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Abstract
The mixed fleet heterogeneous dial-a-ride problem (MF-HDARP) consists of 
designing vehicle routes for a set of users by using a mixed fleet including both 
heterogeneous conventional and alternative fuel vehicles. In addition, a vehicle is 
allowed to refuel from a fuel station to eliminate the risk of running out of fuel dur-
ing its service. We propose an efficient hybrid adaptive large neighborhood search 
(hybrid ALNS) algorithm for the MF-HDARP. The computational experiments 
show that the algorithm produces high quality solutions on our generated instances 
and on HDARP benchmarks instances. Computational experiments also highlight 
that the newest components added to the standard ALNS algorithm enhance intensi-
fication and diversification during the search process.

Keywords  Dial-a-ride problem · Alternative fuel station · Adaptive large 
neighborhood search algorithm · Mixed vehicle fleet

1  Introduction

Everyday millions of people travel to different locations using various public com-
muting services. Unfortunately, people who suffer from physical disabilities often 
do not benefit from public services due to accessibility and mobility complications. 
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To improve these services, researchers in this field have introduced the reduced 
mobility transportation problem, which seeks to plan vehicle routes to improve the 
disabled persons’ mobility. This problem is also known as the Dial-a-Ride Problem 
(DARP).

As a general practice, Conventional Vehicles (CVs) with unlimited fuel supply 
are considered in all DARPs (see e.g. Muelas et  al. 2013; Braekers et  al. 2014). 
However, CVs are among the main contributors to harmful emissions, such as green-
house gases (GHGs) and air pollutants (U.S. EIA 2013). In an attempt to reduce the 
harmful environmental impacts and for saving the limited energy resources, many 
organizations today resort to incorporating Alternative Fuel Vehicles (AFVs) in their 
fleet, including flexible fuel vehicles and fuel cell vehicles (US DOE 2018). AFVs 
operate on different types of alternative fuels, such as biodiesel, propane, ethanol, 
and hydrogen. As an example from practice, in Stockholm City, the transport of per-
sons is conducted by heterogeneous AFVs using different fuel types (Ethanol ED95, 
biogas, and biodiesels). Moreover, in Canada, several companies such as Société de 
Transport de Montréal (STM) in Montréal and the Réseau de Transport de la Capi-
tale (RTC) in Québec, use different types of AFVs added to their existing CVs’ fleet.

From a research perspective, the use of AFVs has recently attracted attention 
in the field of the Vehicle Routing Problem (VRP) (see, e.g., Erdoğan and Miller-
Hooks 2012; Adler and Mirchandani 2016; Andelmin and Bartolini 2017; Yavuz 
2017), giving rise to a new VRP variant known as the Green Vehicle Routing Prob-
lem (GVRP) with refueling, since refueling of AFVs during their service route is a 
main concern as will be explained shortly. However, to our knowledge, the use of 
AFVs in the DARP applications has not been previously considered in the literature. 
Thus, this paper promotes using a mixed fleet of CVs and AFVs with tank refueling 
within the context of the DARP.

AFVs can be classified into two main categories: dedicated AFVs and dual-fuel 
AFVs. Dedicated AFVs use only alternative fuel, such as CNG and propane. On the 
other hand, dual-fuel AFVs come into two main types: bi-fuel and flexible-fuel. Bi-
fuel vehicles can operate with either alternative or conventional fuel; i.e., a special 
tank and fuel system is provided for each of these types, but the vehicle can operate 
on only one of them at a time. In contrast, a flexible-fuel vehicle has one fuel tank 
that can be filled with either type of fuel. The most common fuel used in flexible-
fuel vehicles is a blend of gasoline and ethanol (DVRPC 2011). In our case, we 
adopt a fleet of flexible-fuel vehicles (i.e., a fleet of alternative fuel vehicle using 
biodiesel).

One important point to note when using AFVs in VRP applications, though, is 
that the amount of alternative fuel in the vehicle tank is limited, in contrast to the 
traditional gasoline or diesel fuel, where the amount of fuel in the vehicle tank is 
assumed to be enough to travel for longer distances. In addition, the traditional gas-
oline or diesel refueling stations are usually plentiful, while Alternative Fuel Sta-
tions (AFSs) are usually scarce and often unevenly distributed across urban areas 
(Erdoğan and Miller-Hooks 2012; Yavuz 2017). Therefore, the main difference 
between the GVRP with refueling and the traditional VRP is the consideration of 
refueling requirement during route planning. Failing to address this issue, may cause 
vehicles to run out of fuel or may cause unnecessary detours from the pre-planned 



85

1 3

Hybrid adaptive large neighborhood search algorithm for the…

routes to reach an AFS (Erdoğan and Miller-Hooks 2012). Thus, many papers in the 
GVRP literature have considered the limitation in the driving range of AFVs as well 
as the need for refueling in specialized stations (see, e.g., Erdoğan and Miller-Hooks 
2012; Koç and Karaoglan 2016). In these papers, the aim is efficient route planning 
that considers both customers’ visits as well as frequent visits to refueling stations 
during the planning period. Our research is in line with these studied GVRP vari-
ants, where we incorporate AFVs as well as refueling stations in the route for serv-
ing customers in the DARP.

However, in the context of the DARP, the refueling requirement may cause ser-
vice disruptions and may lead to the dissatisfaction of customers. Therefore, careful 
planning of these visits should be considered with this need in mind. We also note 
that the concept of refueling in the field of transportation of the disabled and the 
elderly is indeed applied in practice. For example, the company “Transport Adapté 
du Québec Métro Inc. (TAQM)” in Quebec, Canada (Thériault 2005) offers services 
for the exclusive use of people with limited mobility. For this company, refueling of 
vehicles is an important requirement, due to the long distances frequently traveled to 
their destinations in different regions (e.g., health centers, special education institu-
tions, working institutions, etc.). As a result, it is mandatory to refuel the vehicles at 
the start of the day, during the trip, or at the end of the working day. The order of the 
customers’ visits and the choice of an access point for each AFS are highly affected 
by an inappropriate planning. For example, a vehicle may frequently spend time dur-
ing its journey for searching the nearest AFS due to restricted refueling infrastruc-
ture. Planning efficient routes that satisfy the customers’ demands is one of the main 
concerns of TAQM. Therefore, it is necessary for the company to minimize the dis-
tance needed to reach AFS, while complying with the time constraints of each user.

Regarding the fuel consumption of AFVs, there are several studies concerning 
emission (fuel consumption) models (e.g., Demir et al. 2014) that report the major 
effect of the vehicle’s type on fuel consumption. Thus, to enrich our research, we 
consider two types of emission models to calculate the fuel consumption rate: the 
Comprehensive Modal Emissions Model (CMEM) of Barth and Boriboonsomsin 
(2009) for the CVs and National Atmospheric Emissions Inventory (NAEI) model 
(NAEI 2012) for the AFVs.

In addition, the considered mixed fleet in our problem is heterogeneous in terms 
of their capacity of carrying people (i.e., they are vehicles with different capacity 
resources like passenger seats, stretchers and wheelchairs). Thus, the problem that 
we consider belongs to the Heterogeneous Dial-a-Ride Problem (HDARP) with 
CVs’ category as studied by Braekers et  al. (2014), and Masmoudi et  al. (2016, 
2017). We call this specific problem as the Mixed Fleet HDARP (MF-HDARP).

2 � Literature review

This section presents a brief literature review related to our problem. First, we 
review the most recent studies in the HDARP. Second, green vehicle routing prob-
lem papers that explicitly consider alternative fuel vehicles with refueling are 
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presented. Third, VRPs that consider a mixed fleet of vehicles are reviewed. Finally, 
we discuss the main differences between our problem and the related studies fol-
lowed by the main scientific contributions of our research.

2.1 � The heterogeneous dial‑a‑ride problem

The reduced mobility people transportation is often complicated by the presence 
of several types of users with special needed equipment, such as a patient seat, a 
wheelchair and a stretcher (Wong and Bell 2006). The DARP with heterogene-
ous users and/or vehicles (called HDARP) (Parragh 2011) is a generalization of 
the DARP, but it has not been extensively studied in the literature. Wong and 
Bell (2006) tackled the DARP with two types of vehicles (equipped with wheel-
chairs) and two types of users for elderly and disabled people’s transportation. 
Xiang et  al. (2006) developed a heuristic algorithm to solve a more practical 
version of the DARP with several types of users and vehicles. In a later study, 
Parragh et al. (2012) introduced a variant of the HDARP, in which the require-
ments of assistants and their lunch break constraints are considered.

In the study of Braekers et al. (2014), multiple depots of heterogeneous vehi-
cles and users are considered to reduce the total routing costs. More recently, 
Masmoudi et  al. (2017) solved the standard HDARP using a hybrid Genetic 
Algorithm (GA). To our knowledge, their hybrid GA provides the best-known 
results on these instances so far, and outperforms current state-of-the-art algo-
rithms for the standard DARP and HDARP. In another study, Masmoudi et  al. 
(2016) augmented the multi depots and coffee break concepts on the standard 
HDARP. The authors developed two hybrid metaheuristic approaches, namely 
hybrid Bees Algorithm with Simulated Annealing (BA-SA) and hybrid Bees 
Algorithm with Deterministic Annealing (BA-DA), as well as ALNS algorithm.

Later, Braekers and Kovacs (2016) extended the single period HDARP to a 
multi-period DARP and considered a limited number of drivers to serve each 
user over a predefined number of days. More recently, Masmoudi et al. (2018b) 
proposed a new DARP variant by considering a fleet of homogeneous Electric 
Vehicles (EVs) instead of the CVs. In their problem, the EVs are allowed to be 
recharged by swapping their depleted battery by a full one from any battery-
swap station. To solve this problem, three Evolutionary Variable Neighborhood 
Search (EVO-VNS) variants are proposed. In their methods, the VNS is embed-
ded with some features adopted from population-based methods, such as cross-
over of the GA, to diversify the search, and the Shuffled Frog-Leaping Algo-
rithm (SFLA) to create the initial solution for each VNS iteration. The proposed 
algorithms are compared on new randomly generated instances with up to eight 
vehicles and 96 requests. These instances are based on the benchmark HDARP 
instances of Masmoudi et al. (2017) and on an artificial data set with different 
characteristics, containing up to 15 vehicles and 100 users. The results show that 
the proposed approaches provide high quality solutions on the new generated 
instances. In addition, they demonstrate that the hybridization of several features 
of population based methods with VNS outperforms the traditional VNS. To the 
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best of our knowledge, this is the only study that incorporates a fleet of EVs in 
the DARP.

For other variants of (H)DARP, interested readers can find several real con-
cepts related to this problem in the applications studied by Zhang et al. (2015), 
Liu et al.(2015), Lim et al. (2016), and Amirgholy and Gonzales (2016). Inter-
ested readers are also referred to surveys on the DARP by Molenbruch et  al. 
(2017) and Ho et al. (2018).

2.2 � The green vehicle routing problem with refueling

The problem presented in this research is related to alternative fuel vehicles, fuel 
stations, and green vehicle routing problems with refueling using a limited fuel tank.

During the last few years, research in the field of logistics and operations research 
has been extended by considering environmental impacts and costs related to both 
people and industrial transportation activities. Within this domain, the Green Vehi-
cle Routing Problem (GVRP), which considers the fuel tank capacity limitation, has 
received an increasing attention recently. Erdoğan and Miller-Hooks (2012) were 
the first authors to introduce the GVRP, where refueling and a fleet of biodiesel-
powered alternative fuel vehicles are considered. A constant fuel consumption rate 
is used in order to decide when the vehicle should be refueled. The authors proposed 
a mixed-integer linear model to minimize the travel distance considering AFSs as 
well as a finite driving autonomy, where the number of tours and their limited dura-
tion are respected. A constant fuel consumption is considered in Koç and Karaoglan 
(2016). They suggested a mixed integer programming formulation and proposed a 
more sophisticated branch-and-cut algorithm, in which various adequate inequali-
ties taken from the literature are incorporated, in order to improve the lower bound. 
They also used a simulated annealing metaheuristic to acquire the upper bound. The 
algorithm was evaluated by testing it on benchmark GVRP instances of Erdoğan 
and Miller-Hooks (2012). The results indicate that there is a possibility to optimally 
solve 22 out of 40 instances with 20 customers during a short computation time. 
An exact solution approach based on a set partitioning formulation by adding a new 
valid inequality is proposed by Andelmin and Bartolini (2017) to solve the GVRP. 
Yavuz (2017) developed an Iterated Beam Search (IBS) algorithm for the GVRP 
with refueling of a homogeneous service fleet by allowing multiple AFS visits. 
Other studies on the GVRP with refueling can be found in Adler and Mirchandani 
(2016) and Xiao and Konak (2017). Interested readers are referred to the survey 
paper of Demir (2018) for GVRP varieties.

2.3 � Mixed fleet vehicle routing problem

In recent years, using a mixed fleet of vehicles in different VRP variants has attracted 
the attention of researchers, since it is more practical and relevant. However these 
studies are still limited in the literature and only few works have addressed this con-
cept. Sassi et al. (2014) used a mixed fleet of vehicles composed of EVs and CVs 
in the context of Electric Vehicle Routing Problem (EVRP), which is considered 



88	 M. A. Masmoudi et al.

1 3

as an extension of the GVRP (Schneider et al. 2014). Goeke and Schneider (2015) 
considered also a mixed fleet of EVs and CVs for the EVRP. The authors developed 
a realistic energy consumption model for the EVs based on the CMEM of Barth 
and Boriboonsomsin (2009), designed for the traditional CVs. ALNS method is pro-
posed to solve this problem. The experiments show that this method is able to find 
good results on the proposed problem and on the benchmark VRP with time win-
dows and the EVRP.

More recently, Hiermann et  al. (2019) proposed a new EVRP variant called 
Hybrid Heterogeneous Electric Fleet routing problem with Time Windows and 
recharging stations (H2E-FTW), where they consider a mixed fleet of vehicles, 
composed of Battery Electric Vehicles (BEVs), Plug-in Hybrid Vehicles (PHEV) 
and CVs, as well as multiple vehicle types from each class with different battery 
sizes, capacity and fuel consumption and/or electric energy per mile. To solve this 
problem, the authors proposed an efficient sophisticated hybrid genetic algorithm 
based on layered route evaluation procedures. The algorithm was tested on a vari-
ety of benchmark instances of the E-FSMFTW (Electric Fleet Size and Mix vehicle 
routing problem with Time Windows and recharging stations) and the E-VRPTW 
and was able to obtain better or equal average results than existing algorithms on 
these problems. In addition, 119, 11, and 19 new best solutions were found for the 
E-FSMF, the E-VRPTW, and the E-VRPTW with partial recharging. The authors 
also investigated how fuel and energy cost can impact the decision regarding fleet 
composition. They concluded that a mixed fleet can reduce costs in most operational 
scenarios, in comparison to the use of a single vehicle type.

2.4 � Summary and discussion

The different characteristics of the MF-HDARP can be frequently encountered in 
practice. Our MF-HDARP is both similar to and different from HDARP, mixed fleet 
VRP, and GVRP, as explained next.

First, based on the HDARP literature summarized above, we can observe that 
using a fleet of CVs (Parragh 2011; Braekers et  al. 2014; Masmoudi et  al. 2016, 
2017), or using EVs (Masmoudi et al. 2018b) is considered separately. However, in 
real-world applications most companies operate different modes of transportations. 
Thus, in our research we adopt a mixed fleet of CVs and AFVs with tank refueling.

Second, there is a limited number of studies of DARP that use EVs (DARP-EV). 
Specifically, we are only aware of one paper (Masmoudi et al. 2018b) that studies 
this problem. In addition, this study has some limitations in terms of using only one 
mode of transportation, since the fleet is composed of homogeneous EVs (i.e., all 
vehicles have the same type of resources). On the other hand, our research is differ-
ent than the DARP-EV of Masmoudi et al. (2018b) in that we use both a mixed fleet 
of CVs and AFVs, and the fleet has different capacity resources (i.e., heterogeneous 
fleet). Thus our problem is more complex than the traditional DARP-EV. It is also 
worth mentioning that using AFVs with fuel tank instead of EVs is beneficial for 
companies that operate CVs with gasoline or diesel. This is because biodiesel is an 
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alternative fuel that can be adopted in conventional engines that use diesel, either 
separately or by blending it with diesel (Verma and Sharma 2016). Moreover, using 
biodiesel in either form does not require any engine adjustment of the CV (Mas-
moudi et al. 2018a). Thus, newly manufactured diesel-powered vehicles can run on 
biodiesel without any alterations or special requirements. This allows logistics com-
panies to transform some of their CVs to AFVs using biodiesels, without having to 
replace their fleets.

Third, using a mixed fleet of vehicles is very limited in the literature and applied 
only in some EVRP variants (Sassi et  al. 2014; Goeke and Schneider 2015; and 
Hiermann et al. 2019). It has not been applied in any DARP or HDARP variants. 
Thus, we believe that it deserves to be studied in the context HDARP. Moreover, as 
previously mentioned, our research is different than the existing mixed fleet appli-
cations in that we use different capacity resources inside the vehicle, instead of 
only one resource type, as in the majority of mixed fleet vehicle routing problems. 
Finally, most studied GVRP with tank refueling (see, e.g., Erdoğan and Miller-
Hooks 2012; Koç and Karaoglan 2016; Andelmin and Bartolini 2017; Yavuz 2017) 
use a constant fuel consumption rate. However, in recent studies of the EVRP and 
the Pollution Routing Problem (PRP), the fuel (energy) consumption rate is not lin-
ear and depends on several factors, such as the speed, load, .., etc. (see, e.g., Demir 
et  al. 2012, 2014; Franceschetti et  al. 2017; Androutsopoulos and Zografos 2017; 
Toro et  al. 2017; Salehi et  al. 2017). Similar to the mentioned works, we apply a 
fuel consumption rate function. Moreover, to enrich our research, we consider two 
emission models to calculate the fuel consumption rate: the CMEM and National 
Atmospheric Emissions Inventory (NAEI) (NAEI 2012) model. The CMEM model 
is applied to CVs (Demir et al. 2012), while the NAEI model is implemented on the 
AFVs. In fact, the main advantage of using the NEAI in our research, especially for 
the AFVs, is that the NAEI model is calculated based on both total fuel consump-
tion data as well as fuel properties. Moreover, since it is obvious that fuel consump-
tion is the origin of CO2e (Demir et al. 2012), the amount of fuel consumption can 
be immediately converted into that of CO2e through multiplying it with a certain 
coefficient. To the best of our knowledge, these two models have not been applied 
on any DARP variant yet, as well as in the EVRP and the mixed fleet vehicle routing 
problem.

To sum up, our MF-HDARP is considered as a combination of several aspects 
from the existing HDARP, mixed fleet vehicle routing problem and the GVRP with 
refueling. To our knowledge, this rich problem variant has not been previously tack-
led in the literature.

2.5 � The main scientific contributions and structure of the paper

The contributions of this research are as follows: (1) we introduce a Mixed Fleet 
Heterogeneous Dial a ride Problem (MF-HDARP) and provide a mathematical 
formulation of the purposed problem. (2) A hybrid Adaptive Large Neighborhood 
Search (ALNS) algorithm is developed to solve the MF-HDARP. The motivation 
for adopting ALNS for solving the MF-HDARP is its successful performance on 
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related vehicle routing problems including (H-)DARP, in addition to its robustness 
in efficiently solving problem instances with different characteristics. (3) We hybrid-
ize the traditional ALNS with several diversification and intensification mecha-
nisms to improve its performance. Specifically, we add an exploration mechanism 
to avoid local optima using crossover operators, and an intensification mechanism 
using a local search procedure. In addition, several special characteristics and algo-
rithmic improvements have been developed to achieve good performance on the 
MF-HDARP, as will be discussed later. (4) We introduce a new large size data set 
instances with different characteristics having up to 200 requests. (5) Extensive 
computational experiments show that our algorithm is able to produce good-quality 
solutions, on both existing and new benchmark instances. And finally, (6) we assess 
the effect of hybridizing the ALNS with the different new components (i.e., crosso-
ver and local search operators), and draw some insights on the performance of these 
components.

The rest of the paper is organized as follows. Section 3 provides the problem defi-
nition. Section 4 describes our proposed algorithm, and Sect. 5 reports the computa-
tional experiments. Conclusions are summarized in Sect. 6.

3 � Problem definition

The MF-HDARP can be formally described as follows. Consider a graph G =
(

V �,A
)

 
with node set V ′ and arc set =

{

(i, j) ∶ i, j ∈ V �, i ≠ j
}

 where V ′ is further partitioned 
into subsets N and F′ ( V � = N ∪ F�) ; N = {1,… , 2n} corresponds to n users to be 
serviced, where P = {1,… , n} and D = {n + 1,… , 2n} are the sets of nodes cor-
responding to pickup and delivery locations, respectively. Let F the set of refueling 
stations. F′ is the set of vertices in F . The depot is a special node that belongs to the 
set F′ . It is assumed that the depot is a refueling station, where vehicle routes must 
start and end. In addition, the depot node is duplicated, where the starting node is 
denoted by d and the ending node is denoted by e . There is a non-negative travel cost 
cij , travel speed vij and a non-negative distance dij associated with each arc ( i, j ) from 
set A. We assume that vehicles travel each arc (i, j) with different speeds between vl 
and vw , and the number of stops that can be made for refueling is unlimited. When 
refueling takes place, it is assumed that the tank is refilled to its maximum capacity. 
The time window to visit any refueling node is set as [0, T], where T is the length 
of the planning horizon. Moreover, a mixed fleet with a fixed size of heterogeneous 
vehicles, which is composed of mAF AFVs and mCV CVs, are available to serve the 
n users.

Each CV(AFV) has a capacity Qr,CV (Qr,AFV ) that gives the amount of resource r 
available on each CV(AFS), where each type of resource is dedicated to: the accom-
panying person of the handicapped Q0,k , handicapped person’s seat Q1,CV (Q1,AFV ) , 
stretcher Q2,CV (Q2,AFV ) and wheelchair Q3,CV (Q3,AFV ) . Each CV(AFV) contains a 
fuel tank capacity HCV (HAFV ) , which is consumed and reduced at a fuel rate FR 
on each traveled arc (i, j). Each user is associated with a demand requirement qr

i
 for 

each resource r , and time window 
[

T−
i
, T+

i

]

 , where T−
i

 and T+
i

 represent the earliest 
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and latest visiting time, respectively. A maximum user/patient ride time Lmax is 
implicitly considered to provide the highest service quality. In addition, a service 
time si is imposed when visiting each node (∀i ∈ N) , and a refueling time sf  is con-
sidered when the AFV visits a refueling station node 

(

∀f ∈ F�
)

.
As studied in Demir et al. (2012), for the fuel consumption rate of CVs, the constant 

fuel rate FR required over the course in each arc ( i, j ) can be calculated as: 
FRij =

�

�⋅�
(eND +

Pij

�⋅�tf
) , where Pij represents the mechanical power Pij = (1

2
 cd u A 

v2 + mg (sin(�ij) + cr cos(�ij)))vij . All parameters along with typical values are summa-
rized in Table 12 in the “Appendix”.

For AFVs, the fuel consumption rate with an average speed v can be calcu-
lated as: FRij(v) = �(�1 + �2v + �3v2 + �4v3 + �5v4 + �6v5 + �7v

6)/v , where � = 0.037, 
�1 = 10537.515, �2 = 220.217, �3 = 54.175, �4 = − 2.404, �5 = 0.043, �6 = 0 and �7 = 0. A 
detailed explanation of each parameter can be found on NAEI (2012).

Based on the heterogeneous dial a ride problem formulation of Parragh (2011) and 
the electric vehicle routing problem with mixed fleet formulation of Goeke and Schnei-
der (2015), we provide below a mixed-integer programming formulation for the MF-
HDARP. The MF-HDARP can be formulated as follows: xCV

ij
 is a binary variable that is 

equal to 1 if arc (i, j) is traveled by the CV and 0 otherwise. Similarly, xAFV
ij

 is a binary 
variable that is equal to 1 if the arc (i, j) is traveled by the AFV and 0 otherwise. Bi is a 
continuous variable that represents the time when the service starts at node i . The con-
tinuous variable Qr,CV

i
(Qr,AFV

i
 ) represents the load of resource r on the CV(AFV), 

immediately after visiting node i . The continuous variables li represents the ride time of 
user i ∈ P on any vehicle (CV and AFV). Finally, the continuous variable oi represents 
the tank fuel level of the AFV, when visiting node i.

(1)minimize
∑

(i,j)∈A

cij(x
AF
ij

+ xCV
ij

)

(2)
subject to
∑

j∈N

(xAF
ij

+ xCV
ij

) = 1∀i ∈ P

(3)
∑

j∈V �

xAF
ij

−
∑

j∈V �

xAF
n+i,j

= 0 ∀i ∈ P

(4)
∑

j∈V

xCV
ij

−
∑

j∈V

xCV
n+i,i

= 0 ∀i ∈ P

(5)
∑

j∈V �

xAF
ij

≤ 1 ∀i ∈ F�

(6)
∑

j∈V ��{d}

xAF
ij

−
∑

j∈V ��{e}

xAF
ji

= 0 ∀i ∈ V �
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(7)
∑

j∈V�{d}

xCV
ij

−
∑

j∈V�{e}

xCV
ji

= 0 ∀i ∈ V

(8)
∑

j∈V �

xAF
dj

≤ mAF

(9)
∑

j∈V

xCV
dj

≤ mCV

(10)
∑

i∈V �,i≠d

xAF
di

=
∑

j∈V �,j≠d

xAF
je

(11)
∑

i∈V ,i≠d

xCV
di

=
∑

j∈V �,j≠e

xCV
je

(12)
QrAF

j
≥ qr

j
xAF
ij

+ QrAF
i

− Qr,CV (1 − xAF
ij
) ∀i ∈ V ��{d, e}, ∀j ∈ V ��{d}, r ∈ {0, 1, 2, 3}

(13)
QrCV

j
≥ qr

j
xCV
ij

+ QrCV
i

− Qr,CV (1 − xCV
ij

) ∀i ∈ V�{d, e}, ∀j ∈ V�{d}, r ∈ {0, 1, 2, 3}

(14)0 ≤ QrAF
j

≤ Qr,AF ∀j ∈ V �, r ∈ {0, 1, 2, 3}

(15)0 ≤ QrCV
j

≤ Qr,CV ∀j ∈ V , r ∈ {0, 1, 2, 3}

(16)QrAF
d

= 0 r ∈ {0, 1, 2, 3}

(17)QrCV
d

= 0 r ∈ {0, 1, 2, 3}

(18)B
j
≥ B

i
+ (si + tij)x

AF
ij

− (1 − xAF
ij
) ∀i ∈ N, j ∈ V �

(19)B
j
≥ B

i
+ (si + tij)x

CV
ij

− (1 − xCV
ij

) ∀i ∈ N, j ∈ V

(20)l
i
= B

n+i
− (B

i
+ si) ∀i ∈ P

(21)ti,n+i ≤ l
i
≤ Lmax ∀i ∈ P

(22)T−
i
≤ B

i
≤ T+

i
∀i ∈ V

�

(23)oj ≤ oi − FRdijx
AF
ij

+ H(1 − xAF
ij
) ∀j ∈ N,∀i ∈ V

�

, i ≠ j
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The objective function (1) minimizes the total routing costs. Constraints 
(2)–(4) guarantee that each user is served exactly once and each pair of pickup 
and delivery is served by the same vehicle, while constraints (5) ensure that each 
recharging station can be used at most once. Constraints (6) and (7) define the 
arc flow conservation. Constraints (8) and (9) guarantee that the number used of 
alternative fuel vehicles and conventional vehicles, respectively, does not exceed 
the fleet size. Constraints (10) and (11) guarantee that each vehicle begins at the 
origin depot and finishes at the corresponding destination depot. Constraints 
(12)–(15) enforces the capacity condition. Constraints (16) and (17) ensure that 
a vehicle has an empty load when leaving the depot. Constraints (18) and (19) 
specify the beginning of service at each node. Constraints (20) define the ride 
time of each user in each route, which is bounded by constraint (21). These con-
straints also ensure the precedence constraint between the pickup and the corre-
sponding drop off nodes. Constraints (22) enforce the time windows. Constraints 
(23) keep track of the fuel level of the alternative fuel vehicle, which is deter-
mined by the sequence and type of visited nodes. That is, if i is a customer node 
and j is visited immediately after i ( xAF

ij
= 1 ), the first term in constraints (23) 

will guarantee that the fuel level is reduced by a sufficient amount, when the 
alternative fuel vehicle arrives at j . The reduction in fuel level is based on the 
distance from i to j and the fuel consumption rate. Constraints (24) guarantee 
that the alternative fuel vehicle will not get stuck after visiting any customer in 
the route due to shortage in fuel. This is done by ensuring that there is enough 
fuel remaining to drive to the depot, either directly or by passing through a refu-
eling station. Constraints (25) guarantee that the tank becomes full after visiting 
a refueling station. Constraints (26) enforce the time limit of the route, which is 
restricted by Tmax . Finally, constraints (27) specify the binary decision variables.

The HDARP is an NP-hard problem (Parragh 2011). Several researchers have 
attempted exact methods (e.g., Branch-and-Cut, Branch-and-Price-and-Cut) to 
solve small-sized instances to optimality, since commercial solvers cannot solve 
instances as small as 10 requests (Zhang et al. 2015; Liu et al. 2015). For exam-
ple, in Masmoudi et al. (2018b), CPLEX 12.6.1 can only solve very few small 
size instances with two vehicles and 15 requests. However, even the exact meth-
ods developed in the literature can only solve few small instances to optimality 
in the majority of studied problems (Molenbruch et  al. 2017). Therefore, most 
HDARP studies develop metaheuristic approaches to solve this problem (Braek-
ers et al. 2014; Braekers and Kovacs 2016; Masmoudi et al., 2016, 2017, 2018b). 

(24)oj ≥ min{FRdjd,FR(dji + did)} ∀j ∈ N,∀i ∈ F�

(25)oj = HAF ∀j ∈ F
�

(26)B
e
− B

d
≤ Tmax

(27)xAF
ij
, xCV

ij
∈ {0, 1} ∀k ∈ K,∀i, j ∈ V �, i ≠ j.
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Also, the Electric Vehicle Routing Problem using Mixed Fleet (E-VRPMF) is an 
NP-hard problem (Goeke and Schneider 2015). Again, most studies have devel-
oped metaheuristics to solve this problem (Sassi et  al. 2014; Goeke and Sch-
neider 2015; Hiermann et al. 2019). Since the MF-HDARP is a combination of 
the traditional (H)DARP and the E-VRPMF, solving practical size instances of 
this problem requires utilizing heuristic and metaheuristic approaches, in order 
to provide acceptable solutions within reasonable processing times. In the next 
section our proposed metaheuristic approach for solving the MF-HDARP is 
introduced.

4 � Hybrid adaptive large neighborhood search algorithm 
for the MF‑HDARP

ALNS was used in solving a variety of VRPs including (H)DARP (see, e.g., 
Ropke and Pisinger 2006a; Demir et al. 2012; Masmoudi et al. 2016; Žulj et al. 
2018; Alinaghian and Shokouhi 2018). However, when ALNS is applied to highly 
constrained problems, it may get trapped in local optima. Thus, we try here to 
improve the convergence of ALNS towards better solutions, by applying different 
intensification strategies around good solutions, and also encouraging diversifica-
tion to unexplored regions of the search space.

In most of the ALNS algorithms applied in the literature, if the newly gener-
ated solution (after applying the removal and insertion operators), is not better 
than the current one, or is not accepted by the well-known acceptance function 
of the SA algorithm, the ALNS restarts from a new solution that is re-generated 
using the removal and insertion operators on the same current solution. Neverthe-
less, in our approach, we do not retract to a formerly obtained solution. Instead, 
we construct a new solution utilizing the crossover operator of the well-known 
GA. The new solution is constructed by combining both the best solution identi-
fied so far and a new solution generated using a constructive heuristic. This newly 
generated solution is then set as the current solution. The idea is to allow the 
algorithm enough diversification power, since the new solution, which is approxi-
mately as good as the current best solution, will be placed in a different region of 
the search space, thanks to the power of the crossover.

In addition, in most studied ALNS applications, the best solution is updated 
only if the newly generated solution is better than the current best solution. In 
contrast, in our ALNS variant, we adopt an acceptance function that is applied for 
the best solution. In other words, if the solution is not worse than � % of the cur-
rent best solution, the solution is accepted. This solution is then improved using a 
local search procedure. After this, the solution obtained is compared with the best 
solution to decide whether to accept or reject the new improved solution. Thus, 
our ALNS gives another chance for promising solutions to become new best solu-
tions after being improved by the local search procedure, which adds more diver-
sification power. On the other hand, applying local search to improve promising 
solutions is intended to further intensify the search and improve the quality of 
these solutions even more.
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To sum up, all the aforementioned characteristics shape a new hybrid ALNS, 
which combines advantages of the intensification potential of the local search 
operators, the diversification potential of the crossover, and the flexibility of the 
acceptance function mechanism applied on the best solution in a novel way.

The structure of our ALNS algorithm shown in Algorithm 1 is based on that 
proposed by Masmoudi et al. (2016). The algorithm executes for a fixed time to 
find a best solution x and its routing cost f(x). Let x the initial solution and xbest 
the current best solution. The temperature T  is initialized to its maximum value 
Tmax and the weights and scores of the removal and insertion operators are also 
initialized, but they are updated during the search.

At each ALNS iteration, combinations of operators (removal and insertion) (see 
Sect. 4.5) are selected according to their past performance (see Sect. 4.4). This is 
done as follows: in case xbest is improved in the last iteration, one removal and one 
insertion operator are applied. Otherwise, two removal operators are performed in a 
random order to destroy the partial solution, followed by one insertion operator to 
repair the solution. Our insertion operators insert unserved requests, if feasible. In 
case some requests cannot be served, due to constraints violation, one more conven-
tional vehicle will be added to the solution. In this case, the best solution in terms of 
cost will be the solution having a fewer number of additional vehicles.

After removing recharging station node(s) and re-insertion of users, the current 
solution may become infeasible, due to fuel related constraints. In this case, the two 
relevant operators Remove Station (RS) and Insert Station (IS) are applied in a ran-
dom order to restore feasibility. Thus, a new solution x′ is obtained. x′ is accepted 
if it is better than the current solution x , or if it satisfies the SA acceptance crite-
rion e(f (x)−f (x�)∕T) . Otherwise, a new solution is created using a randomly selected 
crossover operator (O1, O2, or O3) (see Sect. 4.2), which combines different char-
acteristics inherited from the current xbest and a newly generated solution using the 
constructive heuristic (see Sect. 4.1). When obtaining a new solution, we decide to 
accept or reject the solution. If the objective function of x′ is better than that of xbest , 
x′ becomes the new best solution. Else, if the new solution x′ is not worse by more 
than 2% of the current best solution xbest , x′ is enhanced by the local search strategy 
(see Sect. 4.3). Then, the new solution may become the current best solution, only if 
it has better quality.
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Algorithm 1: 
Initialize = x T
While Do

x
x’

x’
If x’ Then

If f ’ f x f ’ Then
x x’

Else If  f ’ f x Then
newly constructed solution by the constructive heuristic

x
Else If  f x’ < f Then

x’

Else If f x’ < f Then
x’ x’
If f x’ < f 

x’

End If
End If        

End If
T T
If 

= *
T= ,

End If

End While
Return:

As in similar ALNS applications in the literature, the temperature is reduced after 
each iteration by multiplying T  by a cooling factor � . If after the reduction, the tem-
perature becomes less than 0.01, then, Tb is multiplied by two and the temperature 
T  is set to Tb , where Tb is applied to record the temperature when xbest is found. In 
order to avoid that the search restarts from scratch from a randomly generated solu-
tion, we limit the temperature T  to Tmax.

4.1 � An initial solution

The proposed heuristic for constructing the initial solution considers the AFS nodes 
in the planning of routes. A list L containing a set of users to be served is initialized 
to be inserted one by one in a set of empty CVs and AFVs routes. The following 
steps are run. A vehicle starts at the depot, visits a set of users, and then returns to 
the depot. While an AFV is still available, the insertion of users is performed by 
inserting a randomly selected user i from the list L in the best position of its pickup 
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and delivery nodes in already existing routes, provided that the ride time, time win-
dows, vehicle capacity and maximum route duration are respected. If a user i cannot 
be added in the route due to lack of fuel, the selected user is re-inserted along with 
a refueling station node, such that the nearest recharging station node to the already 
existing node i − 1 is inserted. If the insertion of user i is not possible in already 
existing routes, a new route is added to the current solution and the same insertion 
procedure is applied. If the user cannot be assigned to any available AFV, the user is 
then inserted into a CV route until at most the predefined number of CVs and AFVs 
is constructed.

4.2 � Diversification mechanism

To diversify the search, we develop three effective and simple crossover operators 
that are well-known in GA literature. The advantage of using a diversification pro-
cedure is to discover new regions of the search space that may not have been visited 
yet by the insertion and removal operators.

One-point crossover (O1): this crossover operator is inspired from Prins (2004). 
First, a random point p is selected, then the new solution acquires all the users and 
AFS nodes (if found) from the best solution xbest before the crossover point p . To 
complete the new solution, the remaining elements are inherited from xbest in the 
same order as they appear in a solution generated using our constructive heuristic 
beginning from the first route.

Two-point crossover (O2): this operator is the classical Order Crossover using 
two points proposed by Goldberg and Holland (1988). This operator arbitrarily 
selects two crossover points and transcribes the partial permutation between them 
moving from xbest into the new solution. While maintaining their relative order-
ing, the rest of elements are taken from a solution generated using our constructive 
heuristic.

Linear two-point crossover (O3): this operator is proposed by Sevaux and 
Dauzère-Pérès (2003), which is similar to O2. The only difference is that the remain-
ing users and refueling nodes are inherited from the solution generated using our 
constructive heuristic, starting with the first position from left to right of the order of 
users and recharging station nodes of each route in the solution.

4.3 � Local search operators

To further improve the quality of solutions, we apply several well-known local 
search operators. These include two intra-route operators: the 2-opt operator of Lin 
(1965) and the relocate operator of Savelsbergh (1992). Moreover, two inter-route 
operators are applied: the 2-opt* operator of Potvin and Rousseau (1995), and the 
relocate operator of Savelsbergh (1992). We note that the 2-opt* operator is applied 
only between the CVs or between the AFVs routes (including the alternative fuel 
station nodes). To accept new solutions during local search, first improvement strat-
egy is applied. This is done by generating all possible neighbors of the current solu-
tion, using the current local search operator, until an improving solution is located. 
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If no improving solution is found, the next local search operator is applied. If all 
local search operators are tried and no improving solution is found, the procedure 
terminates and the current solution is returned. In addition, our selection of the local 
search operator (I1, I2, I3 and I4) is distinguished by using a roulette wheel selec-
tion mechanism, based on the performance score of the operator, instead of random 
selection, as described in Sect. 4.4. This procedure can achieve a balance between 
the quality of the solution and run time.

After processing the neighborhood moves, some recharging stations nodes may 
become redundant in the solution, and the current solution may need recharging sta-
tion node(s). Thus, two operators adopted from Schneider et al. (2014) are also used, 
namely remove and insert station operators as described next.

Remove station (RS) This operator checks at each route in a solution each pair of 
nodes (i, j). If the refueling level in the tank at node i is enough to visit directly node 
j , the refueling station node between them is then deleted.

Insert station (IS) This operator considers all nodes ( i, j ) of each AFV route 
(∀i, j ∈ N) , such that if the remaining fuel level in the tank of the vehicle k at node i 
is not enough to visit directly node j , an AFS node is inserted. The insertion is done 
by finding the nearest refueling station to the current node i . We note that by each 
visit of refueling station, the tank of the vehicle k is refueled to its maximum level.

4.4 � Adaptive weight adjustment procedure

Our ALNS uses five removal operators, four re-insertion and four local search oper-
ators. We select an appropriate operator at each iteration, using a roulette wheel 
selection mechanism. As in Ropke and Pisinger (2006a), the probability of choos-
ing operator d at iteration t , is defined by Pt+1

d
 = P1

d
(1-rp) + rp�i/�i , where rp is the 

roulette wheel parameter, �i is the score of an operator i , and �i is the number of 
times the operator i has been used in the last 100 iterations. Moreover, the score of 
an operator is increased according to the following criteria: (1) the score is increased 
by �1 , if the existing operator finds a new best solution; (2) the score is enhanced by 
�2 , if it locates a better solution than the current; (3) if the current operator finds a 
feasible solution, which is non-improving, the scores of operators are increased by 
�3 . After 100 iterations, the weights are adjusted using the scores obtained.

4.5 � Removal and insertion operators

At each iteration, a set of nodes/users is selected from a current solution x and added 
to a list L by removal operators. Our five removal operators (R1 to R5) are adopted 
from Masmoudi et  al. (2016), and are applied to destroy the current partial solu-
tion x . These operators are: random-users removal (R1), path-removal (R2), time-
oriented removal (R3), related removal (R4), and distance-oriented removal (R5).

Also, in our ALNS, four insertion operators (P1 to P4) are implemented to rein-
sert the removed users to form a new solution, based on Masmoudi et  al. (2016). 
These operators are: basic greedy insertion (P1), best position inter-route insertion 
(P2), sorting time insertion (P3), and best position intra-route insertion (P4). For a 
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detailed description of these removal and insertion operators, the reader is referred 
to Masmoudi et al. (2016).

4.6 � Evaluation function

We evaluate each solution by the following evaluation function based on Parragh 

(2011), and Masmoudi et  al. (2018b): f (s) = c(s) +
3
∑

r=0

�qe(s) + �d(s)

+�w(s) + �a(s) + o(s) . The term c(s) gives the routing cost of solution s. Moreover, 
the terms qr(s), d(s), w(s) , a(s) and o(s) represent the load, duration, time window, 
ride time and fuel violations, respectively. The violations are calculated as follows: 
qr(s) =

∑2n

i=1
(dr

i
− Qr)+ , d(s) =

∑K

k=1
(Be − Bd − Tmax)

+ , w(s) =
∑2n

i=1
(Bi − T+

i
)+ 

and a(s) =
∑n

i=1
(li − Lmax)

+ . Note that these terms are applied only for all i ∈ N 
where x+ = {0, x} and K is the set of the fleet size composed by the CVs and AFVs. 
The term o(s) is computed as follows: zi = zi−1 − FRij ∗ ci−1,i , if i ∈ V�F and 
zi = H , if i ∈ F� . Binary variable o(s) is equal to 0 if zi ≥ 0,∀i ∈ V�F and 1 other-
wise. The associated penalty parameters � , � , � and � are dynamically adjusted dur-
ing the search (as in Parragh et al. 2010 and Cordeau and Laporte 2003). We note 
that a solution s can only become a new best solution if 
qr(s) = d(s) = w(s) = a(s) = o(s) = 0.

5 � Computational experiments

In this section, we present the details of the results obtained by our proposed algo-
rithms. All algorithms are implemented in C language and performed on a configu-
ration Intel Core i7-5555U 3.14 GHz and 8 GB RAM.

5.1 � Data and experimental setting

Our generated small-medium dataset instances are based on the benchmark 
instances generated by Parragh et  al. (2012) for the HDARP. These instances are 
divided into three sets (U, E, I), which have been developed based on the instances 
of Cordeau and Laporte (2003) for the standard DARP with heterogeneous vehicles 
and users. Two types of vehicles (T1 and T2) for each of the AFVs and CVs per 
instance are considered with four distinct resources identified in each vehicle. These 
include staff seats, patient seats, stretchers and wheelchair places. For each vehicle 
kind (AFV and CV), type T1 has a capacity of 1 staff seat, 6 patient seats, 0 stretch-
ers and 1 place for a wheelchair; while type T2 has a capacity of 2 staff seats, 1 
patient seat, 1 stretcher, and 1 place for a wheelchair. Table 1 presents the structure 
of the vehicle fleet and provides a general view related to the way of conducting and 
managing the various kinds of users in each of the three instance sets. The number 
of requests in these instances ranges from 16 to 96, while the number of vehicles 
is between 2 and 8 with a single depot. The maximum duration of the working day 
ranges between 240 and 720 min (depending of the instance), and the maximum ride 



100	 M. A. Masmoudi et al.

1 3

time Lmax = 30 min. The time window length is equal to 30 min and the fixed service 
time duration si is set to 3 min.

We suppose that at the beginning of the working day, each available vehicle type 
is fully refueled. We decided to set the number of recharging stations equal to the 
number of vehicles in each instance. The approximation of the number of recharging 
stations is based on the generated instances of Erdoğan and Miller-Hooks (2012), 
in which some instances that consist of three vehicles, the number of recharging 
stations is considered equal to three. Based on how Cordeau (2006) defines the coor-
dinates of pickup and delivery nodes of users, all coordinates of AFSs are randomly 
generated in a specific square area (i.e., [−10, 10]2 ). To determine the number of 
CVs and the AFVs used in our problem, we apply the procedure of Goeke and Sch-
neider (2015). First, we start with an overall vehicle number K that is associated 
with the number of CVs found in the HDARP instances Parragh et al. (2012), and 
then CVs are progressively replaced with AFVs until the number of the AFVs is 
equal to the number of CVs divided by two.

For the large size instances, we adopt the generation idea of the benchmark 
instances of Masmoudi et  al. (2018b). These instances are divided into three data 
sets ( A0 , A1 and A2 ), as done in Braekers and Kovacs (2016). In the benchmark 
instances of Masmoudi et al. (2018b), each data set A0,A1 and A2 contains between 
20 and 100 requests. The data set A0 is characterized by that the locations of the 
pickup and delivery of the users are distributed randomly, while the data sets A1 and 
A2 have clustered locations. A time window of 15 min is specified for the delivery/
pickup node, in case of outbound/inbound request. In addition, the minimum ride 
time is assumed to be 60 min, while the maximum ride time is assumed to be double 
the direct ride time, i.e., Lmax

i
 = max{60, 2 × ti,n+i }. In addition, for each user a ser-

vice time of 3 min is needed to complete the service. The number of refueling sta-
tions in each instance is equal to 0.3*|n |. The limited route duration ranges between 
480 and 720 min. Accordingly, we generated large size instances containing between 
100 and 200 requests. For the number of vehicles of each instance, we use the same 
available number of vehicles in Braekers and Kovacs (2016), unless it is not enough 
to serve n users. For more details, we refer to Braekers and Kovacs (2016) and Mas-
moudi et al. (2018b). In addition, to determine the number of CVs and AFVs used in 
each instance, we apply the same procedure as defined previously. Different types of 
users and vehicles are considered as explained previously.

Table 1   Probabilities used to generate instances as in Parragh et al. (2012)

Instance set User request probabilities Probability for a 
companion (%)

Vehicle fleet

% seat % stretcher % wheelchair

U 0.50 0.25 0.25 0.00 Mixed (CVs (T1, T2); 
AFVs(T1,T2))

E 0.25 0.25 0.50 0.10 Mixed (CVs (T1, T2); 
AFVs(T1,T2))

I 0.83 0.11 0.06 0.50 Mixed (CVs (T1, T2); AFVs(T1, 
T2))
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5.2 � Parameter setting

This section explains the sensitivity analysis to set the parameters of our algo-
rithm. Mainly, the parameters are chosen based on recommendations from the lit-
erature (e.g., Ropke and Pisinger 2006a, b; Demir et al. 2012; Leung et al. 2013; 
Masmoudi et al. 2016) and our preliminarily experiments. We initialize P0

d
 = 0.10 

for the removal operators, 0.125 for the insertion operators, rp = 0.7, �1 = 15, 
�2 = 5, �3 = 10, as suggested by Masmoudi et  al.(2016), the temperature value 
Tmax = 25 as suggested by Leung et al.(2013), since it is enough to accept a dete-
riorating solution and � = 0.99975 as suggest by Ropke and Pisinger (2006a,b) 
and Demir et al.(2012). A summary of all used parameters in our hybrid ALNS is 
shown in Table 13 in the “Appendix”.

To study the performance of different removal and reinsertion operators of 
the ALNS, we use a similar tuning methodology as Demir et al. (2012). Table 2 
shows the percentage of time each operator is used by our algorithm within 5 min 
of runtime. The numbers in brackets refer to the total time spent to run each oper-
ator. The results are obtained considering five instances from each data set (U, E, 
I), with different levels of heterogeneity. Each instance is computed ten times. We 
report the overall average of average results values (Avg) for each data set (U, E, 
I) and for all instances in the last line of Table 2.

The results in Table 2 show that removal operators have similar frequency of 
use in many cases. This is due to applying two operators in the same iteration 
for most of the cases. Moreover, P1 and P4 operators (as indicated in bold) are 
applied to some extent more than the other two operators. Therefore, by compari-
son with the rest of operators in terms of CPU time, P1 and P4 are significantly 
used more than the other operators.

Table 3 indicates the number of times an operator has found the best and a bet-
ter solution than the current one, respectively; i.e., the values in brackets refer to 
the number of times the current solution has been improved, but has not become 
a best solution. We report the overall average of average results values (Avg) for 
each data set (U, E, I) and for all instances in the last line of Table 3.

As illustrated by the obtained results in Table 3, all removal operators seem to 
take part in generating better solutions. Even though the ratio of obtaining better 
or best results changes between operators, the use of various neighborhood struc-
tures might help the search towards global optima. By looking at the literature 
on neighborhood structures (see, e.g., Ropke and Pisinger 2006a, b; and Demir 
et al. 2012), it is well known that some operators might perform well on different 
instances of the same problem. On the other hand, with respect to the insertion 
operators, we observe that some insertion operators (i.e., P2 and P3) do not often 
contribute much. Nevertheless, as indicated in the literature, ALNS might need 
various operators as they are beneficial for obtaining better solutions in the fol-
lowing iterations. This is evident by the large number of times these two operators 
could improve the current solution (as shown from the values between brackets). 
Improving the current solution is obviously beneficial for the overall perfor-
mance of the ALNS and to avoid being trapped in local optima. Consequently, it 
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is deduced that there is a positive contribution from all operators, which helps in 
acquiring high quality solutions for the MF-HDARP.

As Pisinger and Ropke (2007) indicated, it is not essential to delete a large 
number of users u in the removal phase, because the deletion of a specific num-
ber of users will have a considerable influence on the results. Accordingly, the 
number of deleted users u is chosen randomly in the interval [ umin = 0.175.n ; 
umax = 0.35.n ]. As demonstrated next, Table 4 gives an idea about the results of 
the parameter tuning of �1 , �2 and �3 . After considering the combination of seven 
different values, the tuning sequence is manifested by the arrangement of the 
parameters, and it is displayed in the first line. To find the best set of parameters, 
we tested five instances from each data set (U, E, I). These instances have a num-
ber of requests ranging from small to large and different levels of heterogeneity. 
On each instance, we calculate the average solution value for ten runs obtained 
using each combination of parameters (�1 , �2 , �3).

Table 3   Number of global best and number of improved solutions attained by each operator within 5 min 
of runtime

Bold and Bold italics are the best solution found by each operator and each algorithm

Inst. 
(data)

Removal operators Insertion operators

R1 R2 R3 R4 R5 P1 P2 P3 P4

a4-48 (U) 27 (179) 13 (193) 14 (215) 31 (71) 20 (189) 40 (51) 16 (393) 8 (318) 36 (85)
a5-50 (U) 20 (170) 20 (94) 17 (219) 27 (239) 17 (125) 31 (158) 19 (258) 10 (285) 40 (146)
a6-72 (U) 27 (62) 30 (200) 17 (84) 16 (225) 13 (156) 32 (94) 18 (194) 11 (251) 39 (188)
a7-56 (U) 28 (118) 22 (183) 18 (212) 11 (239) 19 (211) 31 (249) 14 (243) 18 (259) 37 (212)
a8-80 (U) 15 (53) 27 (91) 16 (225) 25 (241) 17 (153) 23 (166) 19 (308) 21 (245) 37 (44)
Avg (U) 23 (116) 22 (152) 16 (191) 22 (203) 17 (167) 31 (144) 17 (279) 14 (272) 38 (135)
a4-16 (E) 26 (130) 18 (110) 17 (133) 22 (232) 21 (213) 41 (99) 21 (300) 12 (382) 26 (37)
a6-48 (E) 26 (101) 20 (167) 22 (114) 10 (151) 22 (100) 25 (143) 28 (195) 15 (222) 32 (73)
a7-56 (E) 22 (117) 16 (80) 24 (58) 16 (228) 29 (81) 38 (44) 6 (196) 14 (211) 42 (113)
a7-84 (E) 21 (70) 18 (136) 26 (40) 29 (207) 25 (188) 36 (161) 13 (190) 8 (130) 42 (160)
a8-96 (E) 18 (131) 29 (229) 18 (122) 17 (183) 18 (118) 34 (193) 8 (125) 17 (248) 41 (217)
Avg (E) 23 (110) 20 (144) 21 (93) 19 (200) 23 (140) 35 (128) 15 (201) 13 (239) 37 (120)
a4-24 (I) 25 (212) 17 (194) 21 (114) 23 (160) 14 (86) 35 (150) 16 (208) 25 (310) 24 (98)
a5-60 (I) 27 (127) 24 (133) 20 (138) 14 (219) 15 (76) 29 (155) 15 (286) 28 (197) 28 (55)
a7-56 (I) 22 (203) 7 (159) 11 (189) 19 (157) 25 (64) 26 (256) 25 (131) 22 (213) 27 (172)
a7-84 (I) 19 (209) 27 (233) 25 (131) 14 (87) 15 (31) 32 (205) 28 (234) 17 (176) 23 (76)
a8-64 (I) 23 (130) 15 (237) 24 (116) 16 (140) 22 (152) 29 (178) 24 (261) 11 (273) 36 (63)
Avg (I) 23 (176) 18 (191) 20 (138) 17 (153) 18 (82) 30 (189) 22 (224) 21 (234) 28 (93)
Avg 

(UEI)
23 (134) 20 (163) 19 (141) 19 (185) 19 (130) 32 (153) 18 (235) 16 (248) 34 (116)
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Due to the help of diversification techniques, our setting of the parameters 
�1 , �2 and �3 is consistent with the expected setting �1 ≥ �3 ≥ �2 for rewarding a 
good performance of an operator.

5.3 � Computational analysis

This section presents and compares the detailed results obtained by our hybrid 
ALNS tested on the benchmark HDARP instances of Masmoudi et al. (2017) and on 
our newly generated instances of the MF-HDARP. The detailed results found by our 
algorithm are available on http://www.mf-mp-hdarp​-88.webse​lf.net.

Table 4   Effect of �
1
 , �

2
 and �

3
 on the solution quality

Bold values are the best solution found by each operator and each algorithm

Inst. 
(type)

(10, 5, 1) (15, 10, 
5)

(1, 1, 1) (1, 5, 5) (1, 5, 
10)

(1, 10, 
5)

(15, 5, 
10)

(10, 1, 
5)

(5, 1, 5)

a4-48 
(U)

758.20 756.86 759.05 756.52 758.76 757.92 757.45 758.13 757.25

a5-50 
(U)

725.44 726.68 727.97 727.01 728.46 725.95 725.08 725.71 728.82

a6-72 
(U)

924.90 924.05 927.46 924.15 927.53 926.83 929.15 927.78 928.12

a7-56 
(U)

717.69 715.92 718.03 715.12 718.72 716.45 713.58 719.02 719.15

a8-80 
(U)

1001.88 1009.72 1010.18 1003.09 1011.01 1009.43 1009.78 1002.63 1011.62

a4-16 
(E)

312.14 310.18 312.59 309.90 311.14 312.18 309.86 312.49 310.97

a6-48 
(E)

610.05 611.70 609.44 610.70 609.87 610.93 608.35 607.75 609.96

a7-56 
(E)

709.68 706.13 712.18 707.46 712.68 706.99 707.46 708.87 713.08

a7-84 
(E)

1157.61 1163.63 1162.96 1160.47 1162.36 1162.02 1164.50 1161.16 1161.92

a8-96 
(E)

1291.24 1291.88 1292.17 1293.20 1292.33 1290.98 1291.24 1290.62 1292.60

a4-24 (I) 389.01 390.35 388.88 389.97 389.07 389.16 387.68 387.92 389.34
a5-60 (I) 784.90 783.86 786.38 786.33 785.71 783.82 786.81 783.81 784.46
a7-56 (I) 723.52 724.28 724.25 722.92 724.01 723.96 727.63 722.95 722.59
a7-84 (I) 1113.58 1112.99 1112.15 1119.30 1114.08 1120.12 1112.84 1120.13 1114.83
a8-64 (I) 739.86 745.94 740.62 738.96 738.99 745.39 736.02 744.27 736.03

http://www.mf-mp-hdarp-88.webself.net
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5.3.1 � Results on the heterogeneous DARP instances of Masmoudi et al. (2017)

To evaluate the performance of our algorithm, we tested it on the large sized 
benchmark HDARP instances of Masmoudi et al. (2017) having up to 13 vehicles 
and 144 requests. By replacing our AFVs fleet by CVs, the vehicles do not need 
to be refueled, so in this case we obtain vehicles of the same type (i.e., all are 
CVs). Thus, our MF-HDARP is transformed to classical HDARP. Tables 5 and 6 
present the detailed results of our algorithm on the large instances of Masmoudi 
et al. (2017) for the HDARP. Three data set benchmark instances (U, E and I) are 
used. Each one contains 20 instances. The data set U contains homogenous users 
and vehicles. Data set E is characterized by heterogeneous users and homogenous 
vehicles, while data set I contains heterogeneous users and heterogeneous vehi-
cles. We compare our hybrid ALNS with the current state-of-art algorithms in 
the literature on the HDARP, namely the hybrid Genetic Algorithm (hybrid GA) 
of Masmoudi et  al. (2017) and the Evolutionary Variable Neighborhood Search 
(EVO-VNS1) of Masmoudi et  al.(2018b). We note that we have chosen only 

Table 5   Comparison of our hybrid ALNS with the EVO-VNS1 of Masmoudi et al.(2018b) on data set E

Bold and Bold italics are the best solution found by each operator and each algorithm
a Best known solutions provided from Masmoudi et al.(2018b)

Inst. BKSa EVO-VNS1 Hybrid ALNS

Best Best% Avg Avg% Best Best% Avg Avg%

R1a 195.97 195.97 0.00 195.97 0.00 195.97 0.00 195.97 0.00
R2a 336.34 336.34 0.00 336.34 0.00 336.34 0.00 336.34 0.00
R3a 586.18 586.18 0.00 587.15 0.17 586.18 0.00 586.18 0.00
R4a 639.03 639.03 0.00 642.33 0.52 639.03 0.00 642.16 0.49
R5a 713.09 713.09 0.00 716.66 0.50 713.09 0.00 716.38 0.46
R6a 882.11 882.11 0.00 883.23 0.13 882.11 0.00 883.86 0.20
R7a 310.96 310.96 0.00 313.13 0.70 311.55 0.19 312.67 0.55
R8a 553.82 554.06 0.04 556.40 0.47 554.50 0.12 556.26 0.44
R9a 744.34 744.64 0.04 748.46 0.55 740.36 − 0.53 746.92 0.35
R10a 963.08 963.93 0.09 964.56 0.15 958.05 − 0.52 963.22 0.01
R1b 190.39 190.39 0.00 190.39 0.00 190.39 0.00 190.39 0.00
R2b 312.92 312.92 0.00 312.92 0.00 312.92 0.00 312.92 0.00
R3b 551.95 551.95 0.00 553.18 0.22 551.95 0.00 551.95 0.00
R4b 605.29 605.29 0.00 608.52 0.53 605.29 0.00 605.29 0.00
R5b 640.50 640.50 0.00 642.09 0.25 641.00 0.08 642.36 0.29
R6b 832.53 832.79 0.03 835.85 0.40 832.53 0.00 835.27 0.33
R7b 276.17 276.17 0.00 276.60 0.16 276.17 0.00 276.93 0.28
R8b 529.96 529.96 0.00 531.79 0.35 530.39 0.08 531.31 0.25
R9b 698.13 698.13 0.00 700.36 0.32 698.13 0.00 699.23 0.16
R10b 902.17 903.28 0.12 904.17 0.22 898.04 − 0.46 903.27 0.12
E 573.25 573.38 0.02 575.01 0.28 572.70 − 0.05 574.44 0.20
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EVO-VNS1 since it presents the best approach compared to the other EVO-VNS 
versions (i.e., EVO-VNS2 and EVO-VNS3) developed by Masmoudi et al.(2018b). 
All algorithms (including the hybrid GA and EVO-VNS1) are applied for five 
runs as done in Masmoudi et  al. (2017). In Tables  5, 6, and 7, column “BKS” 
refers to the best-known solution. Columns “Best (%)” and “Avg (%)” represent, 
respectively, the percent gap (deviation) from the best known solution (average 
solution) in five runs. It should also be noted that to obtain a fair comparison with 
respect to the computational time, we have run the GA of Masmoudi et al. (2017) 
on the same machine used in this work with maximum runtime as a unified stop-
ping criterion, which is equal to 30 min for each instance for all algorithms.

The results in Table  5 show that our hybrid ALNS is competitive with the 
EVO-VNS1 algorithm of Masmoudi et  al. (2018b) and provides good results. 
Regarding the number of best solutions in five runs (column Avg), it is clear that 
our hybrid ALNS outperforms the EVO-VNS by providing 13 best average solu-
tions compared to only three best averages for EVO-VNS1. While for the number 
of best solutions over five runs (column Best), both methods provide the same 

Table 6   Comparison of our hybrid ALNS with the hybrid GA of Masmoudi et al. (2017) on data set U

Bold and Bold italics are the best solution found by each operator and each algorithm
a Best known solutions provided from Masmoudi et al. (2017)

Inst. BKS Hybrid GA Hybrid ALNS

Best Best% Avg Avg% Best Best% Avg Avg%

R1a 190.02 190.02 0.00 190.02 0.00 190.02 0.00 190.02 0.00
R2a 301.34 301.34 0.00 301.34 0.00 301.34 0.00 301.34 0.00
R3a 532.00 532.00 0.00 534.08 0.39 532.00 0.00 532.47 0.09
R4a 570.25 570.25 0.00 571.45 0.21 570.25 0.00 571.61 0.24
R5a 626.93 628.48 0.25 631.39 0.71 627.77 0.13 628.33 0.22
R6a 785.26 787.41 0.27 788.52 0.42 785.51 0.03 787.60 0.30
R7a 291.71 291.71 0.00 291.79 0.03 291.96 0.09 292.47 0.26
R8a 487.84 488.89 0.22 491.53 0.76 488.71 0.18 489.47 0.33
R9a 658.31 658.31 0.00 660.24 0.29 659.27 0.15 660.09 0.27
R10a 851.82 853.16 0.16 859.91 0.95 853.47 0.19 854.67 0.33
R1b 164.46 164.46 0.00 164.46 0.00 164.46 0.00 164.46 0.00
R2b 295.66 295.66 0.00 295.66 0.00 295.65 0.00 295.65 0.00
R3b 484.83 484.83 0.00 487.23 0.50 485.19 0.07 485.82 0.21
R4b 529.33 531.86 0.48 532.19 0.54 530.46 0.21 530.79 0.28
R5b 577.29 579.03 0.30 582.06 0.83 577.41 0.02 579.05 0.30
R6b 730.69 737.03 0.87 741.06 1.42 731.93 0.17 733.91 0.44
R7b 248.21 248.21 0.00 248.29 0.03 248.67 0.18 248.99 0.31
R8b 458.73 461.11 0.52 463.32 1.00 459.65 0.20 460.00 0.28
R9b 593.49 593.49 0.00 595.37 0.32 593.80 0.05 594.64 0.19
R10b 785.68 791.01 0.68 793.64 1.01 786.06 0.05 788.96 0.42
U 508.19 509.41 0.19 511.18 0.47 508.68 0.09 509.52 0.22
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number with four solutions each. However, three best new solutions are obtained 
by our ALNS for the instances R9a, R10a and R10b. For the average deviation 
of the average results from the best-known solution, the gap is very small, where 
0.20% is obtained by our ALNS, compared to 0.28% achieved by the EVO-VNS1. 
For the average deviation of the best result over five runs, our hybrid ALNS 
improves the results with 0.05%.

Again, observing the detailed results in Table  6, our hybrid ALNS obtains 
good results compared to the hybrid GA of Masmoudi et  al. (2017). The aver-
age gap to the best solution achieved by our hybrid ALNS algorithm amounts to 
0.09%, compared to 0.19% for the hybrid GA. The average deviation of five runs 
for the hybrid ALNS represents 0.22%, while 0.47% is obtained by the hybrid 
GA.

However, as indicated by the results in Table 7, our hybrid ALNS is more effi-
cient than the hybrid GA in the case where heterogeneous users and vehicles are 
used. The average deviation of the average results derived from the best-known 

Table 7   Comparison of our hybrid ALNS with the hybrid GA of Masmoudi et al. (2017) on data set I

Bold and Bold italics are the best solution found by each operator and each algorithm
a Best known solutions provided by Masmoudi et al.(2017)

Inst. BKS Hybrid GA Hybrid ALNS

Best Best% Avg Avg% Best Best% Avg Avg%

R1a 190.02 193.27 0.00 193.27 0.00 193.27 0.00 193.27 0.00
R2a 301.34 319.43 0.00 319.87 0.14 319.43 0.00 319.43 0.00
R3a 532.00 584.84 0.00 586.11 0.22 584.05 − 0.13 585.05 0.04
R4a 570.25 591.24 0.00 593.56 0.39 590.57 − 0.11 591.39 0.03
R5a 626.93 677.50 0.00 679.11 0.24 677.72 0.03 678.26 0.11
R6a 785.26 838.26 0.00 843.27 0.60 836.70 − 0.19 838.76 0.06
R7a 291.71 328.10 0.00 329.12 0.31 327.68 − 0.13 328.97 0.26
R8a 487.84 552.35 0.00 556.46 0.74 551.01 − 0.24 553.47 0.20
R9a 658.31 713.55 0.00 718.55 0.70 713.74 0.03 714.65 0.15
R10a 851.82 932.83 0.00 937.23 0.47 927.75 − 0.54 933.22 0.04
R1b 164.46 177.57 0.00 177.57 0.00 177.57 0.00 177.57 0.00
R2b 295.66 304.02 0.00 304.02 0.00 304.02 0.00 304.02 0.00
R3b 484.83 551.13 0.00 555.19 0.74 548.96 − 0.39 550.85 − 0.05
R4b 529.33 557.99 0.00 559.12 0.20 555.76 − 0.40 557.48 − 0.09
R5b 577.29 628.62 0.00 630.59 0.31 626.03 − 0.41 628.02 − 0.09
R6b 730.69 794.03 0.00 797.57 0.45 790.93 − 0.39 794.82 0.10
R7b 248.21 297.41 0.00 297.51 0.03 295.03 − 0.80 297.10 − 0.10
R8b 458.73 517.26 0.00 520.01 0.53 514.00 − 0.63 517.20 − 0.01
R9b 593.49 662.75 0.00 666.44 0.56 659.86 − 0.44 662.39 − 0.05
R10b 785.68 865.07 0.00 873.18 0.94 860.23 − 0.56 864.81 − 0.03
I 508.19 554.36 0.00 556.89 0.38 552.72 − 0.27 554.54 0.03
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solutions in data sets I is 0.03% for our hybrid ALNS, compared to 0.38% for 
the Hybrid GA. In addition, our hybrid ALNS improves the results of Masmoudi 
et al. (2017) in the average deviation from the best result over five runs by 0.27%. 
Also, our hybrid ALNS provides 14 new best solutions compared to only two best 
solutions for the hybrid GA (column Best). In addition, our hybrid ALNS is able 
to provide 17 best average solutions, compared to the hybrid GA (column Avg).

To sum up, it seems from the detailed results of Tables  5, 6 and 7 that our 
hybrid ALNS is more effective on data set E (with heterogeneous users and 
homogeneous vehicles) and I (with heterogeneous users and heterogeneous vehi-
cles). This is apparently due to the additional diversification and intensifica-
tion mechanisms used in our algorithm, which seem to contribute positively to 
improving the quality of solutions.

5.3.2 � Results on the new MF‑HDARP instances

Since we used benchmark instances from the literature to test our method, we imple-
mented the following approach. For the small-medium instances, our hybrid ALNS 
was run for a maximum of 5 min on each instance. Then, the average of five runs as 
well as the best solution in five runs obtained after 2 min, 2.5 min, 3 min, 3.5 min 
and 4 min are recorded and the best solution values are compared to the best solu-
tion found after 5 min. Similarly, for the large size instances, our hybrid ALNS was 
run for a maximum of 60 min on each instance. Then, the best and average solu-
tion values obtained after 20 min, 25 min, 30 min, 35 min and 40 min in 5 runs 
are recorded and compared to the values found after 60 min. We present the results 
of our algorithm on the small-medium and large MF-HDARP instances in Tables 8 
and 9, respectively. The columns “Best%” and “Avg%” present the percentage of 
deviation from the best (“Best”) and average (“Avg”) solution values found by our 
algorithm after 5 min for the small-medium instances, and after 60 min for the large 
instances. Each instance is computed five times using each algorithm.

Table  8 shows that after 2  min the average deviation from the best solution 
(obtained after 5  min) is 23.43%. Nevertheless, after 4  min, the average devia-
tion reduces to 0.70%. Furthermore, we can observe that the gap deviation (col-
umn Best%) progressively decreases as the time limit increases. That is, the 
gap is 12.00% (23.40–11.40%) when the time limit increases from 2 to 2.5  min, 

Table 8   Results for small/medium size instances

Bold italics are the best solution found by each operator and each algorithm

Inst. ALNS (5 min) ALNS 
(2 min)

ALNS 
(2.5 min)

ALNS 
(3 min)

ALNS 
(3.5 min)

ALNS (4 min)

Best Avg Best% Avg% Best% Avg% Best% Avg% Best% Avg% Best% Avg%

U 648.70 648.82 20.51 20.53 9.40 9.42 4.25 4.26 1.55 1.56 0.18 0.19
E 657.01 657.25 26.47 26.52 13.55 13.59 6.91 6.94 3.54 3.57 1.36 1.39
I 657.69 657.85 23.21 23.24 11.26 11.28 5.82 5.84 2.41 2.42 0.51 0.53
Avg 654.47 654.64 23.40 23.43 11.40 11.43 5.66 5.68 2.50 2.52 0.68 0.70
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5.74% (11.40–5.66%) when the time limit increases from 2.5 to 3 min, and 3.16% 
(5.66–2.50%) when the time limit increases from 3 to 3.5 min. However, a slight 
decrease in the gap with 1.82% (2.50–0.68%) is observed when the time limit 
increases from 3.5 to 4 min.

Similar results are observed in Table 9, where it shows a progressive decrease in 
the change of gap (column Best%), with 9.19% (16.66–7.47%) when the time limit 
increases from 20 to 25  min, 4.46% (7.47–3.01%) when the time limit increases 
from 25 to 30 min. However, a very slight decrease in the deviation is observed with 
1.93% (3.01–1.08%) for the case when the time limit increases from 30 to 35 min, 
and 0.80% (1.08–0.28%) when the time limit increases from 35 to 40 min.

Figures 1 and 2 summarize these findings, showing the decrease in the average 
GAP, while increasing the computational time. We can see that when increasing the 
computational time, the objective function converges. In addition, by using several 
instances with different characteristics as described in Sect. 5.1, we can observe that 
our hybrid ALNS is efficient and robust, since it performs with similar quality on 
these instances, in different limits of computation time.
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Fig. 1   Average gap with respect to the best solution found after 5 min for small/medium instances plotted 
against computing time
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Fig. 2   Average gap with respect to the best solution found after 60 min for large instances plotted against 
computing time
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5.4 � Study of the different algorithmic components of the hybrid ALNS

In this section, we study the impact of our different components (i.e., different 
crossover operators and the local search procedure with its modified acceptance 
function) on exploring the search space and enhancing the solution quality. For 
this purpose, some combinations of operators are compared, with respect to the 
standalone (improved) ALNS of Masmoudi et  al. (2016), by incorporating differ-
ent component(s) each time. The detailed results of this comparison are shown in 
Table 11, where the large benchmark HDARP instances of Masmoudi et al. (2017) 
(Data set E) is used. First, in the combination “C1”, we apply the standalone 
(improved) ALNS of Masmoudi et  al. (2016). The combination “C2” represents 
the combination of the (improved) ALNS with the local search procedure together 
with its acceptance function (Lines 15–19 of Algorithm 1). The combination “C3” 
represents the standalone (improved) ALNS using only one crossover operator 
(O1) (without the local search), while the combination “C4” applies three different 
crossover operators, instead of only one as in “C3”. The combination “C5” repre-
sents the combination “C2” by adding only one crossover operator. The combination 
“C6” represents the combination “C2” by adding two crossover operators (O1 and 
O2). The same for the combination “C7” but with using the two crossover operators 
(O1 and O3). While the last combination “C8” represents of the combination “C2” 
by adding three crossover operators, which reflects our hybrid ALNS described 
in Algorithm 1. We note that from “C2” to C8”, we apply the modified procedure 
of decreasing the temperature (steps 23–26). Table 10 summarizes these different 
combinations.

In Table  11, the columns “Best%” and “Avg%” represent the deviation gap 
from the best (“Best”) and average (“Avg”) results obtained by the EVO-VNS1 of 

Table 10   Different combination of the algorithmic components

Comb. Description

C1 Standard (improved) ALNS of Masmoudi et al. (2016)
C2 Standard (improved) ALNS of Masmoudi et al. (2016) + local search procedure + modified 

acceptance function
C3 Standard (improved) ALNS of Masmoudi et al. (2016) + one crossover operator (O1) + modified 

acceptance function
C4 Standard (improved) ALNS of Masmoudi et al. (2016) + three crossover operators + modified 

acceptance function
C5 Standard (improved) ALNS of Masmoudi et al. (2016)+ one crossover operator + local search 

procedure + modified acceptance function
C6 Standard (improved) ALNS of Masmoudi et al. (2016) + two crossover operators (O1 and 

O2) + local search procedure + modified acceptance function
C7 Standard (improved) ALNS of Masmoudi et al. (2016) + two crossover operators (O1 and 

O3) + local search procedure + modified acceptance function
C8 Standard (improved) ALNS of Masmoudi et al. (2016) + three crossover operators + local search 

procedure + modified acceptance function
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Masmoudi et al. (2018b). The run time on each instance is limited to 30 min. The 
best and average result values of this table are shown in our website.

From the detailed results of Table  11, we can see that using the standalone 
(improved) ALNS (C1) based on Masmoudi et  al. (2016) cannot provide good 
results, with an average gap to the best (average) results of Masmoudi et al. (2018b) 
that is equal to 0.29% (0.41%). However, a big improvement is obtained when apply-
ing the crossover operators in the ALNS (C3 and C4), where a negative deviation 
gap is obtained in some instances, indicating a better result than the best and aver-
age results of the EVO-VNS1. Thus, combinations C3 and C4 show that using our 
crossovers is beneficial to enhance the quality of solutions and helps the algorithm 
to outperform the standalone (improved) ALNS. In addition, we can see that the 
solution quality is comparable for the two combinations C3 and C4, with a very 
small difference that is equal to 0.02%(0.03%), which indicates the effectiveness of 
using our diversification mechanism based on the crossovers.

Moreover, after applying the local search procedure with its acceptance func-
tion, we can see that the quality of solutions has improved, compared to the stan-
dalone (improved) ALNS, with an average gap equal to 0.07%(0.02%) (between 
C2 and C1). Also, for the combinations where crossover is applied, the average gap 
between C5 and C4 is equal to 0.08%(0.08%), and 0.10%(0.11%) between C5 and 
C3. Observing the combination C5, having the local search procedure and using 
only one crossover operator, we see that it still has positive average gap value, com-
pared to the results of Masmoudi et al.(2018b) and to the combination C8 (that com-
bines all components). Thus, we can see that applying this combination alone is still 
not capable of escaping local optima. Moreover, by applying two different crosso-
ver operators in C6 and C7 instead of only one (C5), we can see that the average 
gap is increased with a similar average gap for both these two combinations, where 
0.01%(0.07%) is obtained by the C6 and 0.02%(0.03%) for the C7. However, apply-
ing all three crossovers and the local search operators with its acceptance function 
(i.e., C8) provides good solutions and outperforms the EVO-VNS1 of Masmoudi 
et  al.(2018b), although with a slight improvement of 0.06%(0.06%) over the best 
(average) results. In conclusion, applying all components (locals search with the 
acceptance function as well as the three different crossovers) enhances both diversi-
fication and intensification during the search, compared to the standard (improved) 
ALNS. Thus, this combination is the most effective combination, compared to the 
other applied combinations.

6 � Conclusions

This study tackles the MF-HDARP, where we have considered a mixed fleet of 
vehicles composed of both heterogeneous CVs and AFVs within the context of 
the DARP. We considered different capacity resources of the vehicles as well as 
the need for refueling. We have proposed an effective hybrid ALNS for solving 
the MF-HDARP. The algorithm is supported by an efficient constructive heuristic 
and sophisticated local search and diversification techniques to improve the solu-
tion quality. We tested our hybrid ALNS algorithm on newly generated instances 
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and on the benchmark instances of Masmoudi et al.(2017), and compared its perfor-
mance with state-of-the-art algorithms in the literature (the hybrid GA of Masmoudi 
et  al. 2017 and the EVO-VNS1 of Masmoudi et  al. 2018b). The results indicate 
that our algorithm obtains high quality solutions and is competitive with the com-
pared algorithms. Moreover, the results also indicate that our different components, 
which were added to the standard ALNS, improve its performance. Nevertheless, 
our hybrid ALNS algorithm is just slightly better than the EVO-VNS1 of Masmoudi 
et al. 2018b. We believe that our hybrid ALNS can be further improved by utilizing 
additional removal and insertion operators, which can help in achieving more diver-
sification of the search and make its behavior more robust.

In addition, from a methodological perspective, considering other type of AFVs 
with recharging such as electric vehicles and hybrid plug-in electric vehicles 
by developing realistic energy function for these type of vehicles are interesting 
research directions.

Acknowledgements  Thanks are due to two anonymous reviewers for their useful comments and for rais-
ing interesting points for discussion.

Appendix

All parameters used in the CMEM model are given in Table 12 below.
See Table 13.

Table 12   Parameters used in the CMEM of the MF-HDARP model

Notation Description Value

g Gravitational constant (m/s2) 9.81
u Air density (kg/m3) 1.2041
A Frontal surface area of the vehicle (m2) 3.912
Cr Coefficient rolling friction 0.01
Cd Coefficient of aerodynamic drag 0.7
� Fuel-to-air mass ratio 1
� Heating value of typical diesel fuel (kilojoules per gram) 44
e Engine friction factor (kilojoules per revolution per liter) 0.2
N Engine speed (revolution per second) 33
D Engine displacement (L) 5
μ� Factor converting the fuel rate (grams per second to liters per second) 737
� Efficiency parameter for diesel engines 0.9
�tf Drive train efficiency 0.4
m Vehicle mass (kg) 6,350
vl Lower vehicle speed (km/h) 20
vw Upper vehicle speed (km/h) 90
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