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Abstract With limited financial resources, decision-makers in firms and governments
face the task of selecting the best portfolio of projects to invest in. As the pool of project
proposals increases andmore realistic constraints are considered, the problembecomes
NP-hard. Thus, metaheuristics have been employed for solving large instances of the
project portfolio selection problem (PPSP). However, most of the existing works do
not account for uncertainty. This paper contributes to close this gap by analyzing a
stochastic version of the PPSP: the goal is to maximize the expected net present value
of the inversion, while considering random cash flows and discount rates in future
periods, as well as a rich set of constraints including the maximum risk allowed. To
solve this stochastic PPSP, a simulation-optimization algorithm is introduced. Our
approach integrates a variable neighborhood search metaheuristic with Monte Carlo
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simulation. A series of computational experiments contribute to validate our approach
and illustrate how the solutions vary as the level of uncertainty increases.

Keywords Project portfolio selection · Stochastic optimization · Net present value ·
Variable neighborhood search · Simheuristics

1 Introduction

Financial decisions are directly linked towealth creation through capital accumulation,
sustainable economic development, and an increase in welfare (Patrick 1966). This
thriving for improvement suggests a mentality of optimization in financial decision-
making. Both firms and governments alike face investment decisions consisting in
selecting, from an array of candidate projects, those that most successfully fulfill the
organizations strategic objectives and ensure future profitable growth. This project
portfolio selection problem (PPSP) is concerned with identifying efficient portfolios
of projects instead of evaluating the suitability of solely individual projects (Urli and
Terrien 2010).

Traditional approaches to the PPSP aim at building a ranking of the projects and
allocating the available budget according to this ranking. Among the most widely
employed are the analytical hierarchy process (Suh et al. 1994) and the scoringmethod
(Coldrick et al. 2005). However, these approaches suffer from twomajor shortcomings
(Carazo et al. 2010): (i) they typically assume independence among projects—thus
neglecting synergy and cannibalism effects as well as interdependences–; and (ii) they
fail to provide optimal solutions when the decision-maker wishes to consider further
constraints beyond budget restrictions.

When considering realistic instances, this problem usually becomes NP-hard due
to its sheer complexity, since the budget-allocating entity usually pursues several
conflicting objectives while taking into account a considerable number of restraining
factors (Fernandez et al. 2015). As noticed by Urli and Terrien (2010), objectives can
be of quantitative nature—such as net present value or market share–, or pertain to
qualitative measures—such as personnel capabilities or environmental impact. While
employing exact methods in solving NP-hard combinatorial optimization problems
(COPs) tends to be computationally expensive, metaheuristics can provide a near-
optimal solution to such problems in reasonable computing times (Soler-Dominguez
et al. 2017).

In this paper, we analyze a stochastic version of the PPSP: the goal is to maximize
the expected net present value of the inversion, while considering random cash flows
and discount rates in future periods aswell as a rich set of constraints. These constraints
include themaximum risk allowed and other conditions defined by the decisionmaker.
In order to solve this version of the problem, we propose a simheuristic algorithm.
As described in Juan et al. (2015a), simheuristic approaches integrate metaheuristics
with simulation techniques in order to deal with the random nature of stochastic
COPs. In particular, we use an extension of the variable neighbourhood search (VNS)
metaheuristic (Hansen and Mladenović 2001) that integrates Monte Carlo simulation
(MCS) techniques. In short, while the metaheuristic generates promising portfolios
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for a deterministic version of the problem, simulation techniques are applied to: (i)
estimate the expected net present value and risk of these project portfolios under time-
variant uncertainty conditions; (ii) complete a risk analysis on each project portfolio;
and (iii) provide feedback to the metaheuristic in order to better guide the searching
process. The VNS framework was used since, as discussed in Hansen andMladenović
(2014), it offers an excellent trade-off between simplicity and performance.

Thus, the main contributions of this paper are: (i) to propose a mathematical for-
mulation for a rich version of the stochastic PPSP where the goal is to maximize the
net present value of the investment; (ii) to develop a simheuristic algorithm able to
solve this stochastic version of the PPSP; and (iii) to analyze, using the aforemen-
tioned algorithm, how the selected portfolio of projects varies as the uncertainty level
increases.

We solve both deterministic and stochastic PPSPs, and compare the near-optimal
solutions. The deterministic PPSP indicates that portfolios consisting of risky projects
have a higher NPV than portfolios consisting of relatively safe projects. However, it
is worth noting that such a relation is not necessarily linear due to the the presence of
cardinality and quantity constraints. Also, the instances employed in our experiments
vary in terms of the pairwise correlation between cashflows from any two projects.
The ensuing interdependencies among the projects can be regarded as a constraint to
the volume of projects that can be included in a portfolio. Turning to the the stochastic
PPSP, we find that a portfolio of projects in a stochastic environment always yields
a lower (expected) NPV than a portfolio in a deterministic environment. Further-
more, our research findings indicate that a near-optimal solution to the deterministic
PPSP is generally sub-optimal under uncertainty. Lastly, a near-optimal solution to
the stochastic PPSP leads to a higher (expected) NPV than a near-optimal solution to
the deterministic PPSP evaluated under uncertainty.

The remainder of the paper is structured as follows. Section 2 presents a literature
review. Section 3 contains the description of the problem as well as a mathematical
formulation. We propose our solving methodology in Sect. 4. Following this, the
computational experiments are presented in Sect. 5 and their results analyzed in Sect. 6.
Lastly, we present our conclusions and future research lines in Sect. 7.

2 Literature review on the PPSP

Early work on the PPSP (Ghasemzadeh and Archer 2000) considers a single weighted
objective function and constraints concerning budget and man-hours. However, their
test instances were very limited because they aspired a comparison between manually
computed portfolios and those constructed employing their decision support system.
To solve a PPSP employing further constraints, a two-stage procedure is proposed
by Doerner et al. (2004, 2006). During the first phase, the Pareto frontier of efficient
project portfolios is constructed through optimization. Then, in the second phase it
is interactively explored by the decision-makers to account for personal preferences.
They further take into account floor and ceiling constraints for inclusion of projects
from any given subset, as well as resource limitations and minimum benefit require-
ments for individual projects. As there are possible synergies between projects that
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should be evaluated in order to accurately estimate the benefits of a project portfolio,
the authors make an attempt at incorporating these considerations into their method-
ology. The Pareto ant colony optimization approach is further enhanced by Stummer
and Sun (2005), who suggest that their improved model performs better with many
objective functions and a large set of efficient solutions and is thus specifically suitable
for real-life problems.

These interdependences show that the portfolio optimization is not a trivial task as
the number of possible portfolios increases exponentially with the number of possible
projects. Thus, Urli and Terrien (2010) consider project interdependences modeled
by an interaction matrix as proposed by Schmidt (1993) in addition to restrictions
on monetary and human resources. Rabbani et al. (2010) further consider that some
projects may be mandatory or mutually exclusive. Furthermore, project interaction
leads to the consideration of timing of project implementation.

While previous research considers static optimization approaches, more recently,
research has also drawn on findings from other areas, such as scheduling: Gutjahr et al.
(2008) and Gutjahr et al. (2010) also take employee competencies and the evolution
of their knowledge scores over time through learning or depreciation into account.
Carazo et al. (2010) further investigate this research line and include scheduling as
a continuative concept being implemented simultaneously to, but also following the
project selection. As previous work, they also consider certain interrelations between
different projects and allow for the transfer of unused monetary resources to the next
period. Urli and Terrien (2010) included continuous project portfolio adjustment over
the respective time horizon and solved small and medium instances in satisfactory
computation time. However, the determination of all non-dominated project portfolios
still remains difficult when considering large, but realistically relevant instances (100
projects or more). While this might not be relevant in most firm investment decisions,
it is a significant drawback for governments or bodies awarding funding for projects
and even financial institutions (Cruz et al. 2014).

A further important factor when considering the particular case of project portfo-
lio selection processes of financial institutions is project divisibility (Urli and Terrien
2010).When the possible decision variables are no longer binary, the complexity is yet
increased. While business projects are at least partially indivisible, research projects
funded by governments can often also be executed with partial funding and it is thus a
further question how much of the sought after funding is awarded, introducing further
constraints to the budget allocation. Hence, more recent research increasingly focuses
on large-scale instances and partial allocation. Cruz et al. (2014) solve a stationary
project portfolio optimization problem, inwhichpartial support of the requested budget
is allowed. Unlike previous research, they assume that the preferences of the decision-
maker are to some extent known. Outranking is employed in an a priori preference
system in order to model that decision makers will have preferences towards differ-
ent portfolios on the efficient frontier based on their personal goals concerning the
achievement of objectives. Incorporating these preferences allows identifying those
portfolios that lie on the efficient frontier and simultaneously are not outranked by
another portfolio. They incorporate budgetary constraints in that they define upper
and lower bounds for inclusion of projects from a particular group. Fernandez et al.
(2015) further enhance this approach by including synergies in their optimization.
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Due to the uncertainty present in different facets of project appraisal, simulation
has been incorporated into the metaheuristics framework to address this. Gabriel et al.
(2006) employ MCS in their methodology to simulate possible cost scenarios for
the respective optimization constraints. They analyzed a government agency facing a
project portfolio decision and showed that their approach significantly improved the
decision-making process and led to more robust results due to the incorporation of
uncertainty. Medaglia et al. (2007) combine a multi-objective evolutionary algorithm
with MCS in order to solve a project portfolio problem that allows for partial fund-
ing of projects, project interdependences, constrained resources and uncertainty in
the objective function regarding the preferences of the decision-maker. Huang (2007)
treats the project parameters as uncertain and combines a genetic algorithm with ran-
dom fuzzy simulation in order to account for this.An interesting application combining
discrete-event simulation with a genetic algorithm to select security control portfolios
is discussed in Kiesling et al. (2016). In the context of an IT infrastructure subject
to a number of threats, the authors focus on selecting the best policy from efficient
combinations of security controls. Another way to address uncertainty is by consid-
ering robust solutions that perform reasonably well across the full range of feasible
parameter values. Thus, Liesiö et al. (2007) propose a multi-objective robust portfolio
modeling methodology. Their approach relies on preference programming methods.
They illustrate the effectiveness of their approach in a case study involving real data
from a road pavement project in Finland. In Liesiö et al. (2008), the same authors
extend their previous work by also considering project interdependencies, incomplete
cost information and variable budget levels. Using a personal computer, they are able
to solve, in reasonable computing times, instances up to 60 projects, 5 optimization
criteria, and 10 constraints. For large-size instances (e.g., with 200 projects or more),
the authors suggest the use of heuristic-based approaches.

As can be seen from the reviewed examples, uncertainty can be considered for
the project parameters, the modeled constraints, and the objective function. In this
paper, we develop a simheuristic algorithm to address a rich and stochastic version of
the PPSP with the goal of maximizing the net present value of the investment. Our
approach thus addresses several gaps in the literature and combines different research
challenges. Firstly, while most authors consider a particular subset of projects, such
as R&D projects (Doerner et al. 2004) or government projects (Cruz et al. 2014), we
formulate a general approach that can easily be applied to a range of project types, such
as R&D projects, investments, or financial projects. We further include constraints on
the number of projects included in the portfolio, as well as on the divisibility of project
funds requested. Likewise, we give the decision maker the possibility to pre-select
portfolios based on personal or strategic preferences (independently of the projects
risk-return characteristics). In addition, we create instances that can be employed for
comparison in future analyses, as the previously studied examples are either very small
in nature or not openly accessible.
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3 Formal description of the stochastic and rich PPSP

We consider a stochastic and rich variant of the PPSP, in which there is a large set of
candidate projects that compete for a limited global budget. The budget allocation is
limited in the following ways: (i) if funded, each project i has to receive a minimum
amount, εi ∈ (0, 1], expressed as a percentage of the available budget (this is an
amount belowwhich the project could not yield successful results and it would thus not
make sense to include it in the portfolio); (ii) similarly, a project is maximally funded
with the amount originally requested, δi ∈ [εi , 1], also expressed as a percentage of
the available budget; (iii) the problem is further constrained by the decision makers’
option to include certain projects irrespective of their characteristics for strategic or
political reasons (this will be modeled by the binary variable qi , which will take
the value 1 whenever the project i has to be necessarily included); (iv) there is a
minimum (kmin) and a maximum (kmax ) number of projects that can be funded (these
threshold values are decided by the evaluation committee in advance to assure a certain
diversification level); and (v) the risk of the portfolio of selected projects cannot exceed
a given threshold, rmax , where the risk is calculated employing a traditional variance–
covariance matrix, σi j = σ j i , thus accounting for interdependences between projects
i and j .

Under these conditions, the projects are evaluated based on their net present value
(NPV), which is defined as the difference between the present value of future cash
inflows and the present value of future cash outflows. Since predicting future cash
flows might be subject to some degree of uncertainty—which will be higher as we
move further into the future–, these cash flows will be modeled as random variables.
When computing the NPV associated with a given cash flow, an interest rate is used
to transform future cash values into present ones. Since this interest rate might also
be subject to some uncertainty, we will model it as a random variable too (Fig. 1).
Notice that the use of random variables for modeling future cash flows as well as
the interest rate transform our COP into a stochastic one. In summary, under the
aforementioned constraints our main goal will be to maximize the expected NPV of
the project portfolio.

More formally, consider a set of n projects, P = {1, 2, . . . , n}, and a set ofm future
times, T = {1, 2, . . . ,m}. Let us assume that the actual cash flow generated by each
project is directly proportional to the quantity invested in it. Thus, for each i ∈ P and
for each t ∈ T , the actual cash flow of project i at time t will be given by Cit · xi ,

Fig. 1 Illustrative scheme of the stochastic PPSP
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where Cit is a random variable representing the potential cash flow when project i
receives the total requested funding and xi represents the actual investment in project
i (measured as a percentage of the total available budget). The periodical benefit of
project i at period t , Bit (xi ), is defined as the actual cash flow of project i at time t
adjusted by a random discount rate Rit , i.e.:

Bit (xi ) = Cit ·xi
(1+Rit )t

∀i ∈ P, ∀t ∈ T (1)

The net present value associated with each project i , Ni (xi ), is computed by adding
all the periodical benefits provided by the project over time, i.e.:

Ni (xi ) = ∑m
t=1 Bit (xi ) ∀i ∈ P (2)

Similarly, the net present value of an investment plan x = (x1, x2, . . . , xn), N (x),
is obtained as the aggregation of individual net present values, i.e.:

N (x) = ∑n
i=1 Ni (xi ) (3)

The goal is to find a project investment plan, x , that maximizes the expected net
present value, i.e.:

Max E[N (x)] = ∑n
i=1

∑m
t=1 E[Bit (xi )] (4)

Also, according to our previous discussion the following constraints apply:

∑n
i=1

∑n
j=1 σi j xi x j ≤ rmax (5)

∑n
i=1 xi = 1 (6)

0 ≤ xi ≤ 1 ∀i ∈ P (7)

0 ≤ εi ≤ δi ≤ 1 ∀i ∈ P (8)

zi ∈ {0, 1}∀i ∈ P (9)

εi zi ≤ xi ≤ δi zi ∀i ∈ P (10)

zi ≤ w · xi ∀i ∈ P (11)

qi ∈ {0, 1} ∀i ∈ P (12)

qi ≤ zi ∀i ∈ P (13)

kmin ≤ ∑n
i=1 zi ≤ kmax (14)

Constraint (5) quantifies and limits the risk exposure of the decision-maker. Equa-
tions (6) and (7) restrain the total investment to the available resources. Equation (8)
guarantees that the lower and upper bounds for each project are within the valid range.
The auxiliary variables zi are introduced in Eq. (9). The value of zi is 1 if project i
is actually included in the portfolio, and 0 otherwise. These binary variables are used
in Eq. (10) to guarantee that the investment in each project is within its bounds. In
the auxiliary equation (11), w is a very large positive value such that: if xi > 0 then

123



360 J. Panadero et al.

wxi ≥ 1. Equations (12) and (13) define and impose the pre-assignment constraints:
if the project i is pre-selected (i.e., qi = 1), it must be included in the solution (i.e.,
zi = 1) irrespective of its risk-return characteristics. Finally, the cardinality constraint
is provided in Eq. (14) to guarantee that the number of selected projects fits within the
allowed bounds.

4 Our simheuristic approach

In order to solve the stochastic and rich PPSP described in the previous section, a
simheuristic approach is proposed. It combines simulation techniques with an adap-
tive variable neighborhood search (VNS) metaheuristic—which also integrates an
acceptance criterion based on simulated annealing (SA). The metaheuristic compo-
nent itself relies on a constructive heuristic which employs biased randomization (BR)
techniques. Themain ideas behind each of these components are briefly explained next.
After that, the way these components are integrated in our approach is described.

4.1 Overview of the main components

As described in Juan et al. (2015a), simheuristics extend metaheuristics by intro-
ducing simulation techniques that assess the performance of promising solutions in
a stochastic environment: a selected subset of promising solutions generated by the
metaheuristic component are simulated in order to estimate its performance under a
stochastic environment. Usually, this performance is measured in terms of expected
value of some key indicator, but other statistics could be analyzed as well.

The main advantage of the VNS metaheuristic (Mladenović and Hansen 1997) lies
in the search systematically employing different neighborhood structures, rendering it
increasingly flexible within the solution space of the problem. This, in return, poten-
tially leads to better solutions compared to single-neighborhood-based local search
algorithms. Many extensions of VNS have been proposed, most of them oriented to
the solving of large-scale instances (Melián 2006; Moreno-Vega and Melián 2008;
Höller et al. 2008; Hansen et al. 2008).

The SA searching procedure is inspired by the process of physical annealing with
solids in which a crystalline solid is heated and then allowed to cool slowly until it
achieves its most regular possible crystal lattice configuration (Nikolaev and Jacobson
2010). In a classical SA, the search starts with a high temperature and higher chance
of transition to a worse solution that decreases as the search continues, thus reducing
the chance of transition (Azizi and Zolfaghari 2004). To avoid being trapped in a local
minimum, our algorithm makes use of an adaptive cooling schedule, which includes
the possibility of reheating.

Biased randomization (Juan et al. 2013; Grasas et al. 2017) is a mechanism to ran-
domize deterministic heuristics. Heuristics include at least one step in which a choice
has to be made, for instance, selecting an element from a sorted list. Employing BR,
instead of selecting the ‘most promising’ option, a probability is assigned to each
candidate option in such a way that the logic is maintained (i.e., the most promis-
ing options receive higher probabilities). Hence, different solutions may be built at
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each execution, some of which are expected to outperform the one provided by the
deterministic version.

Algorithm 1 VNS-based Simheuristic
1: initSol ← genInitSol(Inputs)% Initial solution stage (biased-randomized heuristic)
2: baseSol ← initSol
3: fastSimulation(baseSol) %Monte Carlo simulation
4: bestSol ← baseSol
5: nIter ← 0; temperature ← 0
6: while (nIter ≤ maxIter) do % VNS stage
7: k ← 1
8: while (k ≤ Kmax ) do
9: newSol ← shaking(baseSol, k) % biased-randomized heuristic
10: newSol ← localSearch(newSol)
11: if (existInCache(newSol)) then
12: newSol ← retrieveFromCache(newSol)
13: else
14: newSol ← localSolver(newSol)
15: addToCache(newSol)
16: end if
17: if (detNPV(newSol) - detNPV(baseSol) > 0) then
18: fastSimulation(newSol) %Monte Carlo simulation
19: if (stochNPV(newSol) - stochNPV(baseSol) > 0) then
20: baseSol ← newSol
21: if (stochNPV(newSol) - stochNPV(bestSol) > 0) then
22: bestSol ← newSol
23: end if
24: k ← 1
25: end if
26: else % SA-based acceptance criterion
27: temperature ← calculateTemperature
28: if (temperature ≥ Rand) then
29: baseSol ← newSol
30: k ← 1
31: else
32: k ← k + 1
33: end if
34: end if
35: end while
36: nIter ← nIter + 1
37: end while
38: deepSimulation(bestSol) % Refinement stage - Monte Carlo simulation
39: return bestSol

4.2 Algorithm description

Our approach is depicted in Algorithm 1, which is composed of three stages. In the
first stage, a feasible initial solution is constructed. Then, during the second stage,
an adaptive VNS metaheuristic enhances the initial feasible solution by iteratively
exploring the search space and conducting a short number of simulation runs in which
both cash flows and discount rates are randomly generated to estimate the expected
net present value. From this stage, a reduced set of promising solutions is obtained. In
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the third stage, an extended simulation experiment yields a more accurate estimate of
the expected NPV, as well as other statistics whenever required. The initial-solution
stage as well as the VNS stage are explained next in more detail.

Given the stochastic instance, we consider its deterministic counterpart obtained
after replacing the random variables by their expected values. In order to generate an
initial solution, ini t Sol, we randomly choose a valid size s for the project portfolio
(i.e., kmin ≤ s ≤ kmax and s ≥ ∑

qi ). First, the pre-selected projects are included
(Algorithm2). Then,we randomly select projects until a portfolio of size s is generated.
In order to set the weights of each project in this portfolio, we apply LocalSolver,
a powerful optimization software (http://www.localsolver.com). This software was
selected due to its ability to consider quadratic expressions as constraints, which is the
case of Eq. (5). The entire process is repeated until the randomly generated solution
satisfies all the constraints (i.e., until a feasible solution is obtained). Notice that, being
a project-investment plan, ini t Sol will be a feasible solution for both the deterministic
and the stochastic versions of the problem.

Algorithm 2 genInitSol(projectList, maxRisk, Kmin , Kmax )
1: feasibleSol ← false
2: initSol ← null
3: auxProjectList ← copyProjectList(projectList)
4: while (feasibleSol is false) do
5: s ← defineRandPortfolioSize(Kmin ,Kmax )
6: selectedProjects ← selectPreselectedProjects(projectList)
7: projectList ← removeProject(projectList, selectedProjects)
8: portfolio ← addProjectToPortfolio(portfolio, selectedProjects)
9: currentPortfolioSize ← getPortfolioSize(portfolio)
10: while ( currentPortfolioSize < s) do
11: project ← selectProjectRandomly(projectList)
12: projectList ← removeProject(projectList, project)
13: portfolio ← addProjectToPortfolio(project)
14: currentPortfolioSize ← currentPortfolioSize + 1
15: end while
16: initSol ← localSolver(portfolio)
17: if (satisfyConstraints(initSol, maxRisk) then
18: feasibleSol ← true
19: else
20: projectList ← copyProjectList(auxProjectList)
21: portfolio ← deletePortfolio(portfolio)
22: end if
23: end while
24: return initSol

In the second stage, the ini t Sol is improved using a VNS procedure. First, the
feasible ini t Sol is copied into baseSol and best Sol. Moreover, the size of the neigh-
borhood, k, is set to one and the SA-related temperature is set to zero. Then, a new
solution, newSol, is created by “shaking” the current one. This procedure consists
of randomly deleting a number of non pre-selected projects in the current portfolio
and then randomly introducing new projects. Each newSol is send to LocalSolver
to determine the appropriate investment weights. In order to avoid calling the solver
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more than strictly necessary, a cache memory is implemented –it stores, in a hash map
data structure, the weights assigned to previously analyzed project portfolios. Next,
newSol undergoes a local search phase in order to find the local minimum within the
defined neighborhood structure. In this local search phase, we randomly substitute
projects from the current portfolio by projects outside the portfolio. This replacement
is performed taking into account the risk-affinity between projects (i.e., the covariance
matrix), and a BR technique relying on a geometric distribution is employed (Juan
et al. 2015b). If newSol is promising in terms of deterministic NPV, then it is sent
through a fast simulation process, consisting of 200 runs, to estimate its associated
expected NPV under uncertainty. Whenever this expected NPV outperforms the one
of the baseSol and/or the one of the best Sol, these solutions are updated to newSol
and the process continues. Also, to reduce the odds of getting trapped in a local mini-
mum, an SA-like acceptance criterion is used to update baseSol with newSol in some
occasions even if newSol does not outperform baseSol.

Once theVNSstage ends, the algorithm returns a selected listwith of top 5 solutions.
For each of these solutions, we perform a more intensive simulation experiment,
consisting of 15, 000 runs, which provides a more accurate estimate of the expected
NPV. Notice that the outcomes of this simulation experiment can also be used to
complete a risk analysis on each proposed solution as well as to obtain other relevant
statistics—e.g., NPV quartiles associated with each investment plan, etc.

5 Computational experiments

The algorithm was implemented as a Java application and all experiments were per-
formed on a standard personal computer equipped with Intel Core i7 CPU at 2.9GHz
with 8GB of RAM memory. As operating system we have used Windows 8. In order
to test it, we created benchmark indexes with a set of 10 projects and the correspond-
ing required inputs. In a preliminary analysis, we identified a range of acceptable
risk levels, which, as similarly suggested for traditional portfolio optimization, we
then divided into 1000 equidistant points as risk constraint. The so-created bench-
marks differ in terms of their interdependence (correlation) between projects and are
deterministic. In this regard, we distinguish among six different instances. Instance 1
assumes 0 correlation among each pair of projects. Instance 2 assumes that each pair
of projects is correlated with the coefficient of 0.9. This coefficient is 0.5 for instance
3, −0.5 for instance 4, and -0.9 for instance 5. Finally, Instance 6 randomly gener-
ates the coefficients of correlation for each pair of projects. To evaluate the effects of
uncertainty on project portfolio selection, we make several reasonable distributional
assumptions about our stochastic variables Cit and Rit .

It is assumed that the cash flow of project i at time t , Cit , follows a normal distri-
bution N (μi t , σi t ), where μi t = E[Cit ] is the deterministic value for the cash flow of
project i at time t (given as an input), and σi t = γ · |μi t | · t . In the previous expression,
γ > 0 is an auxiliary parameter that is used to consider different variability levels in
our experiments (intra-period layer of uncertainty), while t accounts for the fact that
uncertainty grows as wemove forward in the future (inter-period layer of uncertainty).
In our experiments, we assume three different levels of intra-period uncertainty: low
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(γ = 1.05), medium (γ = 1.10), and high (γ = 1.15). For the purpose of our com-
putational experiments we have used a total of five periods, i.e., t ∈ {1, 2, 3, 4, 5}.
Similarly, it is assumed that the discount rate of project i at time t , Rit , follows a
normal distribution N (μ′

i t , σ
′
i t ), where μ′

i t = E[Rit ] is the deterministic value for the
discount rate of project i at time t (given as an input), and σ ′

i t = γ · |μ′
i t | · t . As in

the case of uncertain cash flows, the discount rate features two uncertainty layers, the
intra-period layer of uncertainty and the inter-period one. It is worth noting that our
methodology is robust to modification of the aforementioned distributional properties,
either theoretical or empirically based on real-life scenarios.

The algorithm is executed ten times with different seeds, storing only the best
solutions in each run. A maximum time of 150s was allowed for each execution. In
order to gauge the effect of uncertainty onproject portfolio selection,we carried out two
computational experiments. The first experiment considers deterministic instances,
while the second assumes stochastic cash flows and discount rates.

6 Analysis of results

In this sectionwe present and discuss the results obtained in two computational experi-
ments: Sect. 6.1 analyzes the results obtained for the deterministic version of the PPSP
(i.e., assuming deterministic cash flows and discount rates), while Sect. 6.2 discusses
the stochastic PPSP and shows that an optimal (or near-optimal) investment plan for
the deterministic scenario might be a suboptimal plan for the stochastic one.

6.1 Analyzing the deterministic PPSP

Figure 2 presents these results by instance. This figure sheds light on the relation
between the maximum risk constraint and the associated expected NPV for the six
instances.

Notice that relaxing the risk constraint leads to a higher average NPV. However,
several departures from this general finding stand out. First, the nature of the relation
between the expected NPV is also driven by the coefficient of correlation between
each pair of projects. Portfolios of projects that are highly correlated (instances 2
and 3) typically generate a lower expected NPV than portfolios of less correlated
projects (Instances 1, 4, and 5). Finally, Instance 6 also features positively correlated
projects, although based on randomly drawn coefficients of correlation. Specifically,
if the coefficient of correlation is high and the maximum allowed risk is low, then the
portfolio will be dominated by smaller projects that generate lower expected NPV.
Intuitively, the higher the correlation among the projects the more limiting is the
maximum risk constraint. To meet the maximum risk constraint, larger projects are
crowded out—or cannibalized—by smaller projects. As the coefficient of correlation
decreases, the expectedNPV increases for the same value of themaximumallowed risk
(due to a lower cannibalism effect). As anticipated, theNPVof the best-found portfolio
increases with an increased allowance of risk exposure for each of the instances.
Considering instances 4 and 5 (with negative correlations), it becomes clear that the
risk constraint—which is always defined as a positivemonetary value—does not affect
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Fig. 2 Results for the deterministic PPSP

the solution, and that a near-optimal solution is found in most cases. Similarly, it is
intuitive that the higher the correlation between projects, the more limiting the risk
constraint acts. This becomes visible when considering instance 2, which achieves
a lower or equal NPV for all levels of maximum risk compared to the remaining
instances. The jumps in the graphs of instances 1, 3, and 6 are due to the limited
number of potential projects, which causes projects with higher benefits to be included
only after a certain risk threshold.

6.2 Analyzing the stochastic PPSP

For instance 6 (random correlations), Table 1 presents the obtained results. The first
column shows the risk threshold considered (i.e., the maximum risk allowed by the
user).Column [DD] represents theNPVassociatedwith the best deterministic solution.
Columns [Dy] (with y ∈ {L , M, H}) show the expected NPV obtained when the best
deterministic solution is evaluated in the stochastic PPSP with the corresponding
level of uncertainty (L = low, M = medium, and H = high). Similarly, columns [Sy]
show the expected NPV obtained for the stochastic PPSP using the solution provided
by our simheuristic approach. Table 1 indicates that, in general, the (expected) NPV
increaseswith themaximum risk allowed, regardless of the solution type (deterministic
or stochastic). However, it is worth noting that the NPV-curve becomes flat after the
project portfolio reaches a certain risk treshold. For instance, when the risk threshold is
37,000 units, taking an additional unit of risk is not followed by a commensurate rise in
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the (expected) NPV. Furthermore, a deterministic solution evaluated in the stochastic
PPSP yields a lower expectedNPV than the corresponding stochastic solution obtained
with our simheuristic aproach. This finding suggests that using deterministic solutions
in a stochastic environment can lead to significant biases in project appraisal. Table 2
contains the gaps (measured as percentage difference) between [DD] and [Dy], and

Table 2 The gap between the DD solution and each of the other solutions (Instance 6)

Max. risk
(in thousands)

Deterministic Gaps (%)

[DD] [DD-DL] [DD-DM] [DD-DH] [DD-SL] [DD-SM] [DD-SH]

2 1154.84 4.70 9.06 10.64 4.01 5.64 6.33

3 1420.82 8.35 8.77 9.20 6.65 7.34 7.72

4 1642.84 7.01 7.37 7.72 1.26 2.36 3.90

5 1836.75 6.43 6.75 7.07 1.14 1.75 4.01

6 1992.29 6.40 6.72 7.05 0.71 1.75 4.12

7 2115.22 6.36 6.67 7.00 0.62 2.19 5.82

8 2252.14 5.87 6.16 6.46 0.06 2.32 5.74

9 2386.90 5.65 5.93 6.22 2.86 2.96 5.53

10 2512.24 5.39 5.66 5.93 3.12 3.44 5.67

11 2632.33 5.07 5.32 5.57 3.42 3.44 5.32

12 2744.81 4.90 5.14 5.39 2.74 3.50 4.75

13 2843.14 4.75 4.98 5.22 2.11 3.23 3.76

14 2935.72 4.63 4.86 5.09 1.52 2.89 3.10

15 3025.78 4.50 4.72 4.95 1.40 2.88 3.06

16 3111.63 4.40 4.61 4.83 4.02 4.20 4.59

17 3194.71 4.26 4.47 4.68 2.31 2.57 2.88

18 3275.17 4.17 4.37 4.58 2.40 3.08 3.68

19 3351.05 4.12 4.33 4.53 1.80 2.17 2.42

20 3426.18 3.99 4.19 4.39 1.51 1.84 2.41

21 3497.78 3.98 4.18 4.37 2.47 2.74 3.16

22 3554.55 3.87 4.06 4.25 3.62 3.98 4.12

23 3604.21 3.80 3.98 4.17 1.63 2.79 3.15

24 3666.31 3.70 3.88 4.06 1.15 1.32 1.66

25 3666.31 3.70 3.88 4.06 1.15 1.32 1.66

26 3666.31 3.70 3.88 4.06 1.15 1.32 1.66

27 3666.31 3.70 3.88 4.06 1.15 1.32 1.66

28 3666.31 3.70 3.88 4.06 1.15 1.32 1.66

29 3666.31 3.70 3.88 4.06 1.15 1.32 1.66

30 3666.31 3.70 3.88 4.06 1.15 1.32 1.66

31 3666.31 3.70 3.88 4.06 1.15 1.32 1.66

32 3666.31 3.70 3.88 4.06 1.15 1.32 1.66

33 3666.31 3.70 3.88 4.06 1.15 1.32 1.66
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Table 2 continued

Max. risk
(in thousands)

Deterministic Gaps (%)

[DD] [DD-DL] [DD-DM] [DD-DH] [DD-SL] [DD-SM] [DD-SH]

34 3666.31 3.70 3.88 4.06 1.15 1.32 1.66

35 3666.31 3.70 3.88 4.06 1.15 1.31 1.66

36 4454.73 2.42 2.54 2.66 0.96 1.06 1.25

37 4503.66 2.41 2.53 2.64 1.09 1.14 1.20

38 4503.66 2.41 2.53 2.64 1.09 1.14 1.20

39 4503.66 2.41 2.53 2.64 1.09 1.14 1.20

40 4503.66 2.41 2.53 2.64 1.09 1.14 1.20

41 4503.66 2.41 2.53 2.64 1.09 1.14 1.20

42 4503.66 2.41 2.53 2.64 1.09 1.14 1.20

43 4503.66 2.41 2.53 2.64 1.09 1.14 1.20

44 4503.66 2.41 2.53 2.64 1.09 1.14 1.20

45 4503.66 2.41 2.53 2.64 1.09 1.14 1.20

46 4503.66 2.41 2.53 2.64 1.09 1.14 1.20

47 4503.66 2.41 2.53 2.64 1.09 1.14 1.20

48 4503.66 2.41 2.53 2.64 1.09 1.14 1.20

49 4503.66 2.41 2.53 2.64 1.09 1.14 1.20

50 4503.66 2.41 2.53 2.64 1.09 1.14 1.20

Average 3.94 4.22 4.44 1.66 2.08 2.72

between [DD] and [Sy]. The gaps are always positive, which indicates that a higher
degree of uncertainty erodes the expected NPV of a project and hence drives wedge
between a deterministic and a stochastic solution. It is also worth noting than the gaps
between [DD] and [Dy] are larger than the gaps between [DD] and [Sy].

Figure 3 shows the box-plots of the aforementioned gaps between DD and Dy or
between DD and Sy (where y ∈ {L , M, H}). It is important to remark that these gaps
are always positive, meaning that the NPV in the deterministic PPSP can be seen as
an upper bound for the expected NPV in the stochastic PPSP –i.e., ceteris paribus, the
existence of uncertainty in the project selection problem reduces the average quality
of the NPV that can be attained. Indeed, the NPV is inversely related to the degree
of uncertainty. For a given expected NPV, a higher degree of uncertainty translates
into a larger standard deviation of a cashflow, and consequently the maximum risk
allowed goes up. However, such as a reduction larger if the existence of uncertainty
is ignored in the model. Also, note that these gaps grow with the uncertainty level:
eH box-plots are above eM box-plots, which in turn are above eL box-plots, (where
e ∈ {D, S}). Finally, it can be noticed that the expected NPV associated with the use of
the best-deterministic solution in a stochastic environment acts as a lower-bound for
the optimal value in the stochastic environment, i.e.: our solutions for the stochastic
PPSP always outperform the expected NPV generated by using the best-deterministic
solution in a stochastic environment. This observation not only adds credibility to the
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Fig. 3 Boxplots of gaps w.r.t. the best solution for the deterministic PPSP (DD)

quality of our algorithm but also illustrates that using the best deterministic solution in
a stochastic environment might be a bad decision since it usually provides sub-optimal
values.

Finally, Fig. 4 shows that: (i) as the maximum risk allowed increases, the prob-
lem becomes less constrained and, therefore, the stochastic solutions get closer to
the deterministic ones; and (ii) for each risk level, gap obtained from our stochastic
solutions [DD-Sy] are lower than those obtained from our deterministic solutions in
a stochastic environment [DD-Dy].

6.3 Exploring a multi-objective scenario

In multi-objective optimization two or more conflicting goals are considered. This
subsection explores the optimization of a bi-objective PPSP model, where the NPV
associated with an investment plan is maximized (first goal) while, at the same time, its
risk is minimized (second goal). Such a setting resembles Rooderkerk and van Heerde
(2016), who have sought to balance risk and return, albeit in a specific retail-assortment
related optimization problem. Importantly, a two-objective optimization problem can
now be tailored to capture a varying degree of risk aversion of the decision maker.

In order to address this multi-objective scenario, we make use of the multi-
directional local search (MDLS) method, which was introduced by Tricoire (2012).
This method relies on the concept of Pareto dominance. A neighbor solution x ′ of
x is efficient if x ′ is better than x for at least one objective. Hence, to find efficient
neighbor solutions of x, it is sufficient with searching one direction at a time using
single-objective local search methods.
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Fig. 4 Gaps [DD-ey] versus MaxRisk allowed (where ‘ey’ represents different solutions)

The MDLS requires an initial set F of non-dominated solutions to start an iterative
procedure. As initial set, we have used the set F containing the top five stochastic non-
dominated solutions generated by our VNS-based Simheuristic. At each iteration, a
solution x from F is randomly selected and then, for each objective, a corresponding
local search method is employed to generate a neighbor solution x ′.

The single-objective local searches employed in this stage are the ones already
described in the previous section. First, we use biased randomization to exchange
projects from the current portfolio by projects outside the portfolio. This replacement
is performed taking into account the risk-affinity between projects. Then, the newly
generated solution is sent to the commercial LocalSolver software, which determines
the appropriate weights of the investment. We execute LocalSolver twice, once for
each goal. Thus, during the first iteration the LocalSolver tries to maximize the NPV,
while during the second one it is focused on minimizing the investment risk. Finally,
at the end of each local search, a simulation process is carried out in order to estimate
the NPV under uncertainty.

After that, the non-dominated set F is updated by merging solutions in F with
the new neighbor solutions that have been provided by the local searches. To merge
solutions the dominance rule is used, i.e.: all dominated solutions are deleted from F.
Thewhole procedure is repeated until a maximum-allowed computing time is reached.
At this point, the MDLS returns the set F of mutually non-dominated solutions.

Figure 5 shows a Pareto chart with the results obtained after executing the MDLS
method for instance 6. Here, a maximum risk of 21,000 was allowed, and a medium
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Fig. 5 Pareto frontier for instance 6

(γ = 1.10) level of uncertainty was considered. This chart shows the Pareto frontier of
non-dominated solutions for this particular scenario. Notice that there is a strong rela-
tionship between the two objective functions. As the NPV increases—thus obtaining
a higher return of the investment plan—the risk also increases.

7 Conclusions and future work

As far as we know, this is the first work addressing the relevant problem ofmaximizing
net present value in project portfolio selection problem (PPSP) under uncertainty
and rich conditions. In the stochastic version of the PPSP discussed here, both the
periodical cash flows as well as the discount rates are modeled as random variables,
which represents a step forward with regards traditional approaches in which they are
assumed to be deterministic and known in advance. Since real-life financial activities
underlie plenty of uncertainty, adding randomness to these elements contributes to
diminish the gap between theory and practice.

After completing a literature review on related work and providing a formal model
for the stochastic PPSP,wepropose a simheuristic approach toobtain efficient solutions
to it. Our algorithm integrates Monte Carlo simulation inside a variable neighborhood
search framework. The algorithm also uses other components inspired in simulated
annealing and biased-randomization techniques. A series of computational experi-
ments allow us to validate the solving methodology. Notice that, despite we have
assumed specific probability distribution and covariance matrices during the numer-
ical experiments, our methodology is general and it could be used with any other
probability distribution and covariances (in practice, data should be collected for each
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case-study and thenmodeled using the right probability distribution, correlation values
among projects, etc.).

Our research findings are as follows. First, we find that a relation between the
expected NPV and risk is not necessarily linear. Indeed, the presence of cardinality
and quantity constraints generate non-linearities in the risk-return relation. Second,
project interdependencies—as measured by the correlation between cash-flows from
two projects—can be regarded as a limit to the volume of projects that can be included
in a portfolio. Third, a near-optimal solution to the deterministic PPSP is generally sub-
optimal in a stochastic environment. Fourth, a near-optimal solution to the stochastic
PPSP gives rise to a higher (expected) NPV than a near-optimal solution to the deter-
ministic PPSP evaluated in a stochastic environment.

As research lines for futurework, it would beworthy to explore the following topics,
which represent limitations of our current work: (i) interdependencies can be defined
as effects that dynamically influence risk and/or benefit figures of the project portfo-
lio based on the constituent projects; (ii) although this paper has already explored a
bi-objective extension of our single-objective approach, developing a complete multi-
objective model and solving methodology can be of great interest for both researchers
and practitioners; and (iii) other metaheuristic frameworks (e.g.: tabu search, simu-
lated annealing, genetic algorithms, etc.) could be used as a base for our simheuristic
approach, thus comparing the performance of different approaches.
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