ExactSolver method. Finally, we describe the aging policy.
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4.1 Solution generation

At the start of the main loop of the algorithm, several solutions for P are generated
to be merged in a final sub-instance that is solved later. We consider the whole search
space P , generating random products that are valid within the feature model. The
generation of random valid products is performed by means of an ILP solver which
is very fast, being faster and faster as the set of uncovered pairs becomes smaller,
because it considers less weighted pairs in the objective function. We have set a
stopping condition of 3 seconds for the ILP solver, just to be sure it returns a solution.
This process is also used for the initial population. The pseudo-code of this method is
described below in Algorithm 2.

Algorithm 2: ProbabilisticSolution
1 input: problem instance I
2 solution := ∅

3 uncovered := valid Pairs(I )
4 while uncovered �= ∅ do
5 x := generateRandomValidProduct
6 if con f igurations(x) ∩ uncovered �= ∅ then
7 solution := solution ∪ {x}
8 uncovered := uncovered − con f igurations(x)
9 end

10 end
11 output: solution

The fact that there is no uncovered configuration in each solution generated ensures
that the solution will always cover all the weighted configurations, and this property
also holds in the sub-instance generated after merging all the solutions. This strategy
guarantees that, eventually, the algorithm will find a solution better than the previous
one.

4.2 Exact solver

We use an exact algorithm to compute the best solution for the sub-instance generated.
We use an ILP solver to select a subset of products for the sub-instancewhich, reaching
a given weighted coverage, has minimum cardinality. This problem is equivalent to
the hitting set problem or the test suite minimization problem, in its mono-objective
version (Arito et al. 2012) and, thus, we can use the same integer linear program to
solve the problem.

4.3 Adapting the sub-instance

The aging mechanism used here is the same proposed by Blum et al. (2016). In each
iteration of the algorithm, the sub-instance is composed by a subset C ′ ⊆ C of the
components of the problem. The ExactSolver method returns a solution, which is a
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subset S ⊆ C ′ of components. Then, the “age” of all the components that are part of the
solution S are reset to 0, while the rest of the components see their age increased by 1.
If any component reaches themaximum age established (agemax ), then the component
is removed from C ′. Algorithm 3 shows the pseudo-code for the Adapt method.

Algorithm 3: Adapt
1 input: sub-instance C ′, sub-instance solution S
2 for x in S do
3 age[x] := 0
4 end
5 for x in C ′ − S do
6 age[x] := age[x] + 1
7 if age[x] equals agemax then
8 C ′ := C ′ − {x}
9 end

10 end
11 output: C ′

5 Experimental setup

In this section we describe how the analysis of the approach is performed. First,
we introduce the other four algorithms we compare with CMSA. Then, we describe
the benchmark used for the evaluation. Finally, we explain the different experiment
configurations.

5.1 Hybrid algorithms based on integer programming

Two different hybrid algorithms combining a greedy heuristic and integer program-
ming were introduced by Ferrer et al. (2017). The first one, called HILP, is based on
an integer linear formulation, and the second, named HINLP, is based on a quadratic
(nonlinear) integer formulation. The two algorithms proposed in this work use the
same high level greedy strategy. In each iteration they try to find a product that maxi-
mizes the weighted coverage. They select in each iteration the product that contributes
with greater coverage to the actual solution. The algorithm applies the heuristic to
the whole product set (that can be of billions of possible products) instead of small
subsets. For further details on HILP or HINLP, please refer to Ferrer et al. (2017).

5.2 Prioritized pairwise genetic solver

Prioritized Pairwise Genetic Solver (PPGS) is a constructive genetic algorithm that
follows a master-slave model to parallelize the individuals’ evaluation. In each itera-
tion, the algorithm adds the best product to the test suite until all weighted pairs are

123



238 J. Ferrer et al.

covered. The best product to be added is the product that adds more weighted coverage
(only pairs not covered yet) to the set of products.

The parameter setting used by PPGS is the same of the reference paper for the
algorithm (Lopez-Herrejon et al. 2014). It uses binary tournament selection and a
one-point crossover with a probability 0.8. The population size of 10 individuals
favours the exploitation rather than the exploration during search. The termination
condition is to reach 1000 fitness evaluations. The mutation operator iterates over all
selected features of an individual and randomly replaces a feature by another one with
a probability 0.1. The algorithm stops when all the weighted pairs have been covered.
For further details on PPGS see Lopez-Herrejon et al. (2014).

5.3 Prioritized-ICPL algorithm

Prioritized-ICPL (pICPL) is a greedy algorithm to generate t-wise covering arrays
proposed by Johansen et al. (2012). pICPL does not compute covering arrays with
full coverage but rather covers only those t-wise combinations among features that are
present in at least one of the prioritized products, as was described in the formalization
of the problem in Sect. 3. We must highlight here that the pICPL algorithm uses data
parallel execution, supporting anynumber of processors. Their parallelismcomes from
simultaneous operations across large sets of data. For further details on prioritized-
ICPL please refer to Johansen et al. (2012).

5.4 Benchmark

The feature models that we use for the comparison of the algorithms are gener-
ated from 16 real SPL systems. We considered a method called measured values
to assign weight values to prioritized products. This method consists in assigning the
weights derived from non-functional property values obtained from 16 real SPL sys-
tems, that were measured with the SPL Conqueror approach introduced by Siegmund
et al. (2013). This approach aims at providing reliable estimates of measurable non-
functional properties such as performance, main memory consumption, and footprint.
These estimations are then used to emulate more realistic scenarios where software
testers need to schedule their testing effort giving priority, for instance, to products or
feature combinations that exhibit higher footprint or performance. In this work, we use
the actual values taken on the measured products considering pairwise feature inter-
actions. Table 1 summarizes the SPL systems evaluated, their feature number (FN),
products number (PN), configurations number measured (CN), and the percentage of
prioritized products (PP%) used in our comparison.

In the case of the feature models where the percentage of the prioritized products is
equal to 100%, applying the heuristic to the whole solution components set P (without
generating sub-instances) should give similar results than applying HINLP. A greedy
implementation of CMSAwithout generating sub-instances have been implemented in
order to test the rest of the functionalities of the algorithm and validate the consistency
of the results.
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Table 1 Benchmark of feature
models

Model name FN PN CN PP%

Apache 10 256 192 75.0

BerkeleyDBFootprint 9 256 256 100.0

BerkeleyDBMemory 19 3840 1280 33.3

BerkeleyDBPerformance 27 1440 180 12.50

Curl 14 1024 68 6.6

LinkedList 26 1440 204 14.1

Linux 25 ≈ 3E7 100 ≈ 0.0

LLVM 12 1024 53 5.1

PKJab 12 72 72 100.0

Prevayler 6 32 24 75.0

SensorNetwork 27 16704 3240 19.4

SQLiteMemory 40 ≈ 5E7 418 ≈ 0.0

Violet 101 ≈ 1E20 101 ≈ 0.0

Wget 17 8192 94 1.15

x264 17 2048 77 3.7

ZipMe 8 64 64 100.0

5.5 Experiments configuration

The experimentswere runon a cluster of 16machineswith IntelCore2Quadprocessors
Q9400 (4 cores per processor) at 2.66GHz and 4GB memory and 2 nodes (96 cores)
equipped with two Intel Xeon CPU (E5-2670 v3) at 2.30GHz and 64GB memory.
The cluster was managed by HTCondor 8.2.7, which allowed us to perform parallel
independent executions to reduce the overall experimentation time.

For the CMSA algorithm, different parameter configurations of time limit
(maxtime), solutions generated per iteration (na) and maximum age for the aging
policy (agemax ) were used. As a result, we chose the best configuration with na=5 and
agemax = 4. For each configuration, a total of 30 independent runs were executed.

We have to keep in mind that the maxtime =3 seconds indicates the limit of time
for the last iteration, in cases of some feature models (i.e. Violet) where the number
of constraints is high, the algorithm can take more time. We applied the Kolmogorov–
Smirnov normality test to confirm that the distribution of the results is not normal.
Therefore, we applied the non-parametric Kruskal–Wallis test with a confidence level
of 95% (p-value under 0.05) with Bonferroni’s p value correction to check if the
observed differences are statistically significant. In the caseswhereKruskal-Wallis test
rejects the null hypothesis, we run a single factor ANOVA post hoc test for pairwise
comparisons.

In order to properly interpret the results of statistical tests, it is always advisable to
report effect size measures. For that purpose, we have also used the non-parametric
effect size measure Â12 statistic proposed by Vargha and Delaney (2000). It tells
us how often, on average, one technique outperforms the other. It could be used to
determine the probability of yielding higher performance by different algorithms.
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Table 2 Mean and standard deviation of number of products and time in 30 independent runs of the whole
benchmark of feature models

Coverage CMSA HILP HINLP PPGS pICPL

50% 1.560.50 1.560.50 1.560.50 1.580.49 1.560.50
75% 2.530.71 2.630.78 2.630.78 2.660.77 2.750.75
80% 2.750.75 2.810.81 2.810.81 2.810.73 3.250.97
85% 3.310.87 3.440.86 3.440.86 3.460.87 3.810.95
90% 3.790.77 4.061.03 4.000.94 4.121.04 4.561.27
95% 4.940.90 5.371.05 5.381.05 5.451.14 6.061.44
96% 5.171.05 5.691.16 5.691.16 5.861.18 6.381.58
97% 5.671.09 6.131.22 6.131.22 6.241.38 6.751.39
98% 5.961.26 6.811.42 6.751.39 6.981.55 7.441.66
99% 6.791.52 7.751.64 7.751.64 7.921.87 8.752.08
100% 10.064.99 11.695.51 11.635.33 12.086.50 12.195.68
Time (s) 164346 1810 12 20497684 2459

The best result for each percentage of prioritized coverage and total time are highlighted in bold

Given a performancemeasure M , Â12 measures the probability that running algorithm
A yields higher M values than running another algorithm B. If the two algorithms are
equivalent, then Â12 = 0.5. If Â12 = 0.3 then one would obtain higher values for M
with algorithm A, 30% of the time.

6 Analysis of the results

In this section we analyze the results of the execution of CMSA in comparison with the
results of state-of-the-art algorithms (HILP, HINLP, PPGS and pICPL). Table 2 sum-
marizes the results of the execution of the algorithms for different values of weighted
coverage. Each column corresponds to one algorithm and in the rows we show the
number of products required to reach 50% up to 100% of weighted coverage. The data
shown in each cell is the mean and the standard deviation of the number of products
required to reach the coverage of the SPL for all the independent runs of the whole
benchmark of feature models. We also show the average and standard deviation of the
required runtime in the last line. We highlight the best value for each percentage of
weighted coverage and the shortest execution time.

We observe that CMSA is the best in solution quality (less products required to
obtain a particular level of coverage) for all percentages of weighted coverage. After
CMSA, the algorithms based on integer programming obtain the best solutions. The
difference in quality between HILP and HINLP are almost insignificant, except for
100% coverage, so it is difficult to claim that one algorithm is better than the other.
Then, PPGS is the fourth algorithm in our comparison, and finally pICPL is the worst.

Regarding the execution time, we can appreciate that HINLP is clearly the fastest
algorithm, actually thanks to the nonlinear formulation it produces a boost in compu-
tation time due to the reduction of clauses in comparison with the linear variant of the
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Table 3 Times an algorithm has
the best average number of
products per percentage of
coverage

Coverage CMSA HILP HINLP PPGS pICPL

50% 16 16 16 14 16

75% 16 13 13 10 11

80% 16 15 15 14 9

85% 16 14 14 11 10

90% 16 12 12 8 7

95% 15 8 8 4 3

96% 16 6 6 3 3

97% 16 8 8 4 3

98% 15 2 2 0 1

99% 16 2 2 1 2

100% 15 2 2 1 3

Total 173 98 98 70 68

algorithm. It is closely followed by HILP and pICPL (also based on a greedy strategy).
They are followed by CMSA in the speed ranking and, finally, quite far from the rest,
PPGS, a genetic algorithm.

In order to check whether the differences between the algorithms are statistically
significant or just a matter of chance, we have applied the statistical tests explained
in the previous section. For 50% coverage there is no significant differences between
CMSA and the others. Next, for 75% up to 85% of weighted coverage, there are
significant differences betweenCMSAandpICPL. Finally, for 90%up to 100%CMSA
is statistically significantly better than the other algorithms. Regarding the execution
time, HINLP is statistically better than the other algorithms.

In Table 3 we show the number of times an algorithm obtains the minimum mean
value for each percentage of coverage and for the 16 realistic feature models. Note
that Table 3 summarizes the results showed in Table 6 in the “Appendix”. On the one
hand, we observe that in only 3 out of 176 comparisons (16 feature models and 11
percentages of weighted coverage) other algorithm different than CMSA has obtained
a better value for solution quality. On the other hand, in 173 out of 176 comparisons
CMSA obtains the best results of the comparison, moreover in 70 out of 176 CMSA is
the only obtaining the best value, i.e., no other algorithm obtains such a low value. In
general, it can also be seen in this table that, the larger the value of weighted coverage,
the better the results of CMSA. The reason behind this behavior is that in early stages
of the search, for small and medium values of coverage, it is easier to find the products
which add not-covered-yet pairs. When the search progresses, it is harder to find the
products which are able to add not-covered-yet pairs.

Let us now focus on how the algorithms obtain total weighted coverage in each
feature model. In Table 4 we show the mean value for 100% weighted coverage. We
also show the standard deviation, which is 0 in many cases. In most feature models (15
out of 16) CMSA obtains the best value. The exception is in the Linux feature model,
where pICPL is the best. In three models (Curl, Prevayler and Violet) CMSA obtains
the best value, although at least other algorithm is able to reach the same value. In the
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Table 4 Mean values over 30 independent runs for CMSA, HILP, HINLP, PPGS and pICPL

Feature model CMSA HILP HINLP PPGS pICPL

Apache 6.000.00 7.00 7.00 7.00 8.00

BerkeleyDBFootprint 6.070.25 8.00 8.00 8.170.38 9.00

BerkeleyDBMemory 20.030.18 21.00 21.00 23.331.06 21.00

BerkeleyDBPerformance 9.000.00 10.00 10.00 10.600.50 12.00

Curl 8.000.00 9.00 9.00 9.630.67 8.00

LinkedList 11.100.30 13.00 13.00 13.370.49 14.00

Linux 11.000.00 11.00 11.00 11.100.66 10.00

LLVM 6.900.30 10.00 10.00 8.170.46 8.00

PKJab 6.000.00 7.00 7.00 7.00 8.00

Prevayler 6.000.00 6.00 6.00 6.00 6.00

SensorNetwork 10.000.00 14.00 14.00 13.971.16 17.00

SQLiteMemory 23.871.41 28.00 27.00 31.531.99 28.00

Violet 12.000.00 12.00 12.00 12.830.59 15.00

Wget 9.870.35 12.00 12.00 11.371.00 11.00

x264 9.070.25 12.00 12.00 12.101.03 13.00

ZipMe 6.000.00 7.00 7.00 7.030.18 7.00

Total 10.064.99 11.695.51 11.635.33 12.086.50 12.195.68

The best value for each FM is highlighted in bold

rest of the feature models analyzed here (12 out of 16) no other algorithm reach the
same solution quality than CMSA. As we expected, there are significant differences
between CMSA and the other proposals in the pairwise comparisons. Specifically, in
52 out of 64 comparisons (16 feature models and 4 algorithms) CMSA is significantly
better than the other algorithms, in 11 out of 64 there is no difference between CMSA
and other algorithm, and only once it is significantly worse, particularly in the Linux
model with pICPL.

In the comparison between CMSA and HINLP (the second best algorithm), we can
appreciate that HINLP is doubtless faster. However, in solution quality it is only able
to find the best known solution in two feature models. In addition, there are significant
differences between CMSA and HINLP in 14 out of 16 models, so we can claim that
CMSA is definitely the best algorithm in the comparison in regards to solution quality.

In order to illustrate the comparison regarding the solution quality for total weighted
coverage, in Fig. 3 we show a boxplot for each algorithm considering all the feature
models. Note that several outliers for all algorithms are outside the worst range shown
in the plot. The boxplot confirms again that CMSA is the best for 100% weighted
coverage with a median value of 9 products, followed by HILP and HINLP with a
median of 10.5 products, and PPGS with a median of 11 products. In addition, we can
also appreciate that CMSA has a lower interquartile range, and all the quartile marks
are lower in comparison to the other algorithms.

In light of the obtained results and with the intention of determining whether the
results are of practical significance or not, we analyze the Â12 statistic. In Table 5
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Fig. 3 Number of products needed to achieve total coverage. For each feature model (16), there are 30
solutions obtained by independent replications

Table 5 Vargha and Delaney’s
statistical test results ( Â12) for
total coverage

CMSA PPGS HINLP HILP pICPL

CMSA 0.5000 0.1732 0.2010 0.1803 0.0969

PPGS 0.8268 0.5000 0.5021 0.5198 0.3333

HINLP 0.7990 0.4979 0.5000 0.4719 0.3135

HILP 0.8197 0.4802 0.5281 0.5000 0.3729

pICPL 0.9031 0.6667 0.6865 0.6271 0.5000

Each cell is the average value from the Â12 statistic for the 16 models
analyzed. A represents algorithms in rows and B represents algorithms
in columns

we summarize the Â12 statistic values for all models and algorithms. The differences
between CMSA and the rest of algorithms are quite large. Specifically, CMSA beats
PPGS in 82.68%,HINLP in 79.90%,HILP in 81.97%andpICPL in 90.31%of the runs.
Therefore, CMSA is able of generating test suites with maximum levels of coverage,
and obtain better results than the other algorithms with a high probability.

7 Conclusions

In this work we have applied a novel matheuristic approach (CMSA) to the Prioritized
Pairwise Test Data Generation Problem, aiming to ease the task of testing on large
SPLs. Our main contribution is the adaptation of the CMSA algorithm to this problem
for SPL, relating the CMSA algorithm to the specific nuances of the problem.

We present the empirical results derived from the evaluation of our CMSAapproach
on the introducedbenchmarkof featuremodels.WecompareCMSAwith four different
approaches to tackle the problem of prioritized pairwise test data generation for SPL.
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Regarding the solution quality, our analysis showed an improvement in terms of the
quality metric, which is better (lower in terms of the number of products) in almost all
instances of the benchmark and for all percentages of weighted coverage. In addition,
in most comparisons the test suites computed by CMSA are statistically significantly
better than those computed by the other algorithms.

Testing on a SPL means a high cost in resources and time due to the effort devoted
to the testing phase of even one single product, which can require several hours.
Therefore, it is straightforward to think that the best approach is the one that reduces
the size of the test suite, in this case our proposal: CMSA. In addition, the execution of
the algorithm only requires a fewminutes, much less than testing one single product in
most of the scenarios. A general conclusion is that CMSA is clearly the best approach
for computing prioritized pairwise test data. On the other hand, the approach based
on nonlinear integer programming (HINLP) is able to obtain good quality solutions
in only a few seconds, then it is the best option when a good solution is immediately
needed. This could be the case when testing a single product of the SPL only requires
a few seconds.

There remains one Achilles’ heel clearly identified in our proposal, the execution
time is higher than several approaches studied here. Future work will require a deeper
analysis of the performance and quality of the generation of random products, that
is the baseline of the construct phase of CMSA. We plan to assess whether CPLEX,
the optimizer used to solve the integer programming problems found in this work,
is able to provide enough different products to obtain the diversity that every search
algorithm requires.
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Appendix

In this appendix we present the detailed results in Table 6. This table shows the mean
number of products required to reach all percentages considered of weighted coverage
for all the feature models and all the algorithms.
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