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Abstract
A large number of application problems involve two levels of optimization, where
one optimization task is nested inside the other. These problems are known as bilevel
optimization problems and have been studied by both classical optimization com-
munity and evolutionary optimization community. Most of the solution procedures
proposed until now are either computationally very expensive or applicable to only
small classes of bilevel optimization problems adhering to mathematically simplify-
ing assumptions. In this paper, we propose an evolutionary optimization method that
tries to reduce the computational expense by iteratively approximating two important
mappings in bilevel optimization; namely, the lower level rational reaction mapping
and the lower level optimal value function mapping. The algorithm has been tested
on a large number of test problems and comparisons have been performed with other
algorithms. The results show the performance gain to be quite significant. To the best
knowledge of the authors, a combined theory-based and population-based solution
procedure utilizing mappings has not been suggested yet for bilevel problems.

Keywords Bilevel optimization · Evolutionary algorithms · Stackelberg games ·
Mathematical programming

1 Introduction

Interest in bilevel optimization has been growing due to a number of new applications
that are arising in different fields of science and engineering. Bilevel programming is
quite common in the area of defense where these problems are studied as attacker-
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defender problems. The problem was introduced by Bracken and McGill (1973) in
the area of mathematical programming, where an inner optimization problem acts as a
constraint to an outer optimization problem. One of the follow-up papers by Bracken
and McGill (1974) highlighted the applications of bilevel programming in defense.
Since then anumber of studies onhomeland security (Brownet al. 2005;Wein2009;An
et al. 2013) have been performed, where it is common to have bilevel, trilevel and even
multilevel optimizationmodels. In the area of operations research, bilevel optimization
is gaining importance in the context of interdiction and protection of hub-and-spoke
networks (Lei 2013), as most of the critical infrastructures like transportation and
communications are predominantly hub-and-spoke. In other game theoretic settings,
bilevel optimization has been used in transportation (Migdalas 1995; Constantin and
Florian 1995; Brotcorne et al. 2001), optimal tax policies (Labbé et al. 1998; Sinha
et al. 2013, 2015), investigation of strategic behavior in deregulated markets (Hu and
Ralph 2007), model production processes (Nicholls 1995) and optimization of retail
channel structures (Williams et al. 2011). The applications extend to a variety of other
domains, like, facility location (Jin and Feng 2007; Uno et al. 2008; Sun et al. 2008),
chemical engineering (Smith andMissen 1982; Clark andWesterberg 1990), structural
optimization (Bendsoe 1995; Christiansen et al. 2001), and optimal control (Mombaur
et al. 2010; Albrecht et al. 2011) problems. While new applications that are inherently
bilevel in nature are arising at a fast pace, the development of computationally efficient
algorithms for such problems has not kept the pace with the applications.

A significant body of literature exists on bilevel optimization and its optimality con-
ditions (Lignola andMorgan2001;Dempe2002;Dempe et al. 2007, 2014;Wiesemann
et al. 2013) in the classical optimization literature. However, on the algorithm front
most attention has been given to only simple instances of bilevel optimization where
the objective functions and constraints are linear (Wen andHsu 1991; Ben-Ayed 1993),
quadratic (Bard andMoore 1990; Edmunds and Bard 1991; Al-Khayyal et al. 1992) or
convex (Liu et al. 1998). This is not surprising given the fact that bilevel optimization
is difficult to an extent that merely evaluating the bilevel optimality of a given solution
is an NP-hard task (Vicente et al. 1994). Researchers have also attempted to solve
these problems using computational techniques like evolutionary algorithms. Most of
the bilevel algorithms relying on evolutionary framework have been nested in nature
(Mathieu et al. 1994; Yin 2000; Li and Wang 2007; Zhu et al. 2006; Sinha et al. 2014;
Islam et al. 2017b, a). One of the drawbacks of such an approach is that it might be
able to solve small instances of bilevel problems, but as soon as the problem scales-
up beyond a few variables, the computational requirements increase tremendously.
However, the evolutionary algorithms still have a niche in solving these problems as it
maintains a population at each iteration of the algorithm. A population of points may
allow modeling various mappings in bilevel optimization to reduce the computational
expense (Sinha et al. 2016a). Some studies in this direction are (Sinha et al. 2016b,
2017, 2013, 2014). We believe that exploiting some of the mathematical properties of
bilevel problems through modeling of various mappings in bilevel is the way forward
in solving such problems. For a detailed review on bilevel optimization the readers
may refer to Sinha et al. (2018), Dempe (2002), and Bard (1998)

In this paper, we focus on two important mappings in bilevel optimization bor-
rowed from the mathematical optimization literature. The first mapping is the lower
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level reaction setmapping (known as�-mapping),which provides the lower level opti-
mal solution(s) corresponding to any given upper level vector. Considering the upper
level problem as the leader’s problem and the lower level problem as the follower’s
problem, the reaction set mapping represents the rational decisions of the follower
corresponding to any decision taken by the leader. The second mapping is the lower
level value function mapping (known as ϕ-mapping) that provides the optimal objec-
tive function value to the follower’s problem for any given leader’s decision. While
the first mapping can be a set-valued mapping, the second mapping is always single-
valued. We work with meta-modeling techniques that try to approximate these two
mappings and develop a computationally efficient evolutionary algorithm for solving
bilevel problems. The algorithm has been tested on a number of test problems, and the
computational gain when compared with other techniques is found to be significant.
In this paper, we also extend an existing test-suite of bilevel test problems (Sinha et al.
2014) with a couple of additional problems to better evaluate our proposed solution
procedure.

The paper is organized as follows. To beginwith, we provide a brief literature survey
of bilevel optimization using evolutionary algorithms. This is followed by various
formulations of the bilevel optimization problem and discussion of the two mappings
that we approximate in this paper. Thereafter, we provide the bilevel evolutionary
optimization algorithmwhich is an extension of the algorithm proposed in the previous
studies (Sinha et al. 2017, 2013, 2014). Following this, we provide the empirical
results on a number of test problems. A comparative study with other approaches is
also included. Finally, we end the paper with the conclusions section.

2 A survey on evolutionary bilevel optimization

Most of the evolutionary algorithms for bilevel optimization are nested in nature,where
one optimization algorithm is used within the other. The outer algorithm handles
the upper level problem and the inner algorithm handles the lower level problem.
Such a structure necessitates that the inner algorithm is called for every upper level
point generated by the outer algorithm. Therefore, nested approaches can be quite
computationally demanding, and can only be applied to small scale problems. One
can find studieswith evolutionary algorithmbeing used for the upper level problem and
classical approach being used for the lower level problem. If the lower level problem
is complex, researchers have used evolutionary algorithms at both levels. Below we
provide a review of evolutionary bilevel optimization algorithms from the past.

Mathieu et al. (1994) was one of the first to propose a bilevel algorithm using
evolutionary algorithms.He used a genetic algorithm to handle the upper level problem
and linear programming to solve the lower level problem for every upper level member
generated using genetic operations. This study was followed by nesting the Frank-
Wolfe algorithm (reduced gradient method) within a genetic algorithm in Yin (2000).
Other authors utilized similar nested schemes in Li et al. (2006), Li and Wang (2007),
and Zhu et al. (2006). Studies involving evolutionary algorithms at both levels include
(Angelo et al. 2013; Angelo and Barbosa 2015), where authors have used differential
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evolution at both levels in the first study, and differential evolution within ant colony
optimization in the second study.

Replacing the lower level problem in bilevel optimization with its KKT conditions
is a common approach for solving the problem both in classical as well as evolution-
ary computation literature. However, a KKT based reduction can only be applied to
problems where the lower level is convex and adheres to certain regularity conditions
(Mirrlees 1999). Some of the past evolutionary studies that utilize this idea include
(Hejazi et al. 2002;Wang et al. 2005). The approach has been popular and even recently
researchers are relying on reducing the bilevel problem into single level problem using
KKT and solving the reduced problem using evolutionary algorithm, for example, see
Wang et al. (2011), Jiang et al. (2013), Li (2015), and Wan et al. (2013).

While KKT conditions can only be applied to problems where the lower level
adheres to certainmathematically simplifying assumptions, the researchers are explor-
ing techniques that can solve more general instances of bilevel optimization problems.
Some of the approaches are based on meta-modeling the mappings within bilevel
optimization, while others may be based on meta-modeling the entire bilevel problem
itself. Studies in this direction include (Sinha et al. 2017, 2013, 2014). In this paper,
we aim to develop an algorithm that tries to capture two important mappings in bilevel
optimization; namely, the lower level reaction set mapping and the lower level value
function mapping, in order to reduce the computational complexity of the problem.

3 Different bilevel formulations

We will start this section by providing a general formulation for bilevel optimization.
This is followed by various proposals that researchers havemade for reducing a bilevel
problem into a single-level problem. The two levels in a bilevel problem are also known
as the leader’s (upper) and follower’s (lower) problems in the domain of game theory.
In general, the variables, objectives and constraints are different for the two levels.
The upper level variables are treated as parameters while optimizing the lower level
problem.Ageneral bilevel formulation has been provided below (for brevity,we ignore
equality constraints):

Definition 1 For the upper-level objective function F : Rn × R
m → R, lower-level

objective function f : Rn × R
m → R, upper level variable xu ∈ R

n and lower level
variable xl ∈ R

m , the bilevel optimization problem is given by

min
xu ,xl

F(xu, xl)

subject to

xl ∈ argmin
xl

{ f (xu, xl) : g j (xu, xl) ≤ 0, j = 1, . . . , J }
Gk(xu, xl) ≤ 0, k = 1, . . . , K

where Gk : Rn × R
m → R, k = 1, . . . , K denotes the upper level constraints, and

g j : Rn × R
m → R denotes the lower level constraints.
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There are two common positions that a user assumes while solving a bilevel
optimization problem; namely, optimistic and pessimistic positions. The bilevel for-
mulation in Definition 1 is straightforward, whenever there is a single optimal solution
for the lower level problem for any given upper level variable. However, for scenar-
ios with more than one lower level optimal solutions for some upper level variables,
one has to be clear that which of the many optimal solutions from the lower level be
considered as the response of the follower. Optimizing bilevel problems from either
optimistic or pessimistic position is useful to handle the ambiguity arising from mul-
tiple lower level optimal solutions. In an optimistic position, it is assumed that the
lower level chooses that optimal solution which is favorable at the upper level. In a
pessimistic position, the upper level optimizes its problem according to the worst case
scenario. In other words, the lower level may choose a solution from the optimal set
that is least favorable at the upper level. In this paper, we assume an optimistic position
while solving bilevel optimization problems.

In case when certain mathematically simplifying assumptions like continuities and
convexities are satisfied, often the lower level optimization task in Definition 1 is
replaced with its KKT conditions. However, the reduced formulation is not simple to
handle, as it induces non-convexities and discreteness into the problem through the
complementary slackness conditions. We do not utilize any properties of the KKT
based reduction in this paper, rather we focus on two different formulations in the
development of the evolutionary algorithm in this paper.

3.1 Lower level reaction set mapping

The formulation provided in Definition 1 can also be stated as follows:

Definition 2 Let � : Rn ⇒ R
m be the reaction set mapping,

�(xu) = argmin
xl

{ f (xu, xl) : g j (xu, xl) ≤ 0, j = 1, . . . , J },

which represents the constraint defined by the lower-level optimization problem, i.e.
�(xu) for every xu . Then the following gives an alternative formulation for the bilevel
optimization problem:

min
xu ,xl

F(xu, xl)

subject to

xl ∈ �(xu)

Gk(xu, xl) ≤ 0, k = 1, . . . , K

Using the above definition, a bilevel problem can be reduced to a single level
constrained problem given that the �-mapping can somehow be determined. Unfor-
tunately this is rarely the case. Studies in the evolutionary computation literature that
rely on iteratively approximation of this mapping to reduce the lower level optimiza-
tion calls could be found in Sinha et al. (2017), Sinha et al. (2013), and Sinha et al.
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Fig. 1 Solving the lower level optimization problem completely for a, b, c, d, e and f provides the cor-
responding lower level optimal members �(a), �(b), �(c), �(d), �(e) and �( f ), where �-mapping is
assumed to be single valued. Such a mapping can be approximated

(2014). To illustrate the idea, let’s consider the Fig. 1. To acquire sufficient data for
constructing the �-mapping approximation, a few lower level problems need to be
optimized completely for their corresponding upper level decision vectors in the begin-
ning. For instance, the lower level decisions for the upper level decisions a, b, c, d, e
and f are determined by optimizing the lower level problem, which are then used to
locally approximate the �-mapping. This has been shown in Fig. 1. Even though the
actual �-mapping is still unknown, the local approximation can then be substituted to
identify the lower level optimal decision for every new upper level member to avoid
the lower level optimization task. This procedure of approximating the mapping and
utilizing it to predict the lower level optimum needs to be repeated iteratively until
convergence to the bilevel optimum. The idea works well when the �-mapping is
single valued. If the lower level has multiple optimal solutions for some upper level
members as shown in Fig. 2, then identifying as well as approximating the mapping
is not a straightforward task.

3.2 Lower level optimal value functionmapping

Another formulation for the bilevel optimization problem inDefinition 1 can bewritten
using the optimal lower level value function (Ye and Zhu 2010; Outrata 1988, 1990):

Definition 3 Let ϕ : Rn → R be the lower level optimal value function mapping,

ϕ(xu) = min
xl

{ f (xu, xl) : g j (xu, xl) ≤ 0, j = 1, . . . , J },

which represents the optimal function value at the lower level for any given upper level
decision vector. Using this lower level optimal value function, the bilevel optimization
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Fig. 2 A scenario where the the �-mapping is set-valued in some regions and single-valued in other
regions. If the �-mapping is set-valued then identifying as well as approximating the mapping is not a
straightforward task

problem can be expressed as:

min
xu ,xl

F(xu, xl)

subject to

f (xu, xl) ≤ ϕ(xu)

g j (xu, xl) ≤ 0, j = 1, . . . , J

Gk(xu, xl) ≤ 0, k = 1, . . . , K .

Note that the constraint f (xu, xl) ≤ ϕ(xu) in the above definition says that the value
of the lower level function f (xu, xl) should always be less than or equal to the optimal
lower level function value, given by ϕ(xu), corresponding to any xu . This along with
the lower level constraints ensure that the above definition incorporates the lower level
optimality requirements.

As in the case of �-mapping, if the ϕ-mapping can be somehow determined, a
bilevel problem can be reduced to a single level problem as described in Definition 3.
Along the process of an algorithm, the ϕ-mapping can be approximated and used to
solve the reduced single level problem formulation in an iterative manner. Such an
evolutionary algorithmhas been recently discussed in Sinha et al. (2016b). The approx-
imation of the optimal value function (ϕ) mapping is, in general, less complicated than
the reaction set (�) mapping, in the sense that, the ϕ-mapping is always scalar-valued
regardless of the lower level variable dimension andwhether or not there exist multiple
lower level optimal solutions (Fig. 3). However, the ϕ-mapping based reduction is not
necessarily always better than the �-mapping based reduction. Definition 3 requires
the problem to be solved with respect to upper as well as lower level variables, while
in Definition 2 the lower level variables are readily available from the �-mapping.
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Fig. 3 An example showing a ϕ-mapping

The �-mapping based reduction also contains fewer constraints. Therefore, clearly
there is a trade-off.

It is noteworthy that the lower level optimization problem is a parametric optimiza-
tion problem that is solved with respect to the lower level variables, while the upper
level variables act as parameters. Therefore, for bilevel problems with mathematically
well behaved objective functions and constraints, it is possible to utilize ideas from
studies on sensitivity analysis and parametric optimization to identify the mappings
in bilevel optimization. Whenever such a mapping can be directly obtained using the
parametric optimization tools, the bilevel problem can be readily reduced to a single
level problem and standard mathematical programming algorithms can be applied.
For related work, the readers may refer to Jittorntrum (1984), Fiacco and McCormick
(1990), and Ralph and Dempe (1995).

4 Evaluating the performance of9 and'mappings on test problems

In this section, we implement the� and ϕ mappings separately in two different nested
algorithms to evaluate the advantages and disadvantages of using the two mappings
as a local search. For evaluating the two mappings, we choose a set of simple test
problems that are provided in Tables 1 and 2. Firstly, we create a nested algorithm that
utilizes an evolutionary approach for solving the upper level problem and sequential
quadratic programming (SQP) for solving the lower level problem. Most of the lower
level problems in the considered test cases being convex, explains the choice for using
sequential quadratic programming (SQP) at the lower level. We enhance the nested
approach by allowing it to approximate the� and ϕ mappings andmeasure the perfor-
mance gain provided by using each of the mappings separately. The implementation
of the approaches has been outlined through the Fig. 4. The flowchart without the
overlapping box provides the steps involved in the nested approach. In case the idea
involving � and ϕ mappings has to be used, then the local search (as mentioned in the
overlapping box) is conducted every k generations of the nested algorithm after the
update step. A detailed description of the nested algorithm has been provided below.

1. Create a random population of size N comprising of upper level variables
2. Solve the lower level optimizationproblemusingSQP for eachupper level variable.
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Table 1 Standard test problems TP1–TP5. (Note that x = xu and y = xl )

Problem Formulation Best known sol.

TP1

Minimize
(x,y)

F(x, y)=(x1−30)2+(x2−20)2−20y1+20y2,

n = 2, m = 2 s.t. F = 225.0

y ∈ argmin
(y)

{ f (x, y) = (x1 − y1)
2 + (x2 − y2)

2 :
0 ≤ yi ≤ 10, i = 1, 2},
x1 + 2x2 ≥ 30, x1 + x2 ≤ 25, x2 ≤ 15. f = 100.0

TP2

Minimize
(x,y)

F(x, y) = 2x1 + 2x2 − 3y1 − 3y2 − 60,

n = 2, m = 2 s.t. F = 0.0

y ∈ argmin
(y)

{ f (x, y) = (y1−x1+20)2+(y2−x2+20)2 :
x1 − 2y1 ≥ 10, x2 − 2y2 ≥ 10, −10 ≥ yi ≥ 20, i =
1, 2},
x1 + x2 + y1 − 2y2 ≤ 40, 0 ≤ xi ≤ 50, i = 1, 2. f = 100.0

TP3

Minimize
(x,y)

F(x, y) = −(x1)
2 − 3(x2)2 − 4y1 + (y2)

2,

n = 2, m = 2 s.t. F = −18.6787

y ∈ argmin
(y)

{ f (x, y) = 2(x1)2 + (y1)
2 − 5y2 :

(x1)
2−2x1+(x2)

2−2y1+ y2 ≥ −3, x2+3y1−4y2 ≥
4, 0 ≤ yi , i = 1, 2},
(x1)

2 + 2x2 ≤ 4, 0 ≤ xi , i = 1, 2. f = −1.0156

TP4

Minimize
(x,y)

F(x, y) = −8x1 − 4x2 + 4y1 − 40y2 − 4y3,

n = 2, m = 3 s.t. F = −29.2

y ∈ argmin
(y)

{ f (x, y) = x1 + 2x2 + y1 + y2 + 2y3 :
y2 + y3 − y1 ≤ 1, 2x1 − y1 + 2y2 − 0.5y3 ≤ 1, 2x2 +
2y1 − y2 − 0.5y3 ≤ 1, 0 ≤ yi , i = 1, 2, 3},
0 ≤ xi , i = 1, 2. f = 3.2

3. Evaluate the fitness of each population member using upper level function and
constraints (refer to Sect. 6.2)

4. Choose 2μ population members using tournament selection and apply genetic
operators (refer to Sect. 6.3) to produce λ offspring.

5. Solve the lower level optimization problem using SQP for each offspring.
6. Evaluate the fitness of each offspring using upper level function and constraints
7. Form a pool consisting of ρ +λmembers, where ρ members are chosen randomly

from the population and λ members are the offspring. Use the best ρ members
from this pool to replace the chosen r members from the population.
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Table 2 Standard test problems TP6-TP8. (Note that x = xu and y = xl )

Problem Formulation Best known sol.

TP5

Minimize
(x,y)

F(x, y) = r t(x)x − 3y1 − 4y2 + 0.5t(y)y,

n = 2, m = 2 s.t. F = −3.6

y ∈ argmin
(y)

{ f (x, y) = 0.5t(y)hy − t(b(x))y: −
0.333y1 + y2 − 2 ≤ 0, y1 − 0.333y2 − 2 ≤ 0, 0 ≤
yi , i = 1, 2},
where f = −2.0

h =
(
1 3
3 10

)
, b(x) =

( −1 2
3 −3

)
x, r = 0.1,

t(·) denotes transpose of a vector.
TP6

Minimize
(x,y)

F(x, y) = (x1 − 1)2 + 2y1 − 2x1,

n = 1, m = 2 s.t. F = −1.2091

y ∈ argmin
(y)

{ f (x, y) = (2y1 − 4)2 + (2y2 − 1)2 +
x1y1:4x1+5y1+4y2 ≤ 12, 4y2−4x1−5y1 ≤ −4, 4x1−
4y1+5y2 ≤ 4, 4y1−4x1+5y2 ≤ 4, 0 ≤ yi , i = 1, 2},
0 ≤ x1. f = 7.6145

TP7

Minimize
(x,y)

F(x, y) = − (x1+y1)(x2+y2)
1+x1 y1+x2 y2

,

n = 2, m = 2 s.t. F = −1.96

y ∈ argmin
(y)

{ f (x, y) = (x1+y1)(x2+y2)
1+x1 y1+x2 y2

:
0 ≤ yi ≤ xi , i = 1, 2},
(x1)

2 + (x2)
2 ≤ 100,

x1 − x2 ≤ 0,
0 ≤ xi , i = 1, 2.

f = 1.96

TP8

Minimize
(x,y)

F(x, y) = |2x1 + 2x2 − 3y1 − 3y2 − 60|,
n = 2, m = 2 s.t. F = 0.0

y ∈ argmin
(y)

{ f (x, y) = (y1−x1+20)2+(y2−x2+20)2 :
2y1 − x1 + 10 ≤ 0, 2y2 − x2 + 10 ≤ 0, −10 ≤ yi ≤
20, i = 1, 2},
x1 + x2 + y1 − 2y2 ≤ 40, 0 ≤ xi ≤ 50, i = 1, 2. f = 100.0

8. Perform a termination check (refer to Sect. 6.5) and proceed to Step 5 if termination
check is false, otherwise stop.

The parameters used in the implementation of the above procedure are N = 50, μ =
2, λ = 3 and rho = 2.
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Fig. 4 Nested approach with evolutionary algorithm at upper level (UL) and SQP at lower level (LL). Local
search based on � or ϕ mapping may be performed to make the nested approach faster

4.1 Approximating the9-mapping

LetH be the hypothesis space. The hypothesis space consists of all functions that can
be used to generate a mapping between the upper level decision vectors and optimal
lower level decision vectors. Given a sample consisting of upper level points and
corresponding optimal lower level points, we would like to identify a model �̂ ∈ H
that minimizes the empirical error on the sample, i.e.

ψ̂ = argmin
h∈H

∑
i∈I

L(h(x (i)
u ), x̄ (i)

l ), (1)

where L : Rm × R
m → R denotes the prediction error, x (i)

u is any given upper level
vector and x̄ (i)

l is its corresponding optimal solution. The prediction error may be
calculated as follows:

L(h(x (i)
u ), x̄ (i)

l ) = |x̄ (i)
l − h(x (i)

u )|2.
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We have restricted the hypothesis space H to consist of second-order polynomials
which reduces the error minimization problem to an ordinary quadratic regression
problem. Since we are approximating a vector valued mapping, one may use multiple
scalar valued quadratic functions to create the approximate mapping. The sample can
be created from the population members or an archive. It should be noted that this
can approximate only single-valued mapping and will fail if the mapping becomes
set-valued.

4.2 Approximating the'-mapping

Once again, let H be the hypothesis space of functions, and there exists a sample of
upper and corresponding lower level points, our aim is to identify a model ϕ̂ ∈ H that
minimizes the empirical error on the sample, i.e.

ϕ̂ = argmin
u∈H

∑
i∈I

L(u(x (i)
u ), f̄ (i)), (2)

where L : R × R → R denotes the prediction error, x (i)
u is any given upper level

vector and f̄ (i) is its corresponding optimal function value. The prediction error can
once again be computed as follows:

L(u(x (i)
u ), f (i)) = | f̄ (i) − u(x (i)

u )|2.

We have once again restricted the hypothesis space H to consist of second-order
polynomials. Since the ϕ-mapping is always single valued, approximating it will not
involve similar issues as for the �-mapping.

5 Comparison results for9- versus'-approximations

For comparing �-approximation approach against ϕ-approximation approach, we
use a set of 8 test problems selected from the literature given in Tables 1 and 2.
Table 3 compares the median function evaluations at both level for three algorithms
�-approximation, ϕ-approximation and nested algorithm. The results have been pro-
duced from 31 runs of the algorithm and further details about the runs can be found in
Figs. 5 and 6. Both �-approximation and ϕ-approximation perform equally well and
outperform the nested approach in this study. The differences in the performance of�-
approximation and ϕ-approximation can be attributed to differences in the quality of
approximation produced during the intermediate steps of the algorithm. In Table 4, we
provide a comparison of themeta-modeling results with other evolutionary approaches
(Wang et al. 2005, 2011) to provide an idea about the extent of savings that can be
produced using meta-modeling techniques. The advantage is quite clear as the savings
are better by multiple order of magnitudes on the set of test problems considered in
this study.
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Fig. 5 Error plot from 31 runs for the upper level function evaluations on test problems 1 to 8

Fig. 6 Error plot from 31 runs for the lower level function evaluations on test problems 1 to 8

It should be noted that the � approximation idea would fail if the �-mapping
in bilevel optimization is set valued. Next, we test this hypothesis, by modifying
the 8 test problems such that each test problem necessarily has a set-valued �-
mapping. To achieve this, we add two additional lower level variables (yp and yq )
in each test problem. Both the upper and lower level functions are modified as shown
below:
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Table 4 Mean of total function evaluations (UL evaluations +LL evaluations) required by different
approaches

Mean Func. Evals. (UL+LL)

ϕ Appx. � Appx. Nested WJL (Wang
et al. 2005)

WLD (Wang
et al. 2011)

TP1 1611 2421 34,462 85,499 86,067

TP2 1923 3262 6235 256,227 171,346

TP3 2624 1482 8125 92,526 95,851

TP4 3612 6721 19,948 291,817 211,937

TP5 2812 3388 7398 77,302 69,471

TP6 1578 1034 1534 163,701 65,942

TP7 2110 1456 2286 1,074,742 944,105

TP8 2734 4434 5325 213,522 182,121

Table 5 Statistics for upper level function evaluations for ϕ-approximation algorithm on the modified test
problems (m-TP)

ϕ Appx. � Appx. Nested

Min Med Max Min/Med/Max Min/Med/Max

m-TP1 138 192 344 – –

m-TP2 124 236 – – –

m-TP3 140 242 699 – –

m-TP4 185 545 2,582 – –

m-TP5 172 242 977 – –

m-TP6 159 181 559 – –

m-TP7 119 227 501 – –

m-TP8 158 462 2,119 – –

The ϕ-approximation algorithm and nested algorithm fail on all the modified test problems

Fnew(xu, xl) = F(xu, xl) + y2p + y2q

f new(xu, xl) = f (xu, xl) + (yp − yq)
2

yp, yq ∈ [−1, 1]

The modification makes the lower level problem have infinitely many optimal solu-
tions (for all yp = yq ) for any given upper level vector. Out of the many optimal
solutions the upper level prefers the solution where yp = yq = 0. After this simple
modification, we once again solve the test problems using ϕ-approximation and �-
approximation approaches.As shown inTables 5 and6, theϕ-approximation algorithm
still works but �-approximation algorithm completely fails. Function evaluations for
ϕ-approximation algorithm increases slightly than before because of additional vari-
ables in the problem.

Therefore, the ϕ-approximation idea clearly has an advantage over the �-
approximation idea. Moreover, ϕ-mapping is always a scalar valued mapping as
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Table 6 Statistics for lower level function evaluations from 31 runs of the ϕ-approximation algorithm on
the modified test problems (m-TP)

ϕ Appx. � Appx. Nested

Min Med Max Min/Med/Max Min/Med/Max

m-TP1 1988 2477 8334 – –

m-TP2 2394 4420 – – –

m-TP3 1404 3321 12,353 – –

m-TP4 1911 5632 25,356 – –

m-TP5 3129 4166 15,345 – –

m-TP6 2498 3464 9325 – –

m-TP7 1476 5635 12,256 – –

m-TP8 2721 6324 28,993 – –

The ϕ-approximation algorithm and nested algorithm fail on all the modified test problems

compared to �-mapping which is usually vector valued and can also be set-valued.
However, there is a trade-off. The reduced single level problem formed using �-
mapping may usually be a little easier to handle as compared to the single level
problem formed using ϕ-mapping. The reason being that in case of �-mapping the
lower level variables are readily available, and the reduced problem does not involve
lower level constraints. For ϕ-mapping, the reduced problem has to be solved both
with respect to upper and lower level variables, and the formulation involves both
upper and lower level constraints. Given the pros and cons of using the two mappings,
next, we would like to develop an evolutionary algorithm that is capable of utilizing
the better of the two mappings while solving a bilevel optimization problem.

6 Bilevel evolutionary algorithm based on9 and'-mapping
approximations

In this section, we provide the bilevel evolutionary algorithm that approximates the
� as well as the ϕ mapping during the intermediate steps of the algorithm. From
the previous experiments and the properties of the two mappings we infer that there
can be situations when the approximation of the �-mapping may fail, while when
�-mapping can be approximated it offers the advantage of completely ignoring the
lower level functions and constraints. Acknowledging this fact, we utilize both the
approximations in our algorithm. The algorithm adaptively decides to use one of the
mappings based on the quality of fit obtained when approximating the two mappings.
Local quadratic approximations are created for the two mappings from a sample of
points in the vicinity of the point around which we want to create an approximation.
Introducing local approximation is expected to improve the quality of approxima-
tions significantly. Given a sample dataset, the steps for creating an approximation
are the same as discussed in Sects. 4.1 and 4.2. The algorithm also maintains an
archive so as to maintain a large dataset for creating and validating the approxima-
tions. Deviating from the nested algorithm, we employ the approximated � and ϕ
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mappings to avoid frequent lower level optimization calls. An earlier version of the
algorithm (Sinha et al. 2017, 2013, 2014) that relied on �-mapping approximation
alone was referred as Bilevel Evolutionary Algorithm based on Quadratic Approxi-
mations (BLEAQ). We keep the same terminology and refer to the newer version of
the algorithm as BLEAQ-II. The pseudocode for the algorithm has been provided in
Table 7.

The genetic algorithm used in this study derives the ideas from Deb et al. (2002),
and Sinha et al. (2006). In Deb et al. (2002), the authors developed a steady state
genetic algorithmwith elite preservation, which was shown to solve non-linear uncon-
strained optimization problems with small function evaluations and high level of
accuracy. Later on, the idea was extended for constrained optimization in Sinha
et al. (2006). The genetic algorithm in the current paper does not give a high
preference to the top ranked members in the population for recombination, thus
allowing exploration. It chooses random members from the population and and per-
forms tournament selection to identify parents. The offspring produced from the
genetic operations are compared against a small pool of random members from the
population and enter the population only if it beats one or more members from
the pool. Therefore, the chosen genetic algorithm is elitist, which is necessary to
ensure infinite time convergence (Rudolph 1994), and at the same time is not too
exploitative as the worst members from the population may not get eliminated imme-
diately.

The user is free to replace the genetic algorithm used in this paper with any other
evolutionary algorithm and can still solve the bilevel optimization problem by relying
on the approximation of the mappings.

6.1 Initialization

The initialization in the algorithm is done by creating random upper level members
x (1)
u , . . . , x (N )

u , and then solving the lower level optimization problem for eachmember
to get optimal x (1)

l , . . . , x (N )
l . There can be situations, where finding random feasible

upper and lower level pair that satisfy both lower and upper level constraints in the
problem can be difficult. In such situations, one can solve the following problem to
create (x (i)

u , x (i)
l ) pairs that satisfies all the constraints to begin with.

min
xu ,xl

0

subject to

Gk(xu, xl) ≤ 0, k = 1, . . . , K ,

g j (xu, xl) ≤ 0, j = 1, . . . , J .

The above problem can be solved using any standard procedure like a greedy GA
or SQP with a random starting point to arrive at a feasible solution. As soon as a
feasible member is found, the method stops. Solving the above method repeatedly
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Table 7 Step-by-step procedure for BLEAQ-II

Step Description

1 Initialization

Generate an initial upper level population x(1)
u , . . . , x(N )

u randomly or by a problem-specificmethod
(see Sect. 6.1)

(a) For each x( j)
u , find a corresponding optimal lower level solution x( j)

l ∈ �(x( j)
u ) by solving the

lower level problem. Set P = {(x( j)
u , x( j)

l ), j = 1, . . . , N } (see Sect. 6.6)
(b) Tag all vectors (x( j)

u , x( j)
l ) ∈ P for which a lower level optimization has been successfully

performed as 1 and store them in the archiveA
(c)Assign fitness to all themembers based on upper level function and constraints (refer to Sect. 6.2)

2 Reproduction

(a) Parent selection: Randomly choose 2μ members from the population P , and perform a tour-
nament selection based on the upper level fitness. This produces μ parents, denoted by Ppar

(b) Offspring generation: Create λ offspring, denoted by Poff, from the set of parents Ppar using
genetic operators (refer to Sect. 6.3)

3 Offspring Update

For each offspring x( j) = (x( j)
u , x( j)

l ) ∈ Poff produced in the previous step, update the lower level

decision x( j)
l using one of the following strategies and then update the population:

(a) Optimization: If the number of Tag 1 members in P is less than Q, i.e. half of the size of P ,

then perform lower level optimization to ensure that x( j)
l ∈ �(x( j)

u ) (as described in Step 1.(b)).
If the lower level optimization is successful, tag the offspring as 1 and add it to the archive A
(b) Approximations: If the number of Tag 1 members in P is more than Q, i.e. half of the size

of P , then for each offspring x( j) = (x( j)
u , x( j)

l ) ∈ Poff, use its neighboring members in the
archiveA to construct a local quadratic approximation for �-mapping (q� ) as well as ϕ-mapping
(qϕ ) (refer Sect. 6.4). Compare the mean squared error of the approximations (e�mse , e

ϕ
mse). If

e�mse ≤ eϕmse then update the lower level decision associated with the upper level x( j)
u by setting

x( j)
l = q�(x( j)

u ); otherwise solve the auxiliary optimization problem in Sect. 6.7 by fixing x( j)
u

and varying x( j)
l ; the optimal x( j)

l is paired with x( j)
u to form the offspring

Randomly choose ρ members from the populationP and pool them with λ offspring. Sort the pool
first by the tags (tag 1 being better) and then by fitness and replace the chosen ρ members from the
population by the best ρ members from the pool

4 Improvements

Identify the Tag 1 member in the current generation in P with the best fitness, denoted as x( j)
best .

Perform a local search in the vicinity of x( j)
best after every k generations and update x

( j)
best if there is

an improvement

(a) Local search: Construct local quadratic approximations of both �-mapping and ϕ-mapping

using members in the vicinity of x( j)
best in the archive A and record the mean squared error of the

approximations (e�mse , e
ϕ
mse). Apply local search in x

( j)
best vicinity using one of the two single level

reduction methods described in Sects. 3.1 and 3.2 (refer to Sect. 6.8)

5 Termination check

Perform a termination check. If false, proceed to the next generation (Step 2)

123



Bilevel optimization based on iterative approximation of… 169

with random population (in case of GA) or a random starting point (in case of SQP)
can provide the starting population of upper level members x (1)

u , . . . , x (N )
u for the

BLEAQ-II algorithm. For this given set of upper level members, we know that at
least one feasible lower level member exists and we still need to solve the lower level
problem to find the optimal lower level solutions x (1)

u , . . . , x (N )
u .1

6.2 Constraint handling and fitness assignment

The proposed approach always assigns higher fitness to a feasible member over a
non-feasible member. For two given members, (x (i)

u , x (i)
l ) and (x ( j)

u , x ( j)
l ), if both

members are feasible with respect to constraints then it looks at the function value.
If both members are infeasible, then it looks at the overall constraint violation. This
fitness assignment scheme is similar to the one proposed in Deb (2000). At the lower
level the idea can be implemented directly using lower level constraints and lower level
function value. At the upper level, for any given upper and lower level pair, we only
consider upper level function and constraints, without considering if the corresponding
lower level vector is optimal. The information about a lower level vector corresponding
to an upper level vector being optimal is stored using tagging (0 or 1).

6.3 Genetic operations

Offspring are produced in the BLEAQ-II approach using standard crossover and
mutation operators. Genetic operations at the upper level involve only upper level
variables, and the operations at the lower level involve only lower level variables.
We utilize parent centric crossover (PCX) and polynomial mutation for generat-
ing the offspring. The crossover operator used in the algorithm is similar to the
parent-centric crossover (PCX) operator proposed in Sinha et al. (2006). The oper-
ator uses three parents and produces offspring around the index parent as described
below.

c = z(p) + ωξd + ωη

p(2) − p(1)

2
(3)

where,

– z(p) is the index parent (the best parent among three parents)
– d = z(p) − g, where g is the mean of μ parents
– p(1) and p(2) are the other two parents
– ωξ = 0.1 and ωη = 0.1 are the two parameters.

1 In case of upper level constraints containing both upper and lower level variables, one can find it difficult

to arrive at a (x(i)
u , x(i)

l ) pair that is feasible with respect to all the constraints and the lower level vector
is optimal for the given upper level vector. Many formulations of bilevel optimization, therefore, do not
consider lower level variables in upper level constraints.
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6.4 Approximation of mappings

For the quadratic approximation ofmappings around a point x ( j) = (x ( j)
u , x ( j)

l ) ∈ Poff,
we use its neighboring members in the archive A to create the approximation. Since
we want a local approximation we choose the members closest to x ( j) in terms of
Euclidean distance to create the mappings q� and qϕ . A quadratic approximation in n
dimensions requires at least n(n+1)

2 points, therefore, we use n(n+1)
2 +n points to create

the approximation.

6.5 Termination criteria

A variance based termination criterion has been used at both levels; some other termi-
nation criterion like termination based on no improvement may also be used. Variance
based termination allows the algorithm to terminate automatically when the variance
of the population becomes small. At the upper level, the variance of the population at
any generation, T , is computed as follows:

αT
u =

∑n
i=1 σ 2(xi )|T∑n
i=1 σ 2(xi )|0 , (4)

When the value of αT
u at any generation T becomes less than the parameter α

stop
u

then the algorithm terminates. In the above equation, n is the number of upper level
variables, σ 2(xi )|T is the variance across dimension i at generation T and σ 2(xi )|0 is
the variance across dimension i in the initial population. A similar termination scheme
with parameter α

stop
l can be used when the evolutionary algorithm is executed at the

lower level.

6.6 Lower level optimization

At the lower level, we utilize SQP if the problem is convex, otherwise we use the lower
level evolutionary algorithm described in Table 8 that uses similar genetic operations
as used at the upper level.

6.7 Offspring update

For an offspring x ( j) = (x ( j)
u , x ( j)

l ), the lower level vector x ( j)
l is updated either using

�-approximation or ϕ-approximation. An update using �-approximation is straight-
forward. However, if an update has to be done using ϕ-approximation, it requires to
solve the following auxiliary optimization problem. In the auxiliary problem xu is
fixed as x ( j)

u and the problem is solved only with respect to xl . The optimal xl replaces
the lower level vector x ( j)

l of the offspring.

min
xl

F̂(xu, xl)

subject to
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Table 8 The lower level evolutionary algorithm is described below that takes an upper level member as
input and solves the corresponding lower level problem

Step Description

1 Initialization:Generate an initial lower level population x(1)
l , . . . , x(N )

l randomly and assignfitness
using lower level objective and constraints

2 Genetic Operations: Randomly choose 2μ members from the population, and perform a tourna-
ment selection leading to μ parents. Create λ offspring using the genetic operations described in
Sect. 6.3. Assign fitness to each offspring

3 Update: Choose ρ members randomly from the population and pool them with λ offspring. Sort
the pool by fitness and replace the ρ members from the population by the best ρ members from the
pool

4 Termination check: Perform a termination check as described in Sect. 6.5. If false, proceed to the
next generation (Step 2)

f̂ (xu, xl) ≤ ϕ̂(xu)

ĝ j (xu, xl) ≤ 0, j = 1, . . . , J

Ĝk(xu, xl) ≤ 0, k = 1, . . . , K .

In the above formulation we use hat for all the functions and constraints as we
solve the auxiliary problem on approximated functions and constraints. We use lin-
ear approximations for all the constraints, while quadratic approximation is used for
the other functions. The auxiliary problem may have to be solved frequently if the
lower level problem contains multiple optimal solutions. Solving the auxiliary prob-
lemwith approximated functions helps in saving actual function evaluations. Note that
in the ideal case the auxiliary problem will lead to an optimistic lower level solution
corresponding to the fixed x ( j)

u .

6.8 Local search

The algorithm utilizes local search after every k generations of the algorithm. The
local search is performed by meta-modeling the upper and lower level functions and
constraints along with the � and the ϕ-mappings in the vicinity of the best member
in the population. Once the � and the ϕ-mappings are available, the quality of the
two mappings are assessed by the mean square error of the approximations (i.e. e�

mse
and eϕ

mse). The better mapping and the corresponding single level reduction (described
in Sects. 3.1 and 3.2) with approximated functions is solved using SQP to arrive at
x (LS)
u . A lower level optimization corresponding to x (LS)

u is solved and if the member
is found to be better than x ( j)

best then x ( j)
best is updated. In case the member is not better

than the best member found so far, then the next local search is performed using the
exact upper/lower level objective functions and constraints.
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6.9 Parameters and platform

The algorithm has been implemented in MATLAB. At the upper and lower level, the
parameters used in the algorithm are:

1. μ = 3
2. λ = 2
3. ρ = 2
4. Probability of crossover = 0.9
5. Probability of mutation = 0.1
6. N = 50 (Population size at upper level)
7. n = 50 (Population size at lower level)
8. α

stop
u = α

stop
l = 10−5 (Termination parameter)

9. Q = N/2 (Minimum number of tag 1 members in the population)

7 Results

In this study, we consider three algorithms, the nested approach described in
Fig. 4, BLEAQ (Sinha et al. 2017, 2013, 2014), and our proposed BLEAQ-II.
To assess the performance of each algorithm, 31 runs have been performed for
each test instance. During every simulation run, the algorithms are terminated
when the objective function accuracy of 10−2 is achieved at both levels from
the bilevel optimum. For each run, the upper and lower level function evalua-
tions required until termination are recorded separately. It is noteworthy that in
bilevel optimization the algorithms can actually diverge and move away from the
optimum even after finding it correctly. This happens usually when the lower
level is not solved correctly for a given upper level vector; therefore, we have to
ensure that every lower level solution is very close to the true optimum. A strict
variance based termination criteria (αstop

l = 10−5) is used for the lower level
runs everywhere, which ensures that the lower level is always close to the opti-
mum.

To allay the concerns about the divergence of the algorithms after finding the
bilevel optimum we have also done some additional runs, where the algorithms
terminate only based on the variance-based termination criterion at both levels
(αstop

u = α
stop
l = 10−5) without any knowledge of the true optimum. Appendix D

provides these additional results for all the approaches on all the test problems with
the variance-based termination criterion.

7.1 Standard test problems

We first present the empirical results on 8 standard test problems selected from
the literature (referred to as TP1-TP8). The description for these test problems has
been provided in the Appendix A. Table 9 contains the median upper level (UL)
function evaluations, lower level (LL) function evaluations and BLEAQ-II’s over-
all function evaluation savings as compared to other approaches from 31 runs of
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Table 9 Median function evaluations on TP test suite. While computing savings, we compare the total
function evaluations (sum of upper and lower level function evaluations) of one algorithm against the other

UL Func. Evals. LL Func. Evals. BLEAQ-II Savings

BLEAQ-II BLEAQ Nested BLEAQ-II BLEAQ Nested BLEAQ-II BLEAQ-II
Med Med Med Med Med Med versus

BLEAQ
(%)

versus
Nested
(%)

TP1 136 155 – 242 867 – 63 Large

TP2 255 185 436 440 971 5686 40 89

TP3 158 155 633 224 894 6867 64 95

TP4 198 357 1755 788 1772 19,764 54 95

TP5 272 243 576 967 1108 6558 8 83

TP6 161 155 144 323 687 1984 43 77

TP7 112 255 193 287 987 2870 68 87

TP8 241 189 403 467 913 7996 36 92

Savings for BLEAQ-II when compared against an algorithm A is given as A−BLEAQ-II
A , where the name

of the algorithm denotes the total function evaluations required by the algorithm

the algorithms. The overall function evaluations for any algorithm is simply the
sum of upper and lower level function evaluations. For instance, for the median run
with TP1, BLEAQ-II requires 63% less overall function evaluations as compared
to BLEAQ, and 98% less overall function evaluations as compared to the nested
approach.

All these test problems are bilevel problems with small number of variables,
and all the three algorithms were able to solve the 8 test instances success-
fully. A significant computational saving can be observed for both BLEAQ-II and
BLEAQ, as compared to the nested approach as shown in the Savings column of
Table 9. The performance gain going from BLEAQ to BLEAQ-II is quite signif-
icant for these simple test problems even though none of them lead to multiple
lower level optimal solutions. Detailed comparison between BLEAQ and BLEAQ-
II in terms of upper and lower level function evaluations is provided through
Figs. 7 and 8.

7.2 Scalable test problems

Next, we compare the results for the three algorithms on the scalable SMD test suite
which contains 12 test problems in the original paper (Sinha et al. 2014). We extend
this test suite in this paper to a set of 14 test problems by adding two additional scalable
test problems. The description for the additional SMD test problems can be found in
Appendix B. First we analyze the performance of the algorithms on a smaller version
of the test problems which consists of 5 variables, and then we provide the comparison
results on 10-variable instances of the SMD test problems. For the 5 variable version
of the SMD test problems, we used the settings as p = 1, q = 2 and r = 1 for all
SMD problems except SMD6 and SMD14. For the 5 variable version of SMD6 and
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Fig. 7 Bar chart (31 runs/samples) for the upper level function evaluations required for TP 1 to 8

Fig. 8 Bar chart (31 runs/samples) for the lower level function evaluations required for TP 1 to 8

SMD14, we used p = 1, q = 0, r = 1 and s = 2. For the 10 variable version of
the SMD test problems, we used the settings as p = 3, q = 3 and r = 2 for all
SMD problems except SMD6 and SMD14. For the 10 variable version of SMD6 and
SMD14, we used p = 3, q = 1, r = 2 and s = 2.
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Table 10 provides the median function evaluations and overall savings for the three
algorithms on the set of 14 SMD problems. These test problems contain 2 variables
at the upper level and 3 variables at the lower level and offer a variety of tunable
complexities to the algorithms. For instances, the test set contains problems which are
multimodal at the upper and the lower levels, contain multiple optimal solutions at the
lower level, contain constraints at the upper and/or lower levels etc. It can be found
that BLEAQ-II is able to solve the entire set of 14 SMD test problems, while BLEAQ
fails on 2 test problems. The overall savings with BLEAQ-II is higher as compared
to BLEAQ for all the test problems. The test problems that contain multiple lower
level solutions include SMD6 and SMD14, for which BLEAQ is unable to handle the
problem. Further details about the required overall function evaluations from 31 runs
can be found in Fig. 9.

Results for the high dimensional SMD test problems have been provided in
Table 11. BLEAQ-II leads to much higher savings as compared to BLEAQ, and
with higher dimensions BLEAQ is found to once again fail on SMD6 and also
on SMD7 and SMD8. Both methods outperform the nested method on most of
the test problems. We do not provide results for SMD9 to SMD14 as none of
the algorithms were able to handle these problems. It is noteworthy that SMD9
to SMD14 offer difficulties like multi-modalities and highly constrained regions,
which none of the algorithms were able to handle with the parameter setting used
in this paper. Details for the 31 runs on each of these test problems can be found in
Fig. 10.

Table 10 Median function evaluations on low dimension SMD test suite

UL Func. Evals. LL Func. Evals. BLEAQ-II Savings

BLEAQ-II BLEAQ Nested BLEAQ-II BLEAQ Nested BLEAQ-II BLEAQ-II
Med Med Med Med Med Med versus

BLEAQ
(%)

versus
Nested
(%)

SMD1 123 98 164 8462 13,425 104,575 37 92

SMD2 114 88 106 7264 11,271 74,678 35 90

SMD3 264 91 136 12,452 15,197 101,044 17 87

SMD4 272 110 74 8600 12,469 59,208 29 85

SMD5 126 80 93 14,490 19,081 73,500 24 80

SMD6 259 – 116 914 – 3074 Large 63

SMD7 180 98 67 8242 12,580 56,056 34 85

SMD8 644 228 274 22,866 35,835 175,686 35 87

SMD9 201 125 127 10,964 16,672 101,382 34 89

SMD10 780 431 – 19,335 43,720 – 54 Large

SMD11 1735 258 260 134,916 158,854 148,520 14 8

SMD12 203 557 – 25,388 135,737 – 81 Large

SMD13 317 126 211 13,729 17,752 138,089 21 90

SMD14 1014 – 168 12,364 – 91,197 Large 85
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Fig. 9 Bar chart for overall function evaluations for SMD 1–14

Table 11 Median function evaluations on high dimension SMD test suite

UL Func. Evals. LL Func. Evals. BLEAQ-II Savings

BLEAQ-II BLEAQ Nested BLEAQ-II BLEAQ Nested BLEAQ-II BLEAQ-II
Med Med Med Med Med Med versus

BLEAQ
(%)

versus
Nested
(%)

SMD1 670 370 760 52,866 61,732 1,776,426 14 97

SMD2 510 363 652 44,219 57,074 1,478,530 22 97

SMD3 1369 630 820 68,395 90,390 1,255,015 23 94

SMD4 580 461 765 35,722 59,134 1,028,802 39 96

SMD5 534 464 645 65,873 92,716 1,841,569 29 96

SMD6 584 – 824 3950 – 156,2003 Large 99

SMD7 1486 – – 83,221 – – Large Large

SMD8 6551 – – 231,040 – – Large Large

Through Figs. 11 and 12, we provide the quality of prediction of the lower level
optimal solution made by the �-mapping and ϕ-mapping approach over the course
of the algorithm. It is interesting to note that the quality of ϕ-approximation is better
in the case of SMD1 test problem in Fig. 11, therefore, the prediction decisions are
mostly made using the ϕ-approximation approach. However, for SMD13 in Fig. 12,
which involves a difficult ϕ-mapping, the prediction decisions are made using the
�-approximation approach. Both these mappings are found to be improving with an
increase in generations of the algorithm. The two figures show the adaptive nature of
the BLEAQ-II algorithm in choosing the right approximation strategy based on the
difficulties involved in a bilevel optimization problem.
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Fig. 10 Bar chart for overall function evaluations for 10-dimension SMD 1–8

8 An application problem

In this section, we discuss an application problem that involves two companies, where
one is a leader and the other is a follower. The two companies produce multiple
goods with an objective to maximize their individual profits. There is a hierarchy
with the leader company enjoying first mover’s advantage and the follower company
only observing the actions of the leader and then responding rationally. Both com-
panies produce 5 products with limited resources. The leader company has complete
knowledge about the follower company and wants to figure out the optimal production
given the response of the follower. The problem to be solved by the leader is given as
follows:

max
x,y

�u(x, y)

s.t. y ∈ argmax
y

{�l(x, y) : g j (x, y) ≤ 0, j = 1, . . . , J },
Gk(x, y) ≤ 0, k = 1, . . . , K ,

x, y ≥ 0,

where �u and �l denote the upper and lower level profit functions. The variables x
and y are vectors representing the quantity produced by the upper and lower level firms
respectively. The constraints represent the respective resources. A detailed formulation
for the above problem and its solution can be found in Appendix C. The problem was
solved 31 times and the BLEAQ-II algorithm found the optimum with the upper and
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Fig. 11 Approximation error (in terms of Euclidean distance) of a predicted lower level optimal solution
when using localized � and ϕ-mapping during the intermediate generations of the BLEAQ-II algorithm on
the 5-variable SMD1 test problem

Fig. 12 Approximation error (in terms of Euclidean distance) of a predicted lower level optimal solution
when using localized � and ϕ-mapping during the intermediate generations of the BLEAQ-II algorithm on
the 5-variable SMD13 test problem

lower level function accuracy of at least 10−2 in each run and required 473 upper level
function evaluations and 9278 lower level function evaluations on average.
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9 Conclusions

In this paper, we have presented a computationally efficient evolutionary algorithm
for solving bilevel optimization problems. The algorithm is based on iterative approx-
imations of two important theoretically motivated mappings; namely, the lower level
rational reaction mapping and the lower level optimal value function mapping. The
paper discusses about the pros and cons of utilizing these mappings in an evolutionary
bilevel optimization algorithm by embedding them in a nested approach. Thereafter,
an algorithm is developed that adaptively decides to use one of the mappings during
the execution based on the characteristics of the bilevel optimization problem being
solved. The proposed algorithm has been tested on a wide variety of bilevel test prob-
lems and it has been able to perform significantly better than other approaches in terms
of computational requirements.

Appendix A: Standard test problems

In this section, we provide some of the standard bilevel test problems chosen from the
literature. Most of these test problems are small with only small number of variables
at both levels.

Appendix B: Additional SMD test problems

SMD test problems (Sinha et al. 2014) are a set of 12 scalable test problems that offer
a variety of controllable difficulties to an algorithm.We add two more test problems to
the previous test-suite in this paper (Table 12). Both these problems contain a difficult
ϕ-mapping, among other difficulties. The upper and lower level functions follow the
following structure to induce difficulties due to convergence, interaction, and function
dependence between the two levels. The vectors xu and xl are further divided into two
sub-vectors. The ϕ-mapping is defined by the function f1.

F(xu, xl) = F1(xu1) + F2(xl1) + F3(xu2, xl2)
f (xu, xl) = f1(xu1, xu2) + f2(xl1) + f3(xu2, xl2)
where

xu = (xu1, xu2) and xl = (xl1, xl2)

(5)

123



180 A. Sinha et al.

Table 12 SMD Test Problems. (Note that (xu1, xu2) = (a, b) and (xl1, xl2) = (c, d))

Problem Formulation Solution

SMD13

F1 = (a1 − 1)2 + ∑p−1
i=1

(
(ai − 1)2 + (ai+1 − (ai )

2)2
)
,

F2 = −∑q
i=1

∑i
j=1(c j )

2,

F3 = ∑r
i=1

∑i
j=1(b j )

2 − ∑r
i=1(bi − log di )

2,

f1 = ∑p
i=1

(|ai | + 2| sin(ai )|
)
, ai = 1 ∀ i,

f2 = ∑q
i=1

∑i
j=1(c j )

2, bi = 0 ∀ i,

f3 = ∑r
i=1(bi − log di )

2, ci = 0 ∀ i,

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p}, di = 1 ∀ i .

bi ∈ [−5, e], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},
di ∈ (0, 10], ∀ i ∈ {1, 2, . . . , r}.

SMD14

F1 = (a1 − 1)2 + ∑p−1
i=1

(
(ai − 1)2 + (ai+1 − (ai )

2)2
)
,

F2 = −∑q
i=1 |ci |i+1 + ∑q+s

i=q+1(ci )
2,

F3 = ∑r
i=1 i(bi )

2 − ∑r
i=1 |di |,

f1 = ∑p
i=1 �ai � , ai = 1 ∀ i,

f2 = ∑q
i=1 |ci |i+1 + ∑q+s−1

i=q+1,i=i+2(ci+1 − ci )
2, bi = 0 ∀ i,

f3 = ∑r
i=1 |(bi )2 − (di )

2|, ci = 0 ∀ i,

ai ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p}, di = 0 ∀ i .

bi ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},
ci ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q + s},
di ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}.

Appendix C: Stackelberg duopoly formulation

In this section, we provide the complete formulation of the Stackelberg duopoly prob-
lem. Each player produces 5 products. The profit functions for the leader and the
follower involve both x and y, which means that the price of the product is influenced
by the produce from both the leader and the follower. Each of the players have their
own resource constraints that is provided by their respective constraints.

max
x,y

�u(x, y) = 60x1 + 80x2 + 70x3 + 50x4 + 40x5 − 2x21 − 3x22 − 2x23

−x1y1 − 2x2y3 − 2x24 − 2x25 − x4y4

s.t. y ∈ argmax
y

{20y1 + 40y2 + 50y3 + 30y4 + 20y5 − y21 − 2y22 − 2y23 −

x1y2 − x2y3 − 3y24 − 2y25 − x5y5 :

123



Bilevel optimization based on iterative approximation of… 181

y1 + y2 − 15 ≤ 0,

y2 + y3 − 16 ≤ 0,

y4 + y5 − 10 ≤ 0},

x1 + x2 − 22 ≤ 0,

x2 + x3 − 25 ≤ 0,

x4 + x5 − 20 ≤ 0,

0 ≤ x, y ≤ 20,

The bilevel optimum for the above problem is not readily available. Therefore, we
solved the above problem multiple times using nested approach and then performed a
refined grid search to locate the bilevel optimum. The best solution obtained has been
provided below. The decision vectors have been rounded to three decimal digits and
the function values have been rounded to two decimal digits.

(x1, x2, x3, x4, x5)
∗ = (12.016, 9.333, 15.667, 10.625, 9.375),

(y1, y2, y3, y4, y5)
∗ = (8.868, 6.132, 9.868, 5.000, 2.656),

�u(x, y)
∗ = 1684.10,

�l(x, y)
∗ = 490.77.

Appendix D: Additional results

In this section, we provide results for all the test problems with the variance-based
termination criterion through Tables 13, 14 and 15. The termination parameters used
for the runs are α

stop
u = α

stop
l = 10−5. Once an algorithm terminates based on

Table 13 Median function evaluations on TP test suite

UL Func. Evals. LL Func. Evals. BLEAQ-II Savings

BLEAQ-II BLEAQ Nested BLEAQ-II BLEAQ Nested BLEAQ-II BLEAQ-II
Med Med Med Med Med Med versus

BLEAQ
(%)

versus
Nested
(%)

TP1 203 203 – 363 1170 – 59 Large

TP2 369 268 665 702 1469 8456 38 88

TP3 248 229 1006 356 1190 9130 57 94

TP4 272 520 2630 1186 2734 27,346 55 95

TP5 361 341 919 1483 1748 9033 12 81

TP6 249 234 188 480 1036 2594 43 74

TP7 156 353 270 394 1430 4174 69 88

TP8 358 274 633 632 1303 10,500 37 91
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Table 14 Median function evaluations on low dimension SMD test suite

UL Func. Evals. LL Func. Evals. BLEAQ-II Savings

BLEAQ-II BLEAQ Nested BLEAQ-II BLEAQ Nested BLEAQ-II BLEAQ-II
Med Med Med Med Med Med versus

BLEAQ
(%)

versus
Nested
(%)

SMD1 181 144 238 12,944 21,108 144,456 38 91

SMD2 173 120 153 9684 15,038 108,293 35 91

SMD3 403 129 202 18,821 20,290 144,001 6 87

SMD4 405 173 111 13,454 17,906 79,861 23 83

SMD5 186 126 146 19,669 29,390 107,980 33 82

SMD6 380 – 160 1217 – 4875 Large 68

SMD7 277 130 93 12,111 17,424 78,124 29 84

SMD8 1027 340 372 35,069 47,094 233,833 24 85

SMD9 307 174 186 15,510 25,322 141,075 38 89

SMD10 1106 578 – 28,901 62,275 – 52 Large

SMD11 2437 398 366 204,153 218,781 232,213 6 11

SMD12 266 734 – 37,361 197,182 - 81 Large

SMD13 458 189 292 21,956 23,198 188,609 4 88

SMD14 1615 – 262 17,031 – 128,037 Large 85

Table 15 Median function evaluations on high dimension SMD test suite

UL Func. Evals. LL Func. Evals. BLEAQ-II Savings

BLEAQ-II BLEAQ Nested BLEAQ-II BLEAQ Nested BLEAQ-II BLEAQ-II
Med Med Med Med Med Med versus BLEAQ (%) versus Nested (%)

SMD1 874 531 1156 83,205 88,439 2,665,139 5 97

SMD2 745 507 877 65,244 76,213 2,337,708 14 97

SMD3 1898 972 1151 97,311 136,883 1,766,404 28 94

SMD4 755 694 1223 48,648 80,979 1,518,971 40 97

SMD5 789 741 840 99,566 126,488 2,839,482 21 96

SMD6 908 – 1170 5271 – 2,327,922 Large 100

SMD7 1946 – – 119,089 – – Large Large

SMD8 8760 – – 301,014 – – Large Large

the variance-based termination criterion, the best point reported by the algorithm is
compared with the true bilevel optimum, and the run is considered successful only if
the objective function accuracy of 10−2 is achieved at both levels.
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