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Abstract
The Capacitated Team Orienteering Problem (CTOP) is a variant of the well-known
Team Orienteering Problem where additional capacity limitation constraints are con-
sidered for each vehicle. Solving CTOP consists of organizing a set of routes that
maximize the total profit collected from the served customers while taking into con-
sideration the capacity and travel time limitation for each vehicle. In this paper, we
propose a variable space search heuristic to solve CTOP. Our algorithm alternates
between two search spaces: the giant tour and routes search spaces. We develop a
hybrid heuristic as a framework for our algorithm composed of a combination between
Greedy Randomized Adaptive Search Procedure and Evolutionary Local Search. Sev-
eral local search techniqueswere developed in each search space to improve the quality
of the solutions and the giant tours. A dedicated optimal split procedure and a con-
catenation technique are performed to ensure the link between the search spaces. This
approach shows its high performance on the benchmark of CTOP, and proves its com-
petitiveness in comparison to the other heuristic methods available in the literature as
it yields to strict improvements with small computational time.
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1 Introduction

In vehicle routing problems with profits, each customer has its own profit and due to
some resource limitation constraints, it is often not possible to serve all customers. In
general, the aim of solving this category of problems is to determine which customers
must be served and how to design the vehicle routes so that the total collected profit
is maximized while adhering to resource limitation. Based on the literature, several
variants of the vehicle routing problem with profits appeared to depend on the nature
of the resource limitation.

The Profitable Tour Problem (PTP) is one of the variant where only one vehicle
is considered (Feillet et al. 2005). The objective of solving PTP is to maximize the
difference between the collected profit and the total traveling cost. This cost is referred
to as the total distance traveled or the operational time consumed. TheCapacitated-PTP
is the multiple vehicles extension of the PTPwhere a capacity constraint is imposed on
each vehicle (Jepsen et al. 2014). In the Prize Collecting Traveling Salesman Problem
(PCTSP), a single vehicle is available and its objective is tominimize the total traveling
cost while visiting enough customers to ensure a predefined profit (Feillet et al. 2005).
Alternatively, the Orienteering Problem (OP) consists of designing a single route in
order to maximize the collected profit that respects a specified travel time limit (Chao
et al. 1996). As an extension of OP, by considering multiple vehicles for the service of
the customers, the well-known Team Orienteering Problem (TOP) (Kim et al. 2013)
was initially introduced by (Butt and Cavalier 1994) as the Multiple Tour Maximum
Collection Problem. The aim of solving TOP is to find a set of vehicles routes that
maximizes the total collected profit while abiding to the travel time limit for each
vehicle.

In this paper, we focus on the Capacitated Team Orienteering Problem (CTOP), a
new variant of the Team Orienteering Problem (TOP). CTOP was recently introduced
by Archetti et al. (2009) and considered more operational constraints by imposing
capacity restrictions to vehicles. Similarly to the Team Orienteering Problem, CTOP
is a selective routing problem, where some of the customers cannot be visited due
to some resources limitations. In this problem, a set of customers with known profits
and demands are to be served by a fleet of vehicles. Each customer can be visited
at most once by a single vehicle. Vehicles are initially located at the departure depot
and are required to finish at the arrival depot without exceeding a predefined travel
time. Moreover, the total demand of customers visited in any route must fit the vehicle
capacity. The problem is to design a set of vehicle routes that maximizes the total
collected profit and satisfies all resources limitations.

The Capacitated Team Orienteering Problem is related to many real life applica-
tions. It is mainly used by industries to model and solve product delivery tasks, aiming
at improving products distribution to customers. Sometimes, it is more convenient to
outsource the distribution task to other specified companies. The aim of each trans-
portation company is to identify convenient customers to add to their pre-assigned
routes while respecting resources limitations, i.e. number of vehicles, capacity and
travel time limit of each vehicle. Therefore, the problem can be formulated as a capac-
itated team orienteering problem where the visited customers have to be selected
and assigned to the available vehicles so that the total collected profit is maximized
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while respecting all the operational restrictions. Despite its practical importance, few
researchers had previously addressed CTOP in the literature so far. Archetti et al.
(2009) proposed an exact method, which is based on the branch-and-price algorithm
developed by Boussier et al. (2007) for TOP. The column generation algorithm deals
with a set covering problem, and the dynamic programming algorithm is used to
solve the elementary shortest path problems that model the subproblems. Further-
more, Archetti et al. (2009) proposed two Tabu Searches (TSF and TSA) and a variable
neighborhood search (VNS) algorithm for CTOP. The main idea is based on assigning
all customers to various routes. Customers are iteratively shifted between the routes
until the most profitable routes are chosen to build the solution. In addition to fea-
sible solutions search space, they explore admissible solutions search space where
the most profitable routes of a solution can violate length and capacity constraints.
Finally, repair and jump mechanisms are used. Both Tabu Search methods explore a
small region in the solution space, unlike the VNS method where several moves are
performed to explore a larger region.

Archetti et al. (2013) proposed an exact method based on the branch-and-price
algorithm to solve CTOP. Later, Tarantilis et al. (2013) designed a two-phase heuris-
tic method called Bi-Level Filter-and-Fan method (BiF&F). In their algorithm, two
heuristics are alternatively applied: a Tabu Search procedure and a heuristic decom-
position scheme. The search is performed according to two levels. The upper level
deals with a profit oriented search while the lower one aims to minimize the travel
time. Recently, Luo et al. (2013) proposed an efficient heuristic method called ADap-
tive Ejection Pool with Toggle-Rule Diversification (ADEPT-RD). In their method, at
each iteration, only one customer is inserted in the solution from a maintained priority
queue of unvisited customers. During the search, the priority queue is updated with an
adaptivemechanism and reinitializedwith different sorting rules to avoid local optima.
The method iteratively inserts customers having the highest valuations from the prior-
ity queue into the solution. Then, a local search technique is performed to restore the
feasibility of the solution. Consequently, their approach integrates a post-optimization
heuristic to improve the quality of the best solution obtained.

This paper presents a Variable Space Search (VSS) heuristic that alternates between
the routes and the giant tour search spaces, under the framework of a Greedy Ran-
domized Adaptive Search Procedure (GRASP) combined with an Evolutionary Local
Search (ELS). This algorithm proved successful as a result of alternation between the
two search spaces, and to the improvements performed on the routes and thegiant tours
by the local searches applied in both spaces. Our main contributions are summarized
as follows.

• One of the key benefits of our proposed algorithm is the fact that it operates in
two search spaces, the giant tour search space and the feasible CTOP solution
represented by the routes search space, where several improvements were inte-
grated in both spaces using different types of local searches. A powerful optimal
split procedure is developed to extract the optimal feasible CTOP solution from
the giant tour.

• Our algorithm makes use of an efficient framework combining the Greedy Ran-
domized Adaptive Search Procedure (GRASP) and the Evolutionary Local Search
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(ELS).Our approach synthesizes the positive aspects of all the involved techniques.
GRASP explores different regions from the search spaces and ELS extensively
explores one region before moving to the next one. An initial solution of good
quality is given to GRASP using an adaptive Iterative Destruction/Construction
Heuristic (IDCH).

• Several adaptive local searches are performed to improve the quality of the solu-
tions, as well as the quality of the giant tours. These local searches allow ELS
to avoid local optima while exploring a certain region. Besides the construc-
tive/destructive heuristic applied on the solution of CTOP, a Tabu Search and
a simulated annealing (SA) procedures were also involved to further improve the
quality of the solutions. Therefore, we proposed two versions of our VSS algo-
rithm,VSS-Tabu that uses theTabuSearch as one of its local searches, andVSS-SA
that integrates the simulated annealing instead.

• Several experiments were conducted on the benchmark of CTOP proposed by
Archetti et al. (2009) andTarantilis et al. (2013).Our twoversions ofVSSalgorithm
are able to outperform the results found in the literature in terms of gap and
computational time. VSS-Tabu had found 74 new best solutions with a gap of
− 0.242, while VSS-SA had reached a gap of− 0.227 with 77 new improvements.

The remainder of this paper is set as follows. In Sect. 2, we provide a formal
description of CTOP.OurVSS algorithm is described in Sect. 3where the initialization
algorithm, the alternation between the two search spaces and several components are
explained in details. Computational experiments are reported in Sect. 4, followed by
conclusions and further development.

2 Problem definition

Given a set V− = {1, . . . , n} of n customers and a fleet of m vehicles located initially
at the depot 0, CTOP can be modeled with a complete graph G = (V , E), where
V = V− ∪ {0} is the set of vertices and E = {(i, j)|i, j ∈ V } is the set of edges.
A travel time Ci j is associated with each edge (i, j) ∈ E and respects the triangle
inequalities. In addition, a profit pi is associated with each customer i ∈ V− and is
collected once its demand di is delivered. Furthermore, each customer i is assigned a
service time si . Having that split deliveries are not allowed, a customer can be visited
at most once. For each vehicle, a maximum capacity Q and a maximum traveling
time limit Tmax are assigned to its trip from the starting to the ending depot. Due
to resource limitations, some customers might remain unserved. Therefore, solving
CTOP consists of selecting the subset of customers to be visited and organizing the
vehicles routes in order to maximize the total collected profit while accounting for all
resource limitation constraints related to the capacity of vehicles and to the maximum
traveling time.

A feasible solution S of CTOP is composed of m routes rk, k = 1, . . . ,m. We
denote rk the ordered list of nk customers visited by vehicle k. A feasible route rk
must comply with the following constraints:

– Each route should start and end at the depot: rk = (0, rk[1], . . . , rk[nk], 0)
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Fig. 1 VSS general structure

– The time needed to visit the customers of each route should not exceed the maxi-
mum travel time (T − constraint for brevity):
T(rk) = C0 rk [1] + ∑nk−1

i=1 (Crk [i] rk [i+1] + srk [i]) + Crk [nk ] 0 + srk [nk ] ≤ Tmax

– The total demand of customers visited in each route is upper bounded by the

vehicle capacity (C − constraint for brevity): D(rk) =
nk∑

i=1

di ≤ Q

3 VSS heuristic for CTOP

In this section, our global VSS algorithm is described. This algorithm ensures the
alternation between the two search spaces under the framework ofGRASP-ELS,where
adaptive local searches are applied in both spaces.

3.1 Global scheme of the GRASP-ELS framework

The efficiency of our algorithm is the alternation between two search spaces, as shown
in Fig. 1: the first one for CTOP solutions, each encoded as a set of routes that respect
all the resource limitations and the second one for solutions encoded as giant tours
defined as a sequence of the n customers. This principle is shown to be successful on
many combinatorial optimization problem (Hertz et al. 2008), and more precisely on
vehicle routing problems (Duhamel et al. 2010, 2011; Lacomme et al. 2013). In the
GRASP-ELS framework, ELS is applied as local search on each initial solution given
by GRASP, while SA and Tabu Search are applied in ELS to decide which region to
explore. We note that during the transition between the two search spaces, we ensure
that there is no loss of information concerning the quality of the solution.

A CTOP solution is converted into a giant tour using the Concat procedure, where
the depot is first removed from each route. Resulting routes are then concatenated
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with a random order and unrouted customers are then inserted randomly in between
the routes. The reverse operation is done by a dedicated Split procedure described in
Sect. 3.4.1. This procedure is used to convert giant tour into an optimal CTOP solution
with respect the customers order in the giant tour. Our VSS algorithm is summarized
in Algorithm 1.

Algorithm 1: General structure of VSS
Parameters: ninit : number of initial solutions

nels : number of ELS levels
nchild : number of generated child solutions

1 Sbest ← ∅; Si ← ∅;
2 for i ← 1 to ninit do
3 AIDCH (Si );
4 Sl ← Si ;
5 for l ← 1 to nels do
6 SbestChild ← ∅ ;
7 for c ← 1 to nchild do
8 Tc ← Concat (Sl );
9 T ′

c ← Local Search (Tc);
10 S′

c ← Split ( T ′
c );

11 S′′
c ← Local Search (S′

c);
12 if (P(S′′

c ) ≥ P(SbestChild )) then
13 SbestChild ← S′′

c ;

14 if (P(SbestChild ) ≥ P(Sl )) then
15 Sl ← SbestChild ;

16 if (P(Sl ) ≥ P(Sbest )) then
17 Sbest ← Sl ;

18 return Sbest ;

In this algorithm, the outer loop controls the structure of GRASP, where ninit
solutions are generated and considered as starting points for ELS. These CTOP ini-
tial solutions Si are obtained using an Adaptive Iterative Destruction/Construction
Heuristic (AIDCH), described in Sect. 3.2.1. The middle loop corresponds to the ELS
loop where nels iterations are performed. The best solution obtained after l iterations
is recorded in Sl . During the inner loop, nchild parallel child solutions are generated
by making nchild copies from Sl . Each child Sc is converted into a giant tour Tc using
the Concat procedure. Each giant tour is evaluated with the Spli t procedure and is
improved using the local search giant tours space procedure. The resulting giant tour
T ′
c is evaluated with the split procedure to obtain the CTOP solution S′

c. To further
explore the neighborhood of the new solution, a local search in routes search space
is performed on S′

c either by applying a Simulated Annealing procedure or a Tabu
Search as described in Sect. 3.3. Finally, the resulting solution S′′

c updates the best
child SbestChild . The incumbent solution is retained during the whole algorithm to be
returned at the end of the algorithm as the best solution found S∗.

123



A variable space search heuristic for the Capacitated… 279

3.2 Routes search space

The first search space explored by our VSS algorithm is the routes search space,
in which only feasible CTOP solutions that respect all the imposed constraints are
considered. GRASP starts in this search space with an initial solution of good quality
generated by AIDCH. After performing several improvements to this solution in the
giant tour search space, a split procedure is applied on the resulting giant tour to extract
from it the optimal CTOP solution on which other local searches are then applied in
the routes seach space as the SA procedure and the Tabu Search.

3.2.1 Adaptive iterative destruction/construction heuristic

To generate initial solutions for ourGRASP,we propose anAdaptive IterativeDestruc-
tion/Construction Heuristic (AIDCH) composed of two main procedures: an adaptive
construction algorithm and an adaptive diversification procedure. In our adaptive
heuristic, several parameters are changed according to the solution process.

The core component of the adaptive construction procedure is the Best Insertion
Algorithm (BIA). It starts firstwith an incomplete solution S and a subsetU of unrouted
customers, then begins to insert customers from U in the solution one by one. The
process ends when no possible insertions exist or no customers remain unserved. At
each iteration a new customer is chosen to be inserted in the solution if its insertion
preserves the capacity and the travel time restrictions of all the routes and has the
lowest insertion cost. For this reason, we evaluate at each iteration, the insertion of
each costumer c from U in every position p in S. In order to determine the best
customer to be inserted in the best position, a ratio is calculated for each possible
insertion:

Ratiocp =
(

ΔLcp
Lmax

)β ∗
(
dc
Q

)γ

(
pc

Pmax

)α (1)

ΔLcp is defined as the difference of travel time resulting from inserting customer c in
position p and Pmax denotes the highest profit among all customers. The proposed ratio
Ratiocp encompasses three components that are related respectively to the difference
of travel time occurred after the insertion, to the capacity consumption and to the profit
collected. For the three components, we associate the specific weights β, γ and α to
control their relative importance in the ratio. The three components are normalized
to be treated in the same manner. Our ratio attempts to maximize the profit and to
minimize the resources consumption. Therefore, the insertion having the lowest ratio
is selected.

The adaptive construction mechanism consists of generating the best triplet (α,
β, γ ) at each iteration. For this reason, we apply six constructive heuristics h j ,

j ∈ {1, . . . , 6} with different combinations of (α, β, γ ) on six copies of S by applying
BIA. Among the six resulting solutions, the solution having the maximum total profit
is retained. Starting from a partial or an empty solution S, we initialized α, β and γ to
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0.5 then assigning alternate values of [0, 1] by slightly modifying the last chosen ones
from the previous iteration. In the first five heuristics, α is set to 1 since the objective
of our problem is to maximize the total collected profit and the profit of the chosen
customer must be more crucial when taking decisions.

The new combinations of β and γ are chosen among the four vertices of the square
having the previous combination as a center and a side length equal to 0.1 (Ben-Said
et al. 2016), in a way that all three parameters keep their values in [0, 1]. The fifth
heuristic chooses randomly the values of β and γ in [0, 1] while keeping alpha set to
1. Finally, the last heuristic chooses randomly all three parameters between 0 and 1.
Each heuristic returns the best solution obtained and saves its corresponding triplet
(α, β, γ ) for the next iteration. The aim of the adaptive construction mechanism is to
perform separately parallel searches in the neighborhood of the current solution which
lead to faster convergence toward solutions with good quality.

In order to escape from local optima, a perturbation phase must be applied on
the solution. Therefore, at the end of each construction phase, a random number of
customers is removed from the resulting solution. Initially, the number of customers
removed, dmax , is limited to 3, then, at each non-improving iteration, dmax is incre-
mented by one until reaching the value of n/m, which represents the average number of
customers per route (Afifi et al. 2016). The aim of the adaptive destruction mechanism
is to discover more distant solutions in the search space. Therefore, when improving
a certain solution, we reset dmax to its initial value 3 in order to thoroughly explore
the neighborhood of the new optimum.

Our algorithm AIDCH starts with a set of empty routes and initializes the param-
eters of the construction and the destruction steps. At each iteration of AIDCH, the
construction phase is applied until reaching a local optimum S. If S is the best solution
found so far, it is retained as the result of AIDCH. This step is immediately followed
by the destruction phase, where a limited random number of customers is removed
from the obtained solution. To arrange the solution and reduce the travel time, a 2-opt
operator is applied. These steps are repeated until reaching the maximum number of
iterations without improvement of the best solution. The stopping condition set to n
and the maximum number of customers to be removed set to n/m are two predefined
parameters for our AIDCH (Ben-Said et al. 2016).

3.3 Local search: routes search space

To improve the quality of CTOP solutions in the routes search space, several local
searches are applied. We performed two versions of our VSS algorithm, the first one is
done using the Simulated Annealing as one of the local searches, and the other version
is by applying a Tabu Search.

3.3.1 Simulated annealing

The simulated Annealing procedure is involved in the routes search space. After
extracting a solution from a giant tour, our SA algorithm tries to improve the quality of
the new solution. It explores the neighborhood of a solution by applying a fast version
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of the AIDCH algorithm. The adaptive destruction and construction mechanisms are
used. These operators aim to maximize the total collected profit by removing some
customers from the solution in order to insert other customers that increase the profit
of the resulting solution. Furthermore, the 2-opt operator is applied to reduce the total
travel time by exchanging two arcs belonging to the same route. Each time one neigh-
bor is produced, it will be accepted with a certain probability. AIDCH is applied to
the child S. If the resulting solution S′ improves S, it replaces the child S with the
best solution SSA in the next iterations of the local search. Otherwise, SA accepts

S′ with the probability e− Δp
T emp , where T emp represents the current temperature and

Δp = P(S)− P(S′) the difference between the total collected profit in the solution S
and the modified one S′. For each child S, the temperature T emp is initialized with the
initial temperature T emp0 and evolves during the exploration of the neighborhood of
S with a geometric progression. After each iteration, we update T emp with the value
k*T emp0, where k is the cooling speed. In Sect. 4.3 we present the computational
techniques used to calculate T emp0 and to choose the best value of k. At the end, SA
algorithm stops when all neighborhoods fail to produce any new solution to replace
the child S.

3.3.2 Tabu search

In the same perspective, a Tabu Search (TS) is embedded in our algorithm in order to
avoid to be trapped in local optima. Compared to the basic local search where only
moves towards improved solutions are permitted, TS may accept degraded solutions
without falling back into recently emerged ones. For this purpose, in our implemen-
tation, when a customer c visited between customers i and j is removed from the
solution, a temporary tabu status is assigned to the insertion of c in the position (i , j).
TS makes use of a short term memory (known as tabu list) to keep a track on the most
recently tabu moves and forbid applying them for some upcoming iterations. The tabu
status is maintained as in Gendreau et al. (1998) for θ iterations, where θ is randomly
chosen in the range [5, 25]within a discrete uniform distribution. Since the tabu status
may forbid some interesting moves probably leading to a new solution better than the
current local optimum, we use an aspiration criterion to accept solutions containing
tabu insertions only if they present an evaluation higher than the best solution found so
far. The overall procedure iterates for around 10 iterations without getting any further
improvement.

3.4 Giant tours search space

After providing a starting solution by GRASP, ELS algorithm alternates between the
two spaces, the routes search space and the giant tours search space. In the later one,
several local searches are applied on the sequence of customers in order to improve
the quality of the extracted solution using our optimal split procedure.
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3.4.1 Split procedure

Our VSS algorithm performs several local searches in the giant tour search space
to improve the quality of the sequence. In order to evaluate the resulting sequence,
we developed an optimal split procedure adapted from the split procedure proposed
by Dang et al. (2013) for TOP. The objective of the split is to extract from a given
sequence, theCTOPoptimal solution composedofm routes that respect all the resource
limitation constraints.

Let T = (T [1], . . . , T [n]) represents the sequence of n customers. Our optimal
split procedure aims to extract from the sequence T , m subsequences that do not
have any common customer in between. Choosing the subsequences must respect at
the same time the C-constraint and the T-constraint and in such a way that the total
collected profit from the visited customers is maximized.

The order of the customers in the chosen subsequences must be followed; therefore,
we can identify the subsequences by their starting customers and their lengths. For this
reason, we define the subsequence by 〈i, �i 〉T composed of �i consecutive customers
starting with customer T [i] in the sequence T . The final solution is then represented
by the routes (〈i1, �i1〉T , . . . , 〈ik, �ik 〉T ), where k ≤ m and i p+1 > i p+ li p for all
p ∈ {1, . . . , k − 1}.

The first step of our split procedure is to extract all feasible routes starting from all
customers in the sequence T , then choosing among them, the m routes that maximize
the total collected profit. As proven in Dang et al. (2013) for TOP, enumerating only
saturated routes is relevant to obtain the optimal solution extracted from a given giant
tour. Therefore,we define the saturated route as the longest feasible route that complies
the C-constraint and the T-constraint.

Definition 3.1 Starting with the customer T [i] in the giant tour, the corresponding sat-
urated route (T [i], . . . , T [i+ lmax

i ]) is obtained by including all customers following
T [i] in T as long as the C − constraint and the T − constraint are respected.

By limiting our extraction to only saturated routes, we start our splitting procedure
by extracting the n saturated routes from the giant tour in order to select the m routes
that do not have any common customers among them. This problem can be formulated
as a knapsack problem with conflicts (KPC) with a maximum volume limited to m
(Yamada et al. 2002). The items of KPC represent the n enumerated routes having
each a unitary volume and an item’s weight that represents the profit of the route.
The existence of common customers between routes leads to a conflict between the
corresponding items. Therefore, we modeled our problem using an interval graph,
where each saturated route (T [i], . . . , T [i+ lmax

i ]) represents an interval [i, i+ lmax
i ]

using the positions of its customers in the giant tour. The conflict between two routes
is represented in the graph with an arc linking these routes. As proposed by Dang et al.
(2013), the resulting KPC can be solved using dynamic programming in O(m.n) time
and space.

Figure 2 depicts themapping of a split problem to aKPC.Agiant tour of 8 customers
is given in the first graph. In this problem, the maximum travel time is set to 70 and
the maximum capacity to 50 for each vehicle among the two available ones. Fig. 2b
shows the interval model. Eight saturated routes are extracted. As an example, the first
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Fig. 2 The extraction of saturated subtours from a giant tour. a A split problem, b the weighted interval
model

saturated route T1 = (1, 2, 3) has its time T (T1) = 70 and its capacity D(T1) = 50.
We cannot include the customer 4 in this route since it violates the T − constraint
and the C − constraint .

At the end, solving KPC leads to determining among the n feasible extracted routes,
them ones that maximize the total profit of the solution, which will represent the result
of our split procedure.

3.4.2 Local search giant tour space

During the giant tours space exploration, we apply in our ELS algorithm two local
search operators to improve the quality of the sequence: the swap and the Construc-
tion/Destruction operators. At each iteration of our ELS algorithm, the two operators
are applied to the giant tour in a random order. Then, the sequence is evaluated using
the optimal split procedure to extract the solution from the giant tour. When at least
one of the operators makes an improvement in terms of profit on the extracted solu-
tion, the local search procedure reiterates on the new sequence. Otherwise, when both
operators fail to improve the quality of the sequence, the local search procedure stops.
These two operators work as follows:

• swap operator It evaluates each sequence obtained by exchanging the positions
of customers in the giant tour. We limited the number of swapped customers to at
most 10, chosen randomly from the sequence, in order to reduce the computational
time. Each customer is first removed from the sequence, then inserted in all other
positions in the sequence while evaluating each resulting sequence by extracting
the optimal solution from it. If the resulting solution is improved, the sequence is
reinitialized with the new solution to reiterate the local search phase, otherwise a
new couple of customers is considered for the swap.

• construction/destruction operator First, CTOP solution is extracted from the
giant tour using our optimal split procedure. This operator is applied on CTOP
solution by removing some customers from the routes then trying to insert the
unrouted customers in the solution. The two adaptive mechanisms of destruction
and construction described in Sect. 3.2.1 are used.
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The extracted solution derived from eachmodified sequence is then improved using
the local searches of the routes search space as described in Sect. 3.3.

4 Computational experiments

Our VSS Algorithm is coded in C++ and compiled in a Linux environment using
GNU GCC. Computational experiments are carried out on an Intel Xeon 2.6 GHz
processor. In the following sections, we show some experiments performed to tune
the parameters of our algorithm, then we examine the effect of each component, to
end up by giving a detailed comparison to the literature on all instances of the CTOP
benchmark.

4.1 Benchmark of CTOP

We tested our algorithm on the benchmark of CTOP composed of two sets of instances.

• The first dataset was proposed by Archetti et al. (2009) and was deduced from
ten instances of the benchmark of the Capacitated VRP (Christofides et al. 1979).
The number of customers in each instance ranges between 50 and 99. For each
customer c, its profit pc is set to (0.5+h)∗dc, where dc is the customer’s demand
and h is a random number selected uniformly in the interval [0, 1]. By considering
different combinations of the maximum travel time Tmax , the vehicle capacity Q
and the fleet size m, 13 subsets of 10 CTOP instances each are generated.

• The second dataset was introduced by Tarantilis et al. (2013). This set was deduced
from ten instances from the benchmark of the Periodic VRP (Pirkwieser and Raidl
2010) using the same technique proposed by Archetti et al. (2009). In this dataset,
all instances are large, where the number of customers ranges from 337 to 577. In
total, a new large scale benchmark of 130 instances are proposed for CTOP.

The characteristics of the instances are shown in Table 1, where we present for each
subset of instances, the number of available vehicles m, the capacity limit Q and the
maximum travel time Tmax for each vehicle.

For convenience,we represent each instancewith a label “base−n−m−Q−Tmax”,
where base is the name of the original instance taken from the VRP benchmark, n the
number of customers, m the number of vehicles, Q the capacity of the vehicles and
Tmax the maximum travel time of each vehicle.

4.2 Protocol and performancemetrics

Since VSS is a randomized search method, we applied the same protocol used in Dang
et al. (2013) and Zhang et al. (2013), where we solved each instance ten times and we
retained the best result obtained among the ten executions, denoted by Zmax .

To evaluate all methods performed for CTOP, we denote the best result obtained in
the literature by Zbest , and we define the relative percentage error (RPE) as follows:
RPE = 100 ∗ Zbest−Zmax

Zbest
.
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Table 1 Benchmark of CTOP

Set Instances (Archetti et al. 2009) Instances (Tarantilis et al. 2013)

m Q Tmax m Q Tmax

1 10–20 140–200 160–1040 14–24 330–375 660–720

2 2 50 50 6 75 100

3 3 50 50 7 75 100

4 4 50 50 8 75 100

5 2 75 75 6 150 200

6 3 75 75 7 150 200

7 4 75 75 8 150 200

8 2 100 100 6 200 400

9 3 100 100 7 200 400

10 4 100 100 8 200 400

11 2 140–200 160–1040 6 330–375 660–720

12 3 140–201 160–1041 7 330–376 660–721

13 4 140–202 160–1042 8 330–377 660–722

The performance time of the methods is evaluated using the Time To Best (TTB)
protocol used in Archetti et al. (2009), Tarantilis et al. (2013), and Luo et al. (2013).
TTB is defined as the CPU time required to reach the best solution within one run.

4.3 Parameter tuning

In our proposed method there are three main parameters that must be well chosen in
order to get the best performance of our VSS framework. Two other parameters are to
be set in the SA component. We carried out the parameter tuning experiments using a
subset of 5 instances chosen randomly among the large instances of the benchmark of
CTOP. The instances are “4-481-8-75-100”, “1-337-6-150-200”, “3-433-6-150-200”,
“8-433-7-200-400” and “2-385-6-350-713”.

4.3.1 VSS parameters

Starting with our VSS framework, three parameters should be well tunned to obtain
the best results for our overall algorithm. These parameters are the number of initial
solutions ninit given to GRASP, the number of child solutions nchild and the number
of iterations nels of the evolutionary local search. Several tests have been launched
to determine the values of these parameters offering the best compromise between
the quality of the obtained solutions and the computational time. Therefore we build
a Pareto test with different combinations of ninit , nchild and nels ranged from (5, 5,
5) up to (15, 15, 15) conducting to a total number of 27 tests. In these tests, the two
other parameters T emp0 and k were set based on the studies of Afifi et al. (2016).
The results of parameters combinations are depicted in Fig. 3, where we plot for each
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Fig. 3 Pareto front of results
obtained with different
parameters combinations

Fig. 4 Effect of the k parameter
in the VSS-SA performance

combination the average RPE and the average TTB of the solutions obtained for the
5 tested instances.

Based on the results obtained in Fig. 3, we have chosen the configuration that
gives the best compromise between the quality of the solutions and the computational
time. This configuration is represented by the point covering the largest volume in the
objective space. The resulting parameters are: ninit = 5, nchild = 10 and nels = 10.
We note that, for the rest of our tests, we used this configuration in our VSS framework.

4.3.2 Simulated annealing parameters

The objective of applying SA algorithm in our approach is to accept non-improved
solutions at the beginning of the solution process before starting to completely reject
them after several iterations. For this reason, the initial temperature T emp0 is cal-
culated in such a way to obtain a high probability of accepting a non-improved
solution at the beginning of each GRASP iteration is sufficiently high. This prob-
ability is set to 0.95. During AIDCH, we record the maximum and the minimum
profit values obtained denoted by scoremax and scoremin respectively. T emp0 is then

computed from the following expression: e
− Δp0

T emp0 = 0.95 (Afifi et al. 2016), where
Δp0 = scoremax − scoremin .

The second parameter that should be tunned in the SA algorithm is the cooling speed
k. In order to choose the best value of k, we performed several tests with different
values of k chosen from the subset {0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99, 1}. Figure 4
represents the evolution of the average RPE with respect to value of k.

The convex shape of the graph shown in Fig. 4 explains the fact that choosing a
small or a substantially high value of k leads to a decrease in the performance of
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(a) (b)

Fig. 5 Performance of the combinations of the components of the VSS. a Analysis of the average RPE, b
analysis of the time TTB

VSS-SA algorithm. This behavior is due to the fact that when choosing a small value
for k, our SA algorithm might stop accepting non-improved solutions in the early
stage, leading to local optimum. Moreover, choosing a big value for k increases the
probability of accepting non-improved solutions all the time, which might cause the
intense diversification of the solutions. Therefore, we have chosen k = 0.95 since it
gave us the best average RPE.

4.4 Components evaluation

In this section, we evaluate the effectiveness of each component of our algorithm. First
we tested our algorithm using only the routes search space, then we considered the
basic VSS framework, with several other alternative versions where in each version
one additional component is evaluated as follows.

routes-SS it represents our global scheme in which only CTOP routes search space
is explored.
VSS this is the basic version. VSS scheme is launched while considering CTOP
routes search space and giant tour search space.
VSS-SA this version is the combination of VSS with SA component.
VSS-Tabu it represents the combination of VSS with the tabu component.

We tested these versions with the same parameters configuration. Figure 5 sum-
marizes the performance of each method, where we compared their average RPE and
TTB.

Based on the results obtained in Fig. 5, we notice that the average RPE obtained
with the version VSS is much better than that obtained with routes-SS which leads
us to deduce that exploring the two search spaces provides a better performance for
our VSS algorithm. Finally, incorporating SA and the tabu components into our VSS
algorithm hugely improves the quality of the obtained solutions, although the two
alternatives consume slightly more computational time.
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4.4.1 Comparison with the literature on the first dataset (Archetti et al. 2009)

The exact method proposed by Archetti et al. (2009) was able to find the optimal
solutions for some of the small instances of the first dataset. These results were later
outperformed by the branch and price algorithm proposed byArchetti et al. (2013). For
the remaining instances that do not have anoptimal solution yet,we compare our results
to those obtained by the best heuristic methods proposed in the literature, which are the
VNS algorithm proposed by Archetti et al. (2009), the BiF&F algorithm proposed by
Tarantilis et al. (2013) and the ADEPT-RD algorithm of Luo et al. (2013). We present
in Table 2 the detailed results obtained by these three methods and our two algorithms.
In this table, column Zbest represents the best known results obtained in the literature,
where the values with an asterisk are the optimal solutions. For each method, the
column Zmax provides the profit of the best solution given for each instance, column
RPE reports the relative percentage error from the best known solutions and column
TTB represents the time to best which is the time (in seconds) retained when the best
solution is obtained. We used dash mark ‘–’ when the corresponding method did not
provide a solution for the instance. The improvements performed by our algorithms
VSS-Tabu and VSS-SA are marked in bold. Finally, the last line of the table presents
the averageTTBand the averageRPE for allmethods. To compare the cpu performance
of the different machines used to test these methods, we used the recommended Super
PI protocol (Luo et al. 2013). Super PI evaluates the computational power by running
in all machines a single threaded program to compute a specific number of digits of
π . We note that VNS algorithm of Archetti et al. was run on a personal computer Intel
Pentium4CPU2.80GHzand1.048GBRam.BiF&FofTarantillis et al.was performed
on a 2.83 Giga Hertz Intel Core2 Quad PC over a single thread, while Luo et al.
mentioned in their paper that their CPU is roughly four times faster than that ofArchetti
et al. according to the publicly available SuperPi benchmark. Our Computational
experiments are carried out on an Intel Xeon 2.6 GHz processor. According to the
obtained scores on Super PI, we notice that our machine presents almost similar cpu
speed as the machines used by Tarantilis et al. (2013) and Luo et al. (2013) and
outperforms by three times the machine used by Archetti et al. (2009).

Based on the results obtained in Table 2 the competitiveness of our methods is
clearly noticed with respect to the other best heuristic methods available in the litera-
ture. Our two algorithms VSS-Tabu and VSS-SA provide all the best known results in
the literature with the smallest TTB. Furthermore, they improve the solution quality
of one of the hardest instances of the benchmark, where they both reach a relative
percentage error of − 0.0003% with respect to the best known result in the literature.
More precisely, this table reveals that our algorithms achieve better results compared
to those found by the VNS algorithm which registered an average RPE of 0.08%.
Even with the difference in cpu speed between our machine and the one used by
Archetti et al. (2009), the TTB of our algorithms is substantially lower than that of
the VNS algorithm. Moreover, our results exceed those scored by BiF&F algorithm
which resulted in an average RPE of 0.01%. In terms of computational time perfor-
mance, the TTB of VSS-Tabu is slightly higher than that of BiF&F algorithm but the
TTB of VSS-SA is much lower. Furthermore, our algorithms obtain the same solu-
tions obtained by ADEPT-RD algorithm—the best known results of the literature. We

123



A variable space search heuristic for the Capacitated… 289

Ta
bl
e
2

C
om

pa
ri
so
n
be
tw
ee
n
ou
r
re
su
lts

an
d
th
os
e
ob
ta
in
ed

in
th
e
lit
er
at
ur
e
on

th
e
fir
st
da
ta
se
t(
A
rc
he
tti

et
al
.2

00
9)

In
st
an
ce

Z
be
st

V
N
S

B
iF
&
F

A
D
E
PT

-R
D

V
SS

-T
ab
u

V
SS

-S
A

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

03
-1
01

-1
5-
20

0-
20

0
14

09
∗

14
09

0
0

14
09

0
0

–
–

–
14

09
0

0
14

09
0

2

06
-5
1-
10

-1
60

-2
00

76
1∗

76
1

0
0

76
1

0
0

–
–

–
76

1
0

0
76

1
0

0

07
-7
6-
20

-1
40

-1
60

13
27

∗
13

27
0

0
13

27
0

0
–

–
–

13
27

0
0

13
27

0
1

08
-1
01

-1
5-
20

0-
23

0
14

09
∗

14
09

0
0

14
09

0
0

–
–

–
14

09
0

0
14

09
0

1

09
-1
51

-1
0-
20

0-
20

0
20

65
20

64
0.
05

36
00

20
65

0
2

–
–

–
20

65
0

39
20

65
0

12
0

10
-2
00

-2
0-
20

0-
20

0
30

48
∗

30
48

0
0

30
48

0
0

–
–

–
30

48
0

0
30

48
0

11

13
-1
21

-1
5-
20

0-
72

0
12

87
∗

12
87

0
0

12
87

0
0

–
–

–
12

87
0

0
12

87
0

2

14
-1
01

-1
0-
20

0-
10

40
17

10
∗

17
10

0
0

17
10

0
0

–
–

–
17

10
0

0
17

10
0

3

15
-1
51

-1
5-
20

0-
20

0
21

59
∗

21
59

0
0

21
59

0
0

–
–

–
21

59
0

0
21

59
0

7

16
-2
00

-1
5-
20

0-
20

0
29

68
29

68
0

36
00

–
–

–
–

–
–

29
69

−0
.0
33

7
61

29
69

−0
.0
33

7
25

4

03
-1
01

-2
-5
0-
50

13
3∗

13
3

0
46

13
3

0
0

13
3

0
2

13
3

0
0

13
3

0
0

06
-5
1-
2-
50

-5
0

12
1∗

12
1

0
5

12
1

0
0

12
1

0
1

12
1

0
0

12
1

0
0

07
-7
6-
2-
50

-5
0

12
6∗

12
6

0
17

12
6

0
0

12
6

0
3

12
6

0
0

12
6

0
0

08
-1
01

-2
-5
0-
50

13
3∗

13
3

0
46

13
3

0
0

13
3

0
2

13
3

0
0

13
3

0
0

09
-1
51

-2
-5
0-
50

13
7∗

13
7

0
19

2
13

7
0

0
13

7
0

3
13

7
0

0
13

7
0

0

10
-2
00

-2
-5
0-
50

13
4∗

13
4

0
42

3
13

4
0

0
13

4
0

11
13

4
0

0
13

4
0

0

13
-1
21

-2
-5
0-
50

13
4∗

13
4

0
21

13
4

0
0

13
4

0
0

13
4

0
0

13
4

0
0

14
-1
01

-2
-5
0-
50

12
4∗

12
4

0
46

12
3

0.
81

0
12

4
0

2
12

4
0

0
12

4
0

0

15
-1
51

-2
-5
0-
50

13
4∗

13
4

0
16

6
13

4
0

2
13

4
0

8
13

4
0

6
13

4
0

3

16
-2
00

-2
-5
0-
50

13
7∗

13
7

0
42

2
13

7
0

0
13

7
0

3
13

7
0

0
13

7
0

0

03
-1
01

-3
-5
0-
50

19
8∗

19
8

0
63

19
8

0
0

19
8

0
38

19
8

0
0

19
8

0
0

06
-5
1-
3-
50

-5
0

17
7∗

17
7

0
8

17
7

0
0

17
7

0
1

17
7

0
0

17
7

0
0

123



290 A. Ben-Said et al.

Ta
bl
e
2

co
nt
in
ue
d

In
st
an
ce

Z
be
st

V
N
S

B
iF
&
F

A
D
E
PT

-R
D

V
SS

-T
ab
u

V
SS

-S
A

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

07
-7
6-
3-
50

-5
0

18
7∗

18
7

0
27

18
7

0
0

18
7

0
0

18
7

0
0

18
7

0
0

08
-1
01

-3
-5
0-
50

19
8∗

19
8

0
59

19
8

0
0

19
8

0
38

19
8

0
0

19
8

0
0

09
-1
51

-3
-5
0-
50

20
1∗

20
1

0
22

7
20

1
0

0
20

1
0

3
20

1
0

0
20

1
0

0

10
-2
00

-3
-5
0-
50

20
0∗

20
0

0
54

9
20

0
0

0
20

0
0

2
20

0
0

0
20

0
0

1

13
-1
21

-3
-5
0-
50

19
3∗

19
3

0
30

19
3

0
0

19
3

0
0

19
3

0
0

19
3

0
0

14
-1
01

-3
-5
0-
50

18
4∗

18
4

0
67

18
4

0
0

18
4

0
3

18
4

0
0

18
4

0
0

15
-1
51

-3
-5
0-
50

20
0∗

20
0

0
21

4
20

0
0

2
20

0
0

5
20

0
0

0
20

0
0

1

16
-2
00

-3
-5
0-
50

20
3∗

20
3

0
58

0
20

3
0

0
20

3
0

4
20

3
0

0
20

3
0

0

03
-1
01

-4
-5
0-
50

26
0∗

26
0

0
89

26
0

0
0

26
0

0
1

26
0

0
0

26
0

0
0

06
-5
1-
4-
50

-5
0

22
2∗

22
2

0
13

22
2

0
0

22
2

0
0

22
2

0
0

22
2

0
0

07
-7
6-
4-
50

-5
0

24
0∗

24
0

0
40

24
0

0
0

24
0

0
1

24
0

0
0

24
0

0
0

08
-1
01

-4
-5
0-
50

26
0∗

26
0

0
88

26
0

0
0

26
0

0
1

26
0

0
0

26
0

0
0

09
-1
51

-4
-5
0-
50

26
2∗

26
2

0
29

3
26

2
0

4
26

2
0

45
26

2
0

0
26

2
0

1

10
-2
00

-4
-5
0-
50

26
5∗

26
5

0
78

8
26

5
0

4
26

5
0

37
26

5
0

0
26

5
0

1

13
-1
21

-4
-5
0-
50

24
3∗

24
3

0
47

24
3

0
0

24
3

0
1

24
3

0
0

24
3

0
1

14
-1
01

-4
-5
0-
50

24
1∗

24
1

0
97

24
1

0
0

24
1

0
2

24
1

0
0

24
1

0
0

15
-1
51

-4
-5
0-
50

26
6∗

26
6

0
30

5
26

6
0

1
26

6
0

19
26

6
0

0
26

6
0

2

16
-2
00

-4
-5
0-
50

26
9∗

26
9

0
67

7
26

9
0

1
26

9
0

9
26

9
0

0
26

9
0

0

03
-1
01

-2
-7
5-
75

20
8∗

20
8

0
38

3
20

8
0

0
20

8
0

0
20

8
0

0
20

8
0

0

06
-5
1-
2-
75

-7
5

18
3∗

18
3

0
53

18
3

0
2

18
3

0
55

18
3

0
1

18
3

0
1

07
-7
6-
2-
75

-7
5

19
3∗

19
3

0
14

9
19

3
0

0
19

3
0

1
19

3
0

0
19

3
0

0

123



A variable space search heuristic for the Capacitated… 291

Ta
bl
e
2

co
nt
in
ue
d

In
st
an
ce

Z
be
st

V
N
S

B
iF
&
F

A
D
E
PT

-R
D

V
SS

-T
ab
u

V
SS

-S
A

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

08
-1
01

-2
-7
5-
75

20
8∗

20
8

0
38

3
20

8
0

0
20

8
0

0
20

8
0

0
20

8
0

0

09
-1
51

-2
-7
5-
75

21
0∗

21
0

0
11

66
21

0
0

1
21

0
0

20
21

0
0

0
21

0
0

0

10
-2
00

-2
-7
5-
75

20
8∗

20
8

0
25

96
20

8
0

5
20

8
0

8
20

8
0

0
20

8
0

0

13
-1
21

-2
-7
5-
75

19
3∗

19
3

0
11

19
3

0
0

19
3

0
0

19
3

0
0

19
3

0
0

14
-1
01

-2
-7
5-
75

19
0∗

19
0

0
14

0
19

0
0

0
19

0
0

1
19

0
0

0
19

0
0

0

15
-1
51

-2
-7
5-
75

21
1∗

21
0

0.
47

12
40

21
1

0
48

21
1

0
23

21
1

0
6

21
1

0
14

16
-2
00

-2
-7
5-
75

21
2∗

21
2

0
28

08
21

2
0

0
21

2
0

24
21

2
0

0
21

2
0

0

03
-1
01

-3
-7
5-
75

30
7∗

30
7

0
50

0
30

7
0

0
30

7
0

1
30

7
0

0
30

7
0

0

06
-5
1-
3-
75

-7
5

26
9∗

26
9

0
71

26
9

0
0

26
9

0
4

26
9

0
0

26
9

0
0

07
-7
6-
3-
75

-7
5

28
7∗

28
7

0
18

3
28

7
0

1
28

7
0

1
28

7
0

0
28

7
0

1

08
-1
01

-3
-7
5-
75

30
7∗

30
7

0
50

0
30

7
0

0
30

7
0

1
30

7
0

0
30

7
0

0

09
-1
51

-3
-7
5-
75

31
2∗

31
0

0.
64

17
24

31
2

0
19

31
2

0
9

31
2

0
17

31
2

0
17

10
-2
00

-3
-7
5-
75

31
1∗

31
0

0.
32

31
22

31
1

0
36

31
1

0
38

31
1

0
1

31
1

0
15

13
-1
21

-3
-7
5-
75

26
5∗

26
5

0
18

26
5

0
0

26
5

0
0

26
5

0
0

26
5

0
0

14
-1
01

-3
-7
5-
75

27
9∗

27
9

0
20

1
27

9
0

0
27

9
0

0
27

9
0

0
27

9
0

0

15
-1
51

-3
-7
5-
75

31
5∗

31
5

0
15

93
31

5
0

1
31

5
0

14
3

31
5

0
0

31
5

0
0

16
-2
00

-3
-7
5-
75

31
7∗

31
7

0
36

00
31

7
0

2
31

7
0

13
4

31
7

0
0

31
7

0
1

03
-1
01

-4
-7
5-
75

40
3∗

40
1

0.
50

68
5

40
3

0
29

40
3

0
67

40
3

0
32

40
3

0
11

06
-5
1-
4-
75

-7
5

34
9∗

34
9

0
96

34
9

0
0

34
9

0
14

34
9

0
0

34
9

0
1

07
-7
6-
4-
75

-7
5

37
8∗

37
8

0
26

5
37

8
0

17
37

8
0

8
37

8
0

0
37

8
0

2

08
-1
01

-4
-7
5-
75

40
3∗

40
1

0.
50

68
5

40
3

0
29

40
3

0
68

40
3

0
10

40
3

0
11

09
-1
51

-4
-7
5-
75

40
8∗

40
7

0.
25

18
62

40
8

0
60

40
8

0
6

40
8

0
39

40
8

0
24

10
-2
00

-4
-7
5-
75

41
1∗

41
0

0.
24

36
00

41
1

0
13

5
41

1
0

88
41

1
0

70
41

1
0

12

123



292 A. Ben-Said et al.

Ta
bl
e
2

co
nt
in
ue
d

In
st
an
ce

Z
be
st

V
N
S

B
iF
&
F

A
D
E
PT

-R
D

V
SS

-T
ab
u

V
SS

-S
A

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

13
-1
21

-4
-7
5-
75

32
3∗

32
3

0
23

32
3

0
0

32
3

0
0

32
3

0
0

32
3

0
0

14
-1
01

-4
-7
5-
75

36
6∗

36
6

0
31

6
36

6
0

3
36

6
0

0
36

6
0

0
36

6
0

2

15
-1
51

-4
-7
5-
75

41
5∗

41
4

0.
24

21
18

41
5

0
20

41
5

0
67

41
5

0
2

41
5

0
10

16
-2
00

-4
-7
5-
75

42
0∗

41
9

0.
24

36
00

42
0

0
0

42
0

0
76

42
0

0
4

42
0

0
15

03
-1
01

-2
-1
00

-1
00

27
7∗

27
7

0
47

2
27

7
0

10
27

7
0

27
27

7
0

4
27

7
0

4

06
-5
1-
2-
10

0-
10

0
25

2∗
25

2
0

60
25

2
0

0
25

2
0

20
25

2
0

0
25

2
0

0

07
-7
6-
2-
10

0-
10

0
26

6∗
26

6
0

16
3

26
6

0
0

26
6

0
2

26
6

0
0

26
6

0
0

08
-1
01

-2
-1
00

-1
00

27
7∗

27
7

0
47

2
27

7
0

10
27

7
0

28
27

7
0

5
27

7
0

3

09
-1
51

-2
-1
00

-1
00

27
9∗

27
9

0
16

46
27

9
0

4
27

9
0

66
27

9
0

0
27

9
0

0

10
-2
00

-2
-1
00

-1
00

28
2∗

28
2

0
31

11
28

2
0

53
28

2
0

5
28

2
0

0
28

2
0

4

13
-1
21

-2
-1
00

-1
00

25
3

25
3

0
76

25
3

0
0

25
3

0
2

25
3

0
0

25
3

0
0

14
-1
01

-2
-1
00

-1
00

27
1∗

27
1

0
27

6
27

1
0

0
27

1
0

32
27

1
0

0
27

1
0

2

15
-1
51

-2
-1
00

-1
00

28
2∗

28
2

0
16

72
28

2
0

4
28

2
0

7
28

2
0

0
28

2
0

0

16
-2
00

-2
-1
00

-1
00

28
5∗

28
4

0.
35

35
23

28
5

0
56

28
5

0
16

8
28

5
0

9
28

5
0

41

03
-1
01

-3
-1
00

-1
00

40
8∗

40
7

0.
25

68
5

40
7

0.
25

11
40

8
0

42
3

40
8

0
20

40
8

0
9

06
-5
1-
3-
10

0-
10

0
36

9∗
36

9
0

92
36

9
0

0
36

9
0

2
36

9
0

0
36

9
0

0

07
-7
6-
3-
10

0-
10

0
39

7∗
39

7
0

23
3

39
7

0
19

39
7

0
22

39
7

0
0

39
7

0
3

08
-1
01

-3
-1
00

-1
00

40
8∗

40
7

0.
25

68
5

40
7

0.
25

11
40

8
0

42
9

40
8

0
18

40
8

0
21

09
-1
51

-3
-1
00

-1
00

41
5∗

41
3

0.
48

21
51

41
5

0
96

41
5

0
0

41
5

0
6

41
5

0
41

10
-2
00

-3
-1
00

-1
00

41
8

41
6

0.
48

36
00

41
8

0
16

9
41

8
0

15
41

8
0

12
3

41
8

0
25

13
-1
21

-3
-1
00

-1
00

34
4

34
4

0
11

3
34

4
0

0
34

4
0

0
34

4
0

0
34

4
0

1

14
-1
01

-3
-1
00

-1
00

39
9∗

39
9

0
40

6
39

9
0

0
39

9
0

30
2

39
9

0
3

39
9

0
8

15
-1
51

-3
-1
00

-1
00

41
8∗

41
7

0.
24

19
66

41
8

0
36

41
8

0
12

41
8

0
58

41
8

0
45

123



A variable space search heuristic for the Capacitated… 293

Ta
bl
e
2

co
nt
in
ue
d

In
st
an
ce

Z
be
st

V
N
S

B
iF
&
F

A
D
E
PT

-R
D

V
SS

-T
ab
u

V
SS

-S
A

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

16
-2
00

-3
-1
00

-1
00

42
3∗

42
0

0.
71

36
00

42
3

0
20

1
42

3
0

54
42

3
0

55
42

3
0

52

03
-1
01

-4
-1
00

-1
00

53
2∗

52
9

0.
56

96
3

53
2

0
42

53
2

0
31

3
53

2
0

27
53

2
0

12

06
-5
1-
4-
10

0-
10

0
48

2∗
48

1
0.
21

13
5

48
2

0
0

48
2

0
2

48
2

0
0

48
2

0
2

07
-7
6-
4-
10

0-
10

0
52

1∗
52

1
0

34
2

52
1

0
16

52
1

0
17

52
1

0
1

52
1

0
3

08
-1
01

-4
-1
00

-1
00

53
2∗

52
9

0.
56

96
3

53
2

0
41

53
2

0
31

4
53

2
0

29
53

2
0

20

09
-1
51

-4
-1
00

-1
00

54
6∗

54
5

0.
18

29
34

54
6

0
38

54
6

0
47

54
6

0
53

54
6

0
31

10
-2
00

-4
-1
00

-1
00

55
3∗

54
8

0.
90

36
00

55
3

0
24

3
55

3
0

21
6

55
3

0
11

55
3

0
40

13
-1
21

-4
-1
00

-1
00

41
9

41
9

0
17

9
41

9
0

0
41

9
0

0
41

9
0

0
41

9
0

1

14
-1
01

-4
-1
00

-1
00

52
5∗

52
5

0
67

0
52

5
0

0
52

5
0

5
52

5
0

0
52

5
0

1

15
-1
51

-4
-1
00

-1
00

54
9∗

54
8

0.
18

28
28

54
9

0
20

6
54

9
0

66
54

9
0

25
54

9
0

49

16
-2
00

-4
-1
00

-1
00

55
8∗

55
4

0.
72

36
00

55
8

0
67

55
8

0
5

55
8

0
11

5
55

8
0

79

03
-1
01

-2
-2
00

-2
00

53
6∗

53
6

0
30

5
53

6
0

1
53

6
0

0
53

6
0

10
53

6
0

5

06
-5
1-
2-
16

0-
20

0
40

3∗
40

3
0

27
40

3
0

0
40

3
0

2
40

3
0

0
40

3
0

0

07
-7
6-
2-
14

0-
16

0
37

7∗
37

7
0

10
7

37
7

0
0

37
7

0
6

37
7

0
26

37
7

0
1

08
-1
01

-2
-2
00

-2
30

53
6∗

53
6

0
21

1
53

6
0

1
53

6
0

0
53

6
0

21
53

6
0

4

09
-1
51

-2
-2
00

-2
00

54
8

54
7

0.
18

95
2

54
8

0
5

54
8

0
0

54
8

0
10

7
54

8
0

32

10
-2
00

-2
-2
00

-2
00

55
6

55
6

0
22

14
55

6
0

5
55

6
0

0
55

6
0

15
8

55
6

0
5

13
-1
21

-2
-2
00

-7
20

51
3

51
3

0
25

3
51

3
0

0
51

3
0

4
51

3
0

1
51

3
0

1

14
-1
01

-2
-2
00

-1
04

0
53

4∗
53

4
0

10
9

53
4

0
0

53
4

0
0

53
4

0
0

53
4

0
0

15
-1
51

-2
-2
00

-2
00

55
0

55
0

0
92

9
55

0
0

0
55

0
0

8
55

0
0

1
55

0
0

1

16
-2
00

-2
-2
00

-2
00

55
8

55
8

0
20

40
55

8
0

0
55

8
0

0
55

8
0

1
55

8
0

2

03
-1
01

-3
-2
00

-2
00

76
2

76
2

0
64

3
76

2
0

14
76

2
0

13
76

2
0

3
76

2
0

2

06
-5
1-
3-
16

0-
20

0
56

5∗
56

5
0

43
56

5
0

0
56

5
0

0
56

5
0

0
56

5
0

0

123



294 A. Ben-Said et al.

Ta
bl
e
2

co
nt
in
ue
d

In
st
an
ce

Z
be
st

V
N
S

B
iF
&
F

A
D
E
PT

-R
D

V
SS

-T
ab
u

V
SS

-S
A

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

07
-7
6-
3-
14

0-
16

0
54

8∗
54

8
0

16
4

54
8

0
8

54
8

0
1

54
8

0
7

54
8

0
14

08
-1
01

-3
-2
00

-2
30

76
2

76
2

0
48

2
76

2
0

0
76

2
0

6
76

2
0

1
76

2
0

1

09
-1
51

-3
-2
00

-2
00

79
7

79
6

0.
13

18
05

79
7

0
1

79
7

0
18

79
7

0
90

79
7

0
41

10
-2
00

-3
-2
00

-2
00

81
6

81
5

0.
12

34
67

81
6

0
1

81
6

0
7

81
6

0
14

81
6

0
29

13
-1
21

-3
-2
00

-7
20

72
7

72
7

0
55

7
72

7
0

0
72

7
0

14
72

7
0

7
72

7
0

6

14
-1
01

-3
-2
00

-1
04

0
77

0∗
77

0
0

21
0

77
0

0
0

77
0

0
0

77
0

0
0

77
0

0
1

15
-1
51

-3
-2
00

-2
00

80
2

80
1

0.
12

17
11

80
2

0
56

80
2

0
0

80
2

0
30

6
80

2
0

13
6

16
-2
00

-3
-2
00

-2
00

82
2

82
1

0.
12

33
60

82
2

0
0

82
2

0
43

82
2

0
32

4
82

2
0

81

03
-1
01

-4
-2
00

-2
00

95
0

95
0

0
96

1
95

0
0

0
95

0
0

12
95

0
0

16
95

0
0

11

06
-5
1-
4-
16

0-
20

0
68

3∗
68

3
0

53
68

3
0

0
68

3
0

10
68

3
0

0
68

3
0

1

07
-7
6-
4-
14

0-
16

0
70

7∗
70

7
0

29
6

70
7

0
5

70
7

0
0

70
7

0
2

70
7

0
1

08
-1
01

-4
-2
00

-2
30

95
0

95
0

0
72

6
95

0
0

1
95

0
0

10
95

0
0

26
95

0
0

8

09
-1
51

-4
-2
00

-2
00

10
33

10
33

0
29

03
10

33
0

2
10

33
0

7
10

33
0

44
10

33
0

11

10
-2
00

-4
-2
00

-2
00

10
64

10
64

0
36

00
10

64
0

1
10

64
0

0
10

64
0

21
10

64
0

15

13
-1
21

-4
-2
00

-7
20

90
8

90
8

0
95

4
90

8
0

0
90

8
0

1
90

8
0

21
7

90
8

0
27

14
-1
01

-4
-2
00

-1
04

0
97

5∗
97

5
0

48
3

97
5

0
1

97
5

0
0

97
5

0
0

97
5

0
1

15
-1
51

-4
-2
00

-2
00

10
31

10
31

0
28

32
10

31
0

3
10

31
0

11
2

10
31

0
26

2
10

31
0

58

16
-2
00

-4
-2
00

-2
00

10
73

10
73

0
36

00
10

73
0

1
10

73
0

2
10

73
0

40
10

73
0

15

A
ve
ra
ge

0.
08

95
2

0.
01

14
0

33
−0

.0
00

3
20

−0
.0
00

3
12

123



A variable space search heuristic for the Capacitated… 295

found that VSS-Tabu algorithm outperforms ADEPT-RD in terms of computational
time while VSS-SA outperforms it within a TTB almost 3 times smaller than the one
consumed by ADEPT-RD.

4.4.2 Comparison with the literature on the second dataset (Tarantilis et al. 2013)

Tarantilis et al. (2013) proposed two heuristic methods, which are the slow and the fast
versions of the Bi-Level Filter and Fan method BiF&F and tested their algorithms on a
new large scale instances. Table 3 summarizes the comparison between our VSS-Tabu
and VSS-SA algorithms with the fast and the slow versions of the BiF&F method.
In this table column I nstance represents the name of the instance, and column Zbest

presents the best known solution in the literature. To compare our results to those of
BiF&F-f and BiF&F-s algorithms, this table presents the maximum score obtained by
each method Zmax and the CPU time in seconds elapsed to identify the best solution
(TTB). We mark in bold all the improvements obtained by our algorithms compared
to two versions of BiF&F algorithm.

The results obtained in Table 3 clearly prove the competitiveness of our VSS-Tabu
andVSS-SAalgorithms in terms of quality of the obtained solutions and computational
time consumed during the solution process.We notice from Table 3 that our VSS-Tabu
algorithm reached the best known results for 119 instances and improved 74 instances
among the 130 of the second dataset. Compared to the fast version ofBiF&F algorithm,
VSS-Tabu presents 91 strict improvements. To achieve these performances VSS-Tabu
requires a higher TTB than that of BiF&F-f. Compared to the slow version of BiF&F
algorithm, our VSS-Tabu algorithm is able to outperform this method in terms of
quality of the solutions and computational time, where the average RPE of our VSS-
Tabu was − 0.242%, compared to the slow BiF&F algorithm that found 0.02%. To
obtain these results, our VSS-Tabu algorithm consumed a lower TTB compared to
that consumed by the slow BiF&F algorithm.

Moreover, our VSS-SA algorithm reached a better average RPE of − 0.227% with
respect to the best known results in the literature. More precisely, it obtained the
best results for 124 instances and improved the results of 77 solutions. Apart from
effectiveness, VSS-SA demonstrates its scalability and speed since it is two times
faster compared to BiF&F-s.

Table 4 presents the improvements of each method compared to the other methods
separately. This table shows that our VSS-SA and VSS-Tabu algorithms improved
the results of the slow BiF&F by respectively 79 and 76 instances and that of the
fast BiF&F by 96 and 91 instances, while BiF&F-s algorithm had scored 6 and 11
improvements with respect to our results and BiF&F-f algorithm had found only 3
and 4 improvements.

Overall, the obtained results prove the efficiency and rapidity of our two algorithms
compared to all other heuristics proposed to solve CTOP. We can also conclude that
they present highly competitive performances. More precisely, VSS-Tabu obtains 27
improvements compared to the results of VSS-SA against 30 improvements for the
latter. On the other hand,VSS-Tabu outperformsVSS-SA in termof averageRPE since
it improves the best known results by − 0.242% while VSS-SA obtains an average
RPE of − 0.227%.

123



296 A. Ben-Said et al.

Ta
bl
e
3

C
om

pa
ri
so
n
be
tw
ee
n
ou
r
re
su
lts

an
d
th
e
lit
er
at
ur
e
on

th
e
se
co
nd

da
ta
se
t(
Ta
ra
nt
ili
s
et
al
.2

01
3)

In
st
an
ce

Z
be
st

B
iF
&
F-
f

B
iF
&
F-
s

V
SS

-T
ab
u

V
SS

-S
A

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

01
-3
37

-1
4-
34

5-
72

0
41

72
41

72
0

17
41

72
0

17
41

72
0

1
41

72
0

2

02
-3
85

-1
6-
35

0-
71

3
47

84
47

84
0

25
47

84
0

25
47

84
0

1
47

84
0

3

03
-4
33

-1
8-
33

0-
67

5
52

01
52

01
0

33
52

01
0

32
52

01
0

2
52

01
0

3

04
-4
81

-2
0-
33

5-
71

3
58

28
58

28
0

48
58

28
0

47
58

28
0

1
58

28
0

3

05
-5
29

-2
2-
34

0-
70

5
64

45
64

45
0

10
1

64
45

0
98

64
45

0
3

64
45

0
5

06
-5
77

-2
4-
36

5-
68

3
70

71
70

71
0

94
70

71
0

93
70

71
0

1
70

71
0

2

07
-3
61

-1
5-
33

5-
66

8
43

55
43

55
0

24
43

55
0

23
43

55
0

1
43

55
0

3

08
-4
33

-1
8-
35

0-
67

5
51

94
51

94
0

51
51

94
0

49
51

94
0

2
51

94
0

4

09
-5
05

-2
1-
36

0-
66

0
61

83
61

83
0

10
3

61
83

0
10

4
61

83
0

3
61

83
0

22

10
-5
77

-2
4-
37

5-
67

5
72

39
72

39
0

14
4

72
39

0
14

4
72

39
0

4
72

39
0

7

01
-3
37

-6
-7
5-
10

0
46

0
45

9
0.
22

10
46

0
0

30
46

0
0

16
46

0
0

17

02
-3
85

-6
-7
5-
10

0
54

3
54

3
0

22
54

3
0

35
54

7
−0

.7
4

29
54

7
−0

.7
37

44

03
-4
33

-6
-7
5-
10

0
59

9
59

8
0.
17

14
8

59
9

0
12

7
59

9
0

31
3

59
9

0
11

5

04
-4
81

-6
-7
5-
10

0
52

8
52

4
0.
76

2
52

8
0

78
53

5
−1

.3
3

55
53

5
−1

.3
26

32

05
-5
29

-6
-7
5-
10

0
49

3
49

3
0

11
49

3
0

11
49

3
0

54
49

3
0

15

06
-5
77

-6
-7
5-
10

0
59

2
58

8
0.
68

21
5

59
2

0
49

4
59

2
0

31
59

2
0

13
2

07
-3
61

-6
-7
5-
10

0
54

6
54

6
0

8
54

6
0

8
54

6
0

3
54

6
0

3

08
-4
33

-6
-7
5-
10

0
52

7
52

7
0

16
52

7
0

25
53

0
−0

.5
7

42
52

9
−0

.3
80

30

09
-5
05

-6
-7
5-
10

0
53

0
52

8
0.
38

15
53

0
0

30
53

1
−0

.1
9

19
53

1
−0

.1
89

23

10
-5
77

-6
-7
5-
10

0
57

0
57

0
0

4
57

0
0

4
57

4
−0

.7
0

3
57

4
−0

.7
02

6

01
-3
37

-7
-7
5-
10

0
51

3
51

2
0.
19

16
51

3
0

85
51

3
0

6
51

3
0

8

02
-3
85

-7
-7
5-
10

0
62

4
62

4
0

27
62

3
0.
16

17
1

62
6

−0
.3
2

99
62

6
−0

.3
21

47

123



A variable space search heuristic for the Capacitated… 297

Ta
bl
e
3

co
nt
in
ue
d

In
st
an
ce

Z
be
st

B
iF
&
F-
f

B
iF
&
F-
s

V
SS

-T
ab
u

V
SS

-S
A

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

03
-4
33

-7
-7
5-
10

0
68

9
68

9
0

76
68

9
0

33
7

69
0

−0
.1
5

15
9

69
0

−0
.1
45

13
3

04
-4
81

-7
-7
5-
10

0
59

9
59

8
0.
17

79
59

9
0

93
61

3
−2

.3
4

70
61

3
−2

.3
37

64

05
-5
29

-7
-7
5-
10

0
56

0
56

0
0

19
56

0
0

19
56

0
0

66
56

0
0

32

06
-5
77

-7
-7
5-
10

0
68

0
68

0
0

40
2

68
0

0
19

59
68

0
0

32
4

68
0

0
18

6

07
-3
61

-7
-7
5-
10

0
62

0
61

8
0.
32

21
62

0
0

68
62

0
0

29
62

0
0

28

08
-4
33

-7
-7
5-
10

0
59

9
59

9
0

13
59

9
0

13
60

5
−1

.0
0

56
60

4
−0

.8
35

31

09
-5
05

-7
-7
5-
10

0
60

3
60

3
0

40
60

3
0

14
4

60
3

0
53

60
3

0
31

10
-5
77

-7
-7
5-
10

0
65

0
65

0
0

9
65

0
0

9
65

2
−0

.3
1

82
65

2
−0

.3
08

52

01
-3
37

-8
-7
5-
10

0
56

6
55

7
1.
59

20
56

6
0

95
56

6
0

28
56

6
0

26

02
-3
85

-8
-7
5-
10

0
69

4
69

4
0

7
69

4
0

7
70

1
−1

.0
1

79
69

9
−0

.7
20

37

03
-4
33

-8
-7
5-
10

0
77

7
77

5
0.
26

1
77

7
0

10
21

78
0

−0
.3
9

13
3

78
0

−0
.3
86

11
4

04
-4
81

-8
-7
5-
10

0
68

5
67

3
1.
75

19
68

5
0

30
8

68
7

−0
.2
9

19
8

68
7

−0
.2
92

48
8

05
-5
29

-8
-7
5-
10

0
62

3
62

3
0

22
7

62
2

0.
16

30
3

62
3

0
99

62
3

0
30

06
-5
77

-8
-7
5-
10

0
76

7
76

5
0.
26

10
6

76
7

0
25

7
76

8
−0

.1
3

36
2

76
7

0
22

3

07
-3
61

-8
-7
5-
10

0
68

9
68

3
0.
87

12
68

9
0

99
68

9
0

47
68

9
0

22

08
-4
33

-8
-7
5-
10

0
67

6
67

0
0.
89

34
67

6
0

91
67

8
−0

.3
0

56
67

8
−0

.2
96

48

09
-5
05

-8
-7
5-
10

0
67

1
67

1
0

14
67

1
0

14
67

2
−0

.1
5

73
67

2
−0

.1
49

31

10
-5
77

-8
-7
5-
10

0
72

7
72

1
0.
83

26
72

7
0

50
72

9
−0

.2
8

78
72

9
−0

.2
75

38

01
-3
37

-6
-1
50

-2
00

11
06

11
06

0
35

5
11

04
0.
18

11
44

11
07

−0
.0
9

60
0

11
07

−0
.0
90

22
5

02
-3
85

-6
-1
50

-2
00

11
29

11
25

0.
35

16
84

11
29

0
36

35
11

37
−0

.7
1

79
3

11
35

−0
.5
31

63
4

03
-4
33

-6
-1
50

-2
00

12
01

11
97

0.
33

91
2

12
01

0
58

68
12

01
0

12
42

12
01

0
89

5

04
-4
81

-6
-1
50

-2
00

11
86

11
86

0
22

11
86

0
24

11
91

−0
.4
2

15
67

11
91

−0
.4
22

62
0

123



298 A. Ben-Said et al.

Ta
bl
e
3

co
nt
in
ue
d

In
st
an
ce

Z
be
st

B
iF
&
F-
f

B
iF
&
F-
s

V
SS

-T
ab
u

V
SS

-S
A

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

05
-5
29

-6
-1
50

-2
00

11
49

11
49

0
46

6
11

49
0

23
91

11
71

−1
.9
1

15
95

11
69

−1
.7
41

79
3

06
-5
77

-6
-1
50

-2
00

12
30

12
30

0
52

5
12

30
0

40
35

12
33

−0
.2
4

19
91

12
33

−0
.2
44

69
9

07
-3
61

-6
-1
50

-2
00

11
41

11
39

0.
18

83
6

11
41

0
48

6
11

44
−0

.2
6

80
9

11
43

−0
.1
75

26
8

08
-4
33

-6
-1
50

-2
00

11
28

11
28

0
64

4
11

22
0.
53

11
31

11
31

−0
.2
7

11
30

11
31

−0
.2
66

50
3

09
-5
05

-6
-1
50

-2
00

11
02

11
00

0.
18

29
11

02
0

12
21

11
06

−0
.3
6

13
18

11
05

−0
.2
72

84
3

10
-5
77

-6
-1
50

-2
00

11
91

11
89

0.
17

89
6

11
91

0
41

59
11

98
−0

.5
9

14
56

11
96

−0
.4
20

93
0

01
-3
37

-7
-1
50

-2
00

12
21

12
20

0.
08

47
3

12
21

0
45

6
12

67
−3

.7
7

58
6

12
62

−3
.3
58

31
6

02
-3
85

-7
-1
50

-2
00

12
90

12
73

1.
32

32
9

12
90

0
59

27
12

99
−0

.7
0

11
00

12
98

−0
.6
20

37
0

03
-4
33

-7
-1
50

-2
00

13
77

13
75

0.
15

21
92

13
77

0
43

01
13

83
−0

.4
4

20
34

13
82

−0
.3
63

50
3

04
-4
81

-7
-1
50

-2
00

13
57

13
57

0
50

6
13

56
0.
07

87
6

13
65

−0
.5
9

15
27

13
65

−0
.5
90

69
7

05
-5
29

-7
-1
50

-2
00

13
44

13
33

0.
82

79
3

13
44

0
10

23
1

13
48

−0
.3
0

16
96

13
46

−0
.1
49

58
1

06
-5
77

-7
-1
50

-2
00

14
15

14
15

0
56

02
14

15
0

88
70

14
21

−0
.4
2

24
15

14
20

−0
.3
53

11
19

07
-3
61

-7
-1
50

-2
00

13
10

12
77

2.
52

55
13

10
0

42
80

13
12

−0
.1
5

62
5

13
12

−0
.1
53

32
3

08
-4
33

-7
-1
50

-2
00

12
86

12
84

0.
16

31
47

12
86

0
22

01
12

95
−0

.7
0

93
7

12
94

−0
.6
22

58
5

09
-5
05

-7
-1
50

-2
00

12
63

12
53

0.
79

18
53

12
63

0
46

02
12

67
− 0

.3
2

97
3

12
65

−0
.1
58

65
3

10
-5
77

-7
-1
50

-2
00

13
76

13
76

0
55

14
13

72
0.
29

12
21

13
77

−0
.0
7

23
55

13
76

0
77

4

01
-3
37

-8
-1
50

-2
00

13
89

13
86

0.
22

80
3

13
89

0
15

24
14

04
−1

.0
8

83
0

14
02

−0
.9
36

25
5

02
-3
85

-8
-1
50

-2
00

14
40

14
36

0.
28

56
3

14
40

0
32

71
14

54
−0

.9
7

10
73

14
52

−0
.8
33

45
6

03
-4
33

-8
-1
50

-2
00

15
52

15
51

0.
06

26
22

15
52

0
27

52
15

56
−0

.2
6

16
72

15
57

−0
.3
22

57
9

04
-4
81

-8
-1
50

-2
00

15
27

15
24

0.
20

29
4

15
27

0
92

75
15

30
−0

.2
0

14
55

15
31

−0
.2
62

66
2

05
-5
29

-8
-1
50

-2
00

14
96

14
96

0
10

63
14

94
0.
13

45
57

15
14

−1
.2
0

13
63

15
14

−1
.2
03

69
1

06
-5
77

-8
-1
50

-2
00

16
02

15
88

0.
87

12
77

16
02

0
14

03
7

16
07

−0
.3
1

29
63

16
04

−0
.1
25

98
5

07
-3
61

-8
-1
50

-2
00

14
53

14
50

0.
21

29
6

14
53

0
62

6
14

65
−0

.8
3

82
8

14
67

−0
.9
64

30
5

123



A variable space search heuristic for the Capacitated… 299

Ta
bl
e
3

co
nt
in
ue
d

In
st
an
ce

Z
be
st

B
iF
&
F-
f

B
iF
&
F-
s

V
SS

-T
ab
u

V
SS

-S
A

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

08
-4
33

-8
-1
50

-2
00

14
36

14
27

0.
63

51
26

14
36

0
24

52
14

45
−0

.6
3

16
87

14
43

−0
.4
87

47
9

09
-5
05

-8
-1
50

-2
00

14
13

14
03

0.
71

98
7

14
13

0
70

27
14

21
−0

.5
7

22
94

14
18

−0
.3
54

62
6

10
-5
77

-8
-1
50

-2
00

15
48

15
43

0.
32

17
63

15
48

0
42

01
15

54
−0

.3
9

20
09

15
54

−0
.3
88

72
1

01
-3
37

-6
-2
00

-4
00

15
89

15
84

0.
31

54
15

89
0

17
73

15
90

−0
.0
6

81
3

15
90

−0
.0
63

61
3

02
-3
85

-6
-2
00

-4
00

16
00

16
00

0
54

7
15

99
0.
06

29
83

16
01

−0
.0
6

15
05

16
03

−0
.1
88

14
89

03
-4
33

-6
-2
00

-4
00

16
21

16
21

0
23

3
16

21
0

23
9

16
22

−0
.0
6

24
80

16
22

−0
.0
62

14
35

04
-4
81

-6
-2
00

-4
00

16
42

16
41

0.
06

61
0

16
42

0
62

29
16

41
0.
06

26
47

16
42

0
17

93

05
-5
29

-6
-2
00

-4
00

16
51

16
51

0
39

6
16

51
0

36
83

16
56

−0
.3
0

45
11

16
55

−0
.2
42

15
24

06
-5
77

-6
-2
00

-4
00

16
86

16
85

0.
06

69
6

16
86

0
13

93
16

86
0

67
48

16
86

0
51

38

07
-3
61

-6
-2
00

-4
00

16
12

16
08

0.
25

57
4

16
12

0
23

90
16

14
−0

.1
2

84
8

16
13

−0
.0
62

81
9

08
-4
33

-6
-2
00

-4
00

16
10

16
10

0
72

4
16

06
0.
25

68
5

16
12

−0
.1
2

27
00

16
12

−0
.1
24

33
03

09
-5
05

-6
-2
00

-4
00

16
20

16
18

0.
12

19
23

16
20

0
11

06
9

16
22

−0
.1
2

19
90

16
21

−0
.0
62

34
74

10
-5
77

-6
-2
00

-4
00

16
62

16
61

0.
06

67
83

16
62

0
12

69
2

16
62

0
63

10
16

62
0

37
78

01
-3
37

-7
-2
00

-4
00

18
17

18
17

0
11

8
18

17
0

12
0

18
19

−0
.1
1

16
77

18
20

−0
.1
65

61
8

02
-3
85

-7
-2
00

-4
00

18
37

18
33

0.
22

20
9

18
37

0
49

25
18

39
−0

.1
1

99
1

18
40

−0
.1
63

14
65

03
-4
33

-7
-2
00

-4
00

18
64

18
64

0
45

6
18

64
0

26
00

18
64

0
38

05
18

64
0

12
41

04
-4
81

-7
-2
00

-4
00

18
90

18
90

0
65

72
18

89
0.
05

47
46

18
90

0
21

98
18

91
−0

.0
53

19
95

05
-5
29

-7
-2
00

-4
00

19
10

19
10

0
44

24
19

10
0

78
82

19
13

−0
.1
6

51
23

19
13

−0
.1
57

16
71

06
-5
77

-7
-2
00

-4
00

19
47

19
47

0
25

18
19

47
0

80
65

19
47

0
41

25
19

48
− 0

.0
51

23
42

07
-3
61

-7
-2
00

-4
00

18
43

18
40

0.
16

42
2

18
43

0
37

54
18

44
−0

.0
5

80
8

18
44

−0
.0
54

97
7

08
-4
33

-7
-2
00

-4
00

18
48

18
41

0.
38

84
0

18
48

0
10

20
4

18
48

0
16

01
18

50
−0

.1
08

13
65

09
-5
05

-7
-2
00

-4
00

18
71

18
71

0
85

73
18

70
0.
05

57
74

18
73

−0
.1
1

26
62

18
71

0
31

01

10
-5
77

-7
-2
00

-4
00

19
19

19
19

0
46

59
19

19
0

14
10

19
19

0
62

15
19

20
−0

.0
52

37
55

123



300 A. Ben-Said et al.

Ta
bl
e
3

co
nt
in
ue
d

In
st
an
ce

Z
be
st

B
iF
&
F-
f

B
iF
&
F-
s

V
SS

-T
ab
u

V
SS

-S
A

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

01
-3
37

-8
-2
00

-4
00

20
32

20
32

0
15

5
20

32
0

12
36

20
39

−0
.3
4

12
86

20
41

−0
.4
43

76
3

02
-3
85

-8
-2
00

-4
00

20
65

20
64

0.
05

12
16

20
65

0
56

41
20

66
−0

.0
5

21
21

20
68

−0
.1
45

10
78

03
-4
33

-8
-2
00

-4
00

20
97

20
96

0.
05

57
4

20
97

0
31

73
20

97
0

27
24

20
98

−0
.0
48

16
49

04
-4
81

-8
-2
00

-4
00

21
27

21
27

0
11

2
21

27
0

10
3

21
30

−0
.1
4

33
17

21
31

−0
.1
88

16
27

05
-5
29

-8
-2
00

-4
00

21
56

21
56

0
10

38
21

55
0.
05

79
14

21
62

−0
.2
8

37
64

21
63

−0
.3
25

22
52

06
-5
77

-8
-2
00

-4
00

22
04

22
04

0
73

85
22

04
0

16
58

22
05

−0
.0
5

64
26

22
04

0
22

89

07
-3
61

-8
-2
00

-4
00

20
63

20
63

0
19

64
20

63
0

37
62

20
63

0
88

9
20

64
−0

.0
48

88
6

08
-4
33

-8
-2
00

-4
00

20
70

20
68

0.
10

68
3

20
70

0
35

89
20

72
−0

.1
0

19
74

20
74

−0
.1
93

20
00

09
-5
05

-8
-2
00

-4
00

21
15

21
15

0
11

02
2

21
15

0
17

38
0

21
16

−0
.0
5

26
93

21
18

−0
.1
42

25
15

10
-5
77

-8
-2
00

-4
00

21
72

21
68

0.
18

38
76

21
72

0
15

67
8

21
71

0.
05

33
26

21
73

−0
.0
46

31
97

01
-3
37

-6
-3
45

-7
20

25
30

25
30

0
13

6
25

30
0

13
6

25
30

0
17

8
25

30
0

12
2

02
-3
85

-6
-3
50

-7
13

26
14

26
14

0
53

3
26

14
0

75
2

26
13

0.
04

27
03

26
13

0.
03

8
89

7

03
-4
33

-6
-3
30

-6
75

25
20

25
20

0
32

0
25

20
0

31
9

25
20

0
63

20
25

20
0

22
46

04
-4
81

-6
-3
35

-7
13

26
03

26
03

0
99

3
26

03
0

18
44

26
03

0
27

55
26

03
0

63
41

05
-5
29

-6
-3
40

-7
05

26
96

26
96

0
23

17
26

96
0

69
56

26
96

0
56

75
26

96
0

67
99

06
-5
77

-6
-3
65

-6
83

29
32

29
32

0
17

98
29

32
0

70
50

29
31

0.
03

16
94

5
29

31
0.
03

4
73

05

07
-3
61

-6
-3
35

-6
68

24
89

24
89

0
18

3
24

89
0

18
7

24
89

0
20

97
24

89
0

26
2

08
-4
33

-6
-3
50

-6
75

26
21

26
21

0
82

68
26

21
0

11
46

1
26

22
−0

.0
4

31
21

26
23

−0
.0
76

38
46

09
-5
05

-6
-3
60

-6
60

27
75

27
75

0
56

61
27

75
0

11
31

5
27

80
−0

.1
8

12
32

6
27

82
−0

.2
52

56
97

10
-5
77

-6
-3
75

-6
75

29
62

29
60

0.
07

66
64

29
59

0.
10

10
22

2
29

62
0

84
60

29
63

−0
.0
34

10
38

8

01
-3
37

-7
-3
45

-7
20

28
59

28
59

0
15

0
28

59
0

15
3

28
60

−0
.0
3

22
35

28
60

−0
.0
35

15
18

02
-3
85

-7
-3
50

-7
13

29
65

29
64

0.
03

22
6

29
65

0
65

2
29

65
0

28
53

29
65

0
19

46

03
-4
33

-7
-3
30

-6
75

28
60

28
60

0
28

3
28

60
0

27
0

28
60

0
25

30
28

60
0

28
45

123



A variable space search heuristic for the Capacitated… 301

Ta
bl
e
3

co
nt
in
ue
d

In
st
an
ce

Z
be
st

B
iF
&
F-
f

B
iF
&
F-
s

V
SS

-T
ab
u

V
SS

-S
A

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

Z
m
a
x

R
PE

T
T
B

04
-4
81

-7
-3
35

-7
13

29
54

29
54

0
55

5
29

54
0

55
6

29
54

0
47

68
29

54
0

15
72

05
-5
29

-7
-3
40

-7
05

30
75

30
74

0.
03

23
49

30
75

0
68

81
30

74
0.
03

72
01

30
74

0.
03

3
62

59

06
-5
77

-7
-3
65

-6
83

33
53

33
51

0.
06

18
40

33
53

0
74

11
33

51
0.
06

11
49

2
33

52
0.
03

0
10

81
0

07
-3
61

-7
-3
35

-6
68

28
14

28
12

0.
07

84
9

28
14

0
33

06
28

12
0.
07

24
29

28
13

0.
03

6
27

60

08
-4
33

-7
-3
50

-6
75

29
71

29
70

0.
03

91
6

29
71

0
14

25
29

72
−0

.0
3

53
21

29
73

−0
.0
67

27
72

09
-5
05

-7
-3
60

-6
60

31
63

31
57

0.
19

13
27

7
31

63
0

13
86

4
31

62
0.
03

83
31

31
63

0
69

37

10
-5
77

-7
-3
75

-6
75

33
81

33
80

0.
03

48
90

33
81

0
14

37
9

33
83

−0
.0
6

11
73

5
33

83
−0

.0
59

85
49

01
-3
37

-8
-3
45

-7
20

31
59

31
59

0
92

7
31

59
0

17
45

31
58

0.
03

14
62

31
59

0
15

76

02
-3
85

-8
-3
50

-7
13

32
91

32
90

0.
03

14
4

32
91

0
58

3
32

91
0

28
50

32
91

0
30

18

03
-4
33

-8
-3
30

-6
75

31
90

31
90

0
45

5
31

90
0

46
1

31
90

0
42

88
31

90
0

31
43

04
-4
81

-8
-3
35

-7
13

32
89

32
89

0
45

1
32

89
0

42
6

32
89

0
28

3
32

89
0

31
4

05
-5
29

-8
-3
40

-7
05

34
34

34
32

0.
06

19
53

34
34

0
74

18
34

34
0

41
45

34
34

0
43

96

06
-5
77

-8
-3
65

-6
83

37
49

37
49

0
99

7
37

49
0

10
07

37
48

0.
03

14
09

0
37

48
0.
02

7
93

42

07
-3
61

-8
-3
35

-6
68

31
16

31
16

0
18

7
31

16
0

18
9

31
17

−0
.0
3

30
90

31
17

−0
.0
32

22
48

08
-4
33

-8
-3
50

-6
75

33
02

33
01

0.
03

18
34

33
02

0
34

55
33

03
−0

.0
3

56
91

33
03

−0
.0
30

51
20

09
-5
05

-8
-3
60

-6
60

35
25

35
10

0.
43

22
82

35
25

0
14

49
9

35
28

−0
.0
9

73
70

35
29

−0
.1
13

11
11

9

10
-5
77

-8
-3
75

-6
75

37
83

37
81

0.
05

27
84

37
83

0
11

66
3

37
81

0.
05

10
15

4
37

83
0

98
65

A
ve
ra
ge

0.
18

13
65

.1
1

0.
02

32
05

.6
4

−0
.2
41

23
60

−0
.2
27

16
95

123



302 A. Ben-Said et al.

Table 4 Methods improvements BiF&F-f BiF&F-s VSS-Tabu VSS-SA

BiF&F-f − 13 4 3

BiF&F-s 61 − 11 6

VSS-Tabu 91 76 − 27

VSS-SA 96 79 30 −

Conclusion

The Capacitated Team Orienteering Problem is a new variant of the Vehicle Routing
Problem, in which the total collected profit from the visited customers must be max-
imized, while adhering to all resource limitation constraints related to the capacity
of the vehicles and to the predefined travel time limit. In this paper, we propose a
Variable Space Search algorithm that combines two search spaces to solve CTOP. Our
algorithm is based on the alternation between the giant tours and the routes search
spaces in order to further improve the quality of the obtained solutions. An Adaptive
Iterative Destructive/Constructive Heuristic is developed to start our solution process
with high quality solutions. Several local search techniques and perturbation proce-
dures are developed in each search space in order to improve the quality of the initial
solutions constructed. Furthermore, using a Tabu Search and a Simulated Annealing
procedure in our framework appears to be more efficient since they avoid being stuck
in local optima. Computational results performed on the CTOP benchmark show the
effectiveness and the competitiveness of our approaches since we are able to find sub-
stantial improvements with respect to the other results found in the literature, within
a considerably lower computational time.

In order to further improve the performance of our VSS algorithms, additional local
searches could be applied in the routes search space and the giant tours search space.
Several improvements could also be applied on our AIDCH in order to provide initial
solutions with better quality. Future research can extend our methodology and adopt it
to solve other variants of the Vehicle Routing Problem with Profit, as the Capacitated
Profitable Tour Problem (CPTP). The objective in this variant is to maximize the
difference between the total collected profit and the traveled distance while respecting
the limited capacity. In addition, we will work on developing exact methods in order
to optimally solve CTOP.

Acknowledgements The work presented in this paper was achieved in the framework of the Labex MS2T,
funded by the French Government, via the program “Investments for the future” managed by the National
Agency for Research (Reference ANR-11-IDEX-0004-02). It was also partially supported by the TCDU
project (Collaborative Transportation in Urban Distribution, ANR-14-CE22-0017).

References

Afifi, S., Dang, D.C., Moukrim, A.: Heuristic solutions for the vehicle routing problem with time windows
and synchronized visits. Optim. Lett. 10(3), 511–525 (2016)

123



A variable space search heuristic for the Capacitated… 303

Archetti, C., Feillet, D., Hertz, A., Speranza, M.G.: The capacitated team orienteering and profitable tour
problems. J. Oper. Res. Soc. 60(6), 831–842 (2009)

Archetti, C., Bianchessi, N., Speranza, M.G.: Optimal solutions for routing problems with profits. Discrete
Appl. Math. 161(4), 547–557 (2013)

Ben-Said, A., El-Hajj, R., Moukrim, A.: An adaptive heuristic for the Capacitated Team Orienteering
Problem. In: IFAC-PapersOnLine 8th IFAC Conference on Manufacturing Modelling, Management
and Control MIM 2016 49(12):1662–1666 (2016)

Boussier, S., Feillet, D., Gendreau, M.: An exact algorithm for team orienteering problems. 4OR 5(3),
211–230 (2007)

Butt, S.E., Cavalier, T.M.: A heuristic for the multiple tour maximum collection problem. Comput. Oper.
Res. 21(1), 101–111 (1994)

Chao, I.M., Golden, B.L., Wasil, E.A.: A fast and effective heuristic for the orienteering problem. Eur. J.
Oper. Res. 88(3), 475–489 (1996)

Christofides, N., Mingozzi, A., Toth, P.: The Vehicle Routing Problem. In: Christofides, N., Mingozzi, A.,
Toth, P., Sandi, C. (eds.) Combinatorial Optimization, pp. 315–338. Wiley, Chichester (1979)

Dang, D.C., Guibadj, R.N., Moukrim, A.: An effective PSO-inspired algorithm for the team orienteering
problem. Eur. J. Oper. Res. 229(2), 332–344 (2013)

Duhamel, C., Lacomme, P., Prins, C., Prodhon, C.: A GRASP×ELS approach for the capacitated location-
routing problem. Comput. Oper. Res. 37(11), 1912–1923 (2010)

Duhamel, C., Lacomme, P., Quilliot, A., Toussaint, H.: A multi-start evolutionary local search for the
two-dimensional loading capacitated vehicle routing problem. Comput. Oper. Res. 38(3), 617–640
(2011)

Feillet, D., Dejax, P., Gendreau, M.: Traveling salesman problems with profits. Transp. Sci. 39(2), 188–205
(2005)

Gendreau,M., Laporte, G., Semet, F.: A tabu search heuristic for the undirected selective travelling salesman
problem. Eur. J. Oper. Res. 106(2–3), 539–545 (1998)

Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discrete Appl. Math.
156(13), 2551–2560 (2008)

Jepsen, M.K., Petersen, B., Spoorendonk, S., Pisinger, D.: A branch-and-cut algorithm for the capacitated
profitable tour problem. Discrete Optim. 14(Supplement C), 78–96 (2014)

Kim, B.I., Li, H., Johnson, A.L.: An augmented large neighborhood search method for solving the team
orienteering problem. Expert Syst. Appl. 40(8), 3065–3072 (2013)

Lacomme, P., Toussaint, H., Duhamel, C.: A GRASP×ELS for the vehicle routing problem with basic
three-dimensional loading constraints. Eng. Appl. Artif. Intell. 26(8), 1795–1810 (2013)

Luo, Z., Cheang, B., Lim, A., Zhu, W.: An adaptive ejection pool with toggle-rule diversification approach
for the capacitated team orienteering problem. Eur. J. Oper. Res. 229(3), 673–682 (2013)

Pirkwieser, S., Raidl, G.R.: Multilevel variable neighborhood search for periodic routing problems. In:
10th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP,
pp. 226–238 (2010)

Tarantilis, C., Stavropoulou, F., Repoussis, P.: The capacitated team orienteering problem: a bi-level filter-
and-fan method. Eur. J. Oper. Res. 224(1), 65–78 (2013)

Yamada, T., Kataoka, S., Watanabe, K.: Heuristic and exact algorithms for the disjunctively constrained
knapsack problem. Inf. Process. Soc. Jpn. J. 43(9), 2864–2870 (2002)

Zhang, Z., Che, O., Cheang, B., Lim, A., Qin, H.: A memetic algorithm for the multiperiod vehicle routing
problem with profit. Eur. J. Oper. Res. 229(3), 573–584 (2013)

123


	A variable space search heuristic for the Capacitated Team Orienteering Problem
	Abstract
	1 Introduction
	2 Problem definition
	3 VSS heuristic for CTOP
	3.1 Global scheme of the GRASP-ELS framework
	3.2 Routes search space
	3.2.1 Adaptive iterative destruction/construction heuristic

	3.3 Local search: routes search space
	3.3.1 Simulated annealing
	3.3.2 Tabu search

	3.4 Giant tours search space
	3.4.1 Split procedure
	3.4.2 Local search giant tour space


	4 Computational experiments
	4.1 Benchmark of CTOP
	4.2 Protocol and performance metrics
	4.3 Parameter tuning
	4.3.1 VSS parameters
	4.3.2 Simulated annealing parameters

	4.4 Components evaluation
	4.4.1 Comparison with the literature on the first dataset (CTOP1)
	4.4.2 Comparison with the literature on the second dataset (CTOP2)


	Conclusion
	Acknowledgements
	References




