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Abstract This paper addresses the max–min ki -partitioning problem that asks for an
assignment of n jobs to m parallel machines so that the minimummachine completion
time ismaximized and the number of jobs on eachmachine does not exceed amachine-
dependent cardinality limit ki (i = 1, . . . , m). We propose different preprocessing as
well as lifting procedures and derive several upper bound arguments. Furthermore, we
introduce suited construction heuristics as well as an effective dynamic programming
based improvement procedure. Results of a comprehensive computational study on
a large set of randomly generated instances indicate that our algorithm quickly finds
(near-)optimal solutions.

Keywords Parallel machines · Cardinality limits · Preprocessing · Upper bounds ·
Dynamic programming

1 Introduction

1.1 Problem definition

In this paper we investigate the max–min ki -partitioning problem where we are given
a set M of m ≥ 2 parallel machines, each having an associated machine-dependent
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cardinality limit ki (i = 1, . . . , m) on themaximal number of jobs that canbeprocessed
bymachine i , and a setJ ofn jobs (m < n ≤ ∑m

i=1 ki )with positive integer processing
times p j ∈ N ( j = 1, . . . , n). Let Ci denote the completion time of machine i
(i = 1, . . . , m), which is simply defined as the sum of the processing times of all jobs
assigned to i , the objective is to find an assignment (or schedule) that maximizes the
minimum machine completion time Cmin = min {C1, . . . , Cm} without exceeding the
cardinality limits. Without loss of generality, we assume the jobs and the machines
to be labeled so that p1 ≥ p2 ≥ · · · ≥ pn > 0 and 0 < k1 ≤ k2 ≤ · · · ≤ km ,
respectively.

Introducing binary variables xi j which take the value 1 if job j is assigned
to machine i and 0 otherwise, a straightforward formulation of the max–min ki -
partitioning problem as an integer linear program consisting of objective function
(1) subject to (2)–(5) is provided below.

Maximize Cmin (1)

s.t.
n∑

j=1

p j · xi j ≥ Cmin i = 1, . . . , m (2)

m∑

i=1

xi j = 1 j = 1, . . . , n (3)

n∑

j=1

xi j ≤ ki i = 1, . . . , m (4)

xi j ∈ {0, 1} i = 1, . . . , m; j = 1, . . . , n (5)

Objective function (1) maximizes the minimum machine completion time Cmin,
which is determined by inequalities (2). Constraints (3) ensure that each job is assigned
to exactly onemachine and constraints (4) represent themachine-dependent cardinality
limits (also referred to as cardinality constraints). Finally, the domains of the binary
variables are set by (5).

Obviously, the max–min ki -partitioning problem is a generalization of the classical
machine covering problem P||Cmin which is obtained by dropping constraints (4) or,
equivalently, by setting ki = n for all i (i.e. (4) become redundant). Since problem
P||Cmin is well-known to beNP-hard (cf. Haouari and Jemmali 2008), its generalized
version with a limited number of jobs per machine is NP-hard, too.

As mentioned by Dell’Amico et al. (2006), a possible application of ki -partitioning
problems arises for instance in the context of Flexible Manufacturing Systems. Here,
n is the number of different types of operations, p j represents the total time required
to execute all operations of type j (which have to be assigned to the same cell), m is
the number of cells, and ki represents the capacity of the specific tool magazine of
cell i , i.e. ki restricts the number of types of operations cell i can perform. Another
possible application arises in the context of fairly distributing investment projects
among different regions (cf. Haouari and Jemmali 2008). Here, the task is to allocate
n projects with individual revenues p j tom regions so that theminimal total revenue of
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the regions is maximized. If we assume the regions to have individual (staff) capacities
to manage and administrate the allocated projects, ki represents the maximum number
of projects that can be handled by region i .

1.2 Literature review

To the best of the authors’ knowledge, specific literature on parallel machine schedul-
ing problems with (machine-dependent) cardinality limits is rather rare. In particular,
so far there exists only one contribution to the ki -partitioning problem with the objec-
tive of maximizing the minimum completion time. The contribution stems from He
et al. (2003) who proposed an approximation algorithm (called HARMONIC2) and
studied its worst-case ratio. He et al. (2003) also treated the case where the cardinality
limits of themachines are identical, i.e. ki = k for all i = 1, . . . , m. The corresponding
problem is called k-partitioning. Chen et al. (2002) analyzed the worst-case perfor-
mance of a modified LPT algorithm for 3-partitioning and a variant called Kernel
3-partitioning.

When the objective of maximizing the minimum completion time is altered into the
more popular minimization of the maximum completion time (i.e. the makespan), we
noticed just three contributions that address machine-dependent cardinality limits ki .
The first one is due to Dell’Amico et al. (2006) who provided reduction criteria, lower
bounding procedures, and a scatter search algorithm. In the second contribution, Zhang
et al. (2009) used an extension of Jain’s Iterative Rounding Method to obtain a poly-
nomial time 3-approximation algorithm. The third contribution stems from Kellerer
and Kotov (2011) who presented an elementary 3/2-approximation algorithm whose
running time is linear in n.

Considering machine-independent cardinality limits, i.e. ki = k (i = 1, . . . , m), a
fewmore papers exist. In their extensive study on theNP-hard k-partitioning problem,
Babel et al. (1998) derived different lower bound arguments and introduced several
approximation algorithms along with their worst-case behaviors. Dell’Amico and
Martello (2001) developed further lower bounding procedures and investigated their
worst-case performances. In a follow-up paper, Dell’Amico et al. (2004) introduced
heuristic and metaheuristic solution procedures such as a scatter search algorithm and
they compared their computational performances with a branch-and-bound algorithm.
In the special case k = 3, Kellerer andWoeginger (1993) analyzed the worst-case per-
formance of a modified version of the LPT algorithm and Kellerer and Kotov (1999)
introduced a 7/6-approximation algorithm. The complexity of Kernel 3-partitioning
and the worst-case performance of a modified LPT algorithm have been examined
by Chen et al. (1996). Besides, Woeginger (2005) established the existence of a fully
polynomial time approximation scheme (FPTAS) for the special case m = 2.

Regarding the balanced variant of the identical parallelmachine scheduling problem
with minimum makespan objective, i.e. where each ki either equals �n/m� or �n/m�,
Tsai (1992) developed a heuristic algorithm for the case m = 2 and analyzed its
asymptotic behavior. Tsai proved that the absolute difference between the optimal
makespan and the heuristic makespan is bounded by O(log n/n2), almost surely,
when the processing times are independently drawn from a uniform distribution on
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[0, 1]. Also for m = 2, Mertens (1999) proposed a complete anytime algorithm.
Michiels et al. (2012) investigated the worst-case performance of Karmarkar and
Karp’s Differencing Method. They proved that the performance ratio is precisely
2 − 1/m for any fixed m ≥ 2. When k is given instead of m, they showed that
2−∑k−1

i=0 i !/k! is a lower bound and 2−1/(k−1) is an upper bound on the performance
ratio for any fixed k. By means of a novel approach in which the ratios are explicitly
calculated using mixed integer linear programming, Michiels et al. also proved that
their lower bound is tight for k ≤ 7.

Returning to the objective of maximizing the minimum completion time, we finish
our literature reviewwith a selection of substantial contributions to the problemversion
where no cardinality limits are present, i.e. P||Cmin. Problem P||Cmin has been first
mentioned in Friesen and Deuermeyer (1981) and Deuermeyer et al. (1982) derived a
bound on the worst-case performance of the LPT algorithm. Later, Csirik et al. (1992)
tightened this bound. Woeginger (1997) presented a polynomial-time approximation
scheme (PTAS), and Haouari and Jemmali (2008) provided an exact branch and bound
algorithm along with tight upper and lower bounding procedures. Recently, Walter
(2013) examined the performance relationship between the LPT algorithm and its
restricted version RLPT and Walter et al. (2017) developed improved approaches to
the exact solution of P||Cmin including novel dominance rules and newupper bounding
procedures.

1.3 Contribution and paper structure

Motivated by the research gap in the field of upper and lower bounding procedures for
the max–min ki -partitioning problem where Cmin is to be maximized, in this paper we
provide new theoretical insights into the problem and propose different approaches
towards its efficient solution. Our first major contribution concerns the cardinality
limits for which we present procedures to tighten them. Here, we do not only focus
on the explicitly given upper limits but also on the derivation of tight (implicit) lower
cardinality limits. Secondly, we derive several upper bound arguments and two lifting
procedures to tighten the bounds. Eventually, suited solution algorithms—such as fast
LPT-based construction heuristics, an exact dynamic programming approach to solve
the two-machine case, and a well-performing local search improvement algorithm for
multiple machines—constitute the third part of our contribution.

The remainder of the paper is organized as follows. In Sect. 2, we present methods
to preprocess a given problem instance. Lifting as well as upper bounding proce-
dures are developed in Sect. 3. Then, Sect. 4 introduces tailor-made construction and
improvement heuristics, whose computational performance is tested in a comprehen-
sive computational study (Sect. 5). Finally, Sect. 6 concludes the paper with a brief
summary and ideas for future research.

2 Preprocessing

Preprocessing is a proved means to reduce the size of a problem instance, and thus
the solution space, often resulting in tighter bounds and an enhanced performance of
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algorithms in terms of solution quality and/or computation time. In this section,we pro-
vide two different approaches to preprocess instances of the max–min ki -partitioning
problem. While the first one aims at tightening the cardinality limits of the machines
(Sect. 2.1), the second one intends to reduce the dimension of the problem by elimi-
nating machines and jobs in advance (Sect. 2.2).

2.1 Tightening the cardinality limits

As the sum of the cardinality limits
∑m

i=1 ki can be greater than the number of jobs
n (cf. Sect. 1), there is basically some potential to tighten the explicitly given upper
limits ki on the maximal number of jobs that can be processed by machine i . At the
same time, lower limits li on the minimal number of jobs that have to be processed
by machine i in any feasible schedule can be derived. Clearly, since we assume that
n > m, in an optimal solution none of the machines will remain empty, i.e. we are
implicitly given lower limits li = 1 (i = 1, . . . , m). In what follows, we show how to
make use of the upper cardinality limits to tighten the lower cardinality limits and vice
versa. Later on, in Sects. 3 and 4, the enhanced cardinality limits will not only help
us to establish tight upper bounds on the optimal objective value but also to generate
high-quality solutions.

To shorten notation, for 1 ≤ i1 ≤ i2 ≤ n we define

Ki1,i2 = min

⎧
⎨

⎩

i2∑

s=i1

ks, n −
i1−1∑

s=1

ls −
m∑

s=i2+1

ls

⎫
⎬

⎭
,

Li1,i2 = max

⎧
⎨

⎩

i2∑

s=i1

ls, n −
i1−1∑

s=1

ks −
m∑

s=i2+1

ks

⎫
⎬

⎭
(6)

and set Ki1,i2 = Li1,i2 = 0 in case i1 > i2. It is readily verified that Ki1,i2 represents
themaximumnumber of jobs that can be processed by themachine-subset {i1, . . . , i2}:
While the first term (

∑i2
s=i1

ks) is due to their individual upper cardinality limits, the
second term takes into account that the remaining machines have to process at least
∑i1−1

s=1 ls +∑m
s=i2+1 ls jobs in order to satisfy their lower limits. Using a similar argu-

ment reveals that Li1,i2 gives the minimum number of jobs that have to be processed
on {i1, . . . , i2}.

Having in mind that in each feasible solution at most Ki,m jobs will be assigned
to the last m − i + 1 machines, there exists at least one machine in {i, . . . , m} which
cannot process more than

⌊
Ki,m/(m − i + 1)

⌋
jobs. Moreover, since at most Ki,q

(i ≤ q ≤ m) jobs will be assigned to q − i + 1 machines {i, . . . , q}, there exists at
least one machine among them which cannot process more than

⌊
Ki,q/(q − i + 1)

⌋

jobs. In conjunction with the initial non-decreasing order of the machines according to
their cardinality limits (i.e. k1 ≤ k2 ≤ · · · ≤ km), this leads to the following decreased
upper cardinality limits
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ki = min
q=i,...,m

{⌊
Ki,q

q − i + 1

⌋}

, i = 1, . . . , m. (7)

Note that if Ki,q <
∑q

s=i ks for at least one q ∈ {i, . . . , m}, then the upper limit
of machine i can be decreased according to (7). In particular, for the first machine we
receive k1 ≤ �n/m� which is already quite clear from the fact that not every machine
can process more than �n/m� jobs.

Analogously, since the i −q+1machines {q, . . . , i} process at least Lq,i jobs, there
will be at least one machine among them which processes at least

⌈
Lq,i/(i − q + 1)

⌉

jobs. Thus, increased lower cardinality limits are

li = max
q=1,...,i

{⌈
Lq,i

i − q + 1

⌉}

, i = 1, . . . , m. (8)

Another option to increase the lower and to decrease the upper cardinality limits,
respectively, is described in Walter et al. (2017). Given a valid lower bound LB (see
Sect. 4) on the optimal minimum completion time C∗

min, any improving solution has
to process at least l̄

l̄ = argmin
h=1,...,n

⎧
⎨

⎩

h∑

j=1

p j > LB

⎫
⎬

⎭
(9)

jobs on each machine, i.e li = max
{
li , l̄
}
(i = 1, . . . , m). On the other hand, in an

improving solution no machine can process more than

k̄ = argmax
h=1,...,n

⎧
⎨

⎩

n∑

j=n−h+1

p j ≤ C̄

⎫
⎬

⎭
(10)

jobs, i.e. ki = min
{
ki , k̄

}
(i = 1, . . . , m), where

C̄ = argmax
C∈N

{⌊∑n
j=1 p j − C

m − 1

⌋

> LB

}

.

Note that if a machine’s completion time exceeds C̄ , then it is not possible that each
of the remaining m − 1 machines runs longer than LB.

Taking into account that a job will not be processed by more than one machine, an
enhanced version of (9) is

l̄i = argmin
h=1,...,n−i+1

⎧
⎨

⎩

h+i−1∑

j=i

p j > LB

⎫
⎬

⎭
(11)

and we obtain li = max
{
li , l̄i

}
(i = 1, . . . , m). The idea of disregarding the largest

i − 1 jobs when computing enhanced li -values bases upon the lifting procedure as
described in Sect. 3.1 (see proof of Theorem 3.1). Analogously,
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k̄m−i+1 = argmax
h=1,...,n−i+1

⎧
⎨

⎩

n−i+1∑

j=n−h−i+2

p j ≤ C̄

⎫
⎬

⎭
(12)

leads to tightened ki -values by setting km−i+1 = min
{
km−i+1, k̄m−i+1

}
(i =

1, . . . , m). Note that if L1,m > n or K1,m < n after application of (9)–(12), then
we immediately obtain that LB equals the optimal objective value.

Remark 2.1 Assuming that the machines are sorted according to non-decreasing ki -
values and initializing the lower limits with li = 1, application of (7)–(12) will
maintain the order of the machines, i.e. we still have k1 ≤ · · · ≤ km and l1 ≤ · · · ≤ lm .

2.2 Reduction criteria

Reduction criteria play a crucial role when it comes to reduce a problem’s size (or
dimension) and thus the solution space. We start with a straightforward reduction
criterion that has already been stated in Dell’Amico et al. (2006).

Criterion 2.2 If k1 = · · · = kh′ = 1 < kh′+1, then there exists an optimal solution in
which job 1 is processed by machine 1, job 2 by machine 2,…, and job h′ by machine
h′.

Our other two criteria exploit the lower cardinality limits and require a valid upper
bound (denoted by UB) on C∗

min. Further details on how to compute upper bounds are
to be found in Sect. 3.

Criterion 2.3 If the sum of the smallest lm processing times is greater than or equal
to UB, then there exists an optimal solution in which machine m solely processes the
jobs {n − lm + 1, . . . , n}.

Clearly, if the condition stated in Criterion 2.3 is met, we can reduce the dimension
of the problem to m − 1 machines and n − lm jobs by fixing the assignment of the
shortest lm jobs tomachinem in advance. Afterward, we can check if Criterion 2.3 also
applies to the reduced problem. If this is the case, the problem’s dimension reduces
further. This process can be iterated until the condition is no longer fulfilled.

There are two minor drawbacks of the latter approach. First, within each iteration
only a single machine is considered and second, the process immediately stops as soon
as the condition stated in Criterion 2.3 is not fulfilled any longer. So, if for instance the
sum of the smallest lm processing times is already smaller than UB, then the criterion
cannot be applied at all. To overcome these shortcomings, we propose an enhanced
iterative reduction procedure as depicted in Fig. 1. In iteration i , we consider the i
machines with the largest lower cardinality limits simultaneously. According to their
lower limits, these machines have to process at least Lm−i+1,m jobs in total. Selecting
the shortest Lm−i+1,m jobs, we compute a lower bound (e.g. by application of one of
our procedures introduced in Sect. 4) on C∗

min for the corresponding partial problem
(denoted by P P({m − i + 1, . . . , m} ,

{
n − Lm−i+1,m + 1, . . . , n

}
)). All in all, the

procedure seeks the largest i so that the respective lower bound is at least as large as
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Fig. 1 Reduction procedure 1

UB. Then, clearly, we can feasibly reduce the dimension of the problem by removing
the machines m, m − 1, . . . , m − i + 1 and the shortest Lm−i+1,m jobs. A similar
reduction procedure for the “dual” ki -partitioning problem with makespan objective
is used in Dell’Amico et al. (2006).

For problem P||Cmin, Walter et al. (2017) used another trivial reduction criterion
which removes a machine and a job if the corresponding processing time is already
greater than or equal to UB. Taking the cardinality constraints into account leads us
to the following enhanced version of their criterion.

Criterion 2.4 If the sum of the largest processing time p1 and the smallest l1 − 1
processing times is greater than or equal to UB, then there exists an optimal solution
in which the first machine solely processes the jobs {1, n − l1 + 2, . . . , n}.

The correctness of Criterion 2.4 is readily verified. As the longest job has to be
processed by any machine and all lower cardinality limits are greater than or equal to
l1, the machine that processes job 1 has to process at least l1 − 1 other jobs as well.
Thus, its completion time will be at least as large as p1 +∑l1−1

i=1 pn−i+1. Clearly, if
the completion time is already greater than or equal to UB, then it is not meaningful to
assign any other jobs than the shortest l1 − 1 ones to the machine which processes job
1. As a consequence, the dimension of the problem can be reduced by one machine
and l1 jobs.

It is quite obvious, that Criterion 2.4 can also be repeatedly applied in a straight-
forward manner. However, this raises the same issues as with Criterion 2.3 so that
here, too, we propose an enhanced iterative procedure as shown in Fig. 2. This time, in
iteration i , we simultaneously consider the first i machines, i.e. the oneswith the small-
est li -values, the i largest jobs, and the L1,i − i shortest jobs. For the corresponding
partial problem (denoted by P P

({1, . . . , i} ,
{
1, . . . , i, n − L1,i + i + 1, . . . , n

})
) a

lower bound on C∗
min is determined. The procedure seeks the largest i so that the

respective lower bound is greater than or equal to UB and removes the machines
1, . . . , i and the jobs 1, . . . , i, n − L1,i + i + 1, . . . , n.
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Fig. 2 Reduction procedure 2

3 Bounding the optimal objective value

In this section we are concerned with methods to bound the optimal objective value
of the max–min ki -partitioning problem from above. Specifically, we introduce two
lifting procedures (Sect. 3.1) and derive several upper bound arguments (Sect. 3.2).
The lifting procedures are used to tighten the upper bounds which in turn help us to
benchmark our heuristics (see Sect. 4) when optimal solutions are not available.

3.1 Lifting procedures

The basic rationale behind lifting is to identify partial problem instances P P(M, J )

of a given instance (M,J ) where M ⊆ M, J ⊆ J , and the optimal objective
value of P P(M, J ) is greater than or equal to the optimal value of the given (initial)
instance. Then, by application of upper bounding procedures to P P(M, J ) we also
obtain upper bounds on the optimal value of the initial instance. Clearly, themore (non-
trivial) partial problems we identify, the more likely we obtain a tighter upper bound
for the initial instance. For this purpose, we next describe two specific approaches
(cf. Corollaries 3.2 and 3.3) to determine a set P(M,J ) of partial problem instances
P P(M, J ) satisfying the previously mentioned properties.

The first one uses the fact that the i longest jobs (i ≤ m − 1) cannot be assigned
to more than i machines and the remaining jobs will be assigned to at least m − i
machines. For the computation of a feasible upper bound, the remaining jobs can be
assumed to be assigned to the m − i machines with the largest upper cardinality limits.
Formally, we obtain the following theorem.

Theorem 3.1 For all i = 1, . . . , m, the partial instance P P({i, . . . , m} ,
{
i, . . . , i

+ Ki,m − 1
}
) is an element of P(M,J ).

Proof Since a job cannot be split among different machines, in any feasible schedule
the longest i − 1 jobs will be assigned to at most i − 1 machines. Hence, there
exist at least m − i + 1 machines which do not process any of the first i − 1 jobs.
The maximum number of jobs that can be assigned to m − i + 1 machines is Ki,m

which is obviously obtained by considering the last m − i + 1 machines. Thus, the
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objective value of the optimal assignment of the job-set {i, . . . , i + Ki,m − 1} to
the machine-set {i, i + 1, . . . , m} constitutes an upper bound for the initial problem,
i.e. P P({i, . . . , m} ,

{
i, . . . , i + Ki,m − 1

}
) ∈ P(M,J ). �


A generalization of Theorem 3.1 is provided by the next corollary.

Corollary 3.2 For all pairs (i1, i2) where 1 ≤ i1 ≤ i2 ≤ m, the partial instance
P P({i1, . . . , i2}, {i1, . . . , i1 + Ki1,i2 − 1}) is an element of P(M,J ).

Proof Clearly, the machine-set {i1, . . . , i2} can process at most Ki1,i2 jobs in total.
According to Theorem 3.1, there exists an optimal solution in which none of
the jobs 1, . . . , i1 − 1 is assigned to a machine whose index is greater than
i1 − 1. So, the Ki1,i2 longest remaining jobs that can be processed on {i1, . . . , i2}
are

{
i1, . . . , i1 + Ki1,i2 − 1

}
. Optimally assigning this job-set to the machine-set

{i1, . . . , i2} yields an upper bound on the objective value of the initial instance,
i.e. P P({i1, . . . , i2} ,

{
i1, . . . , i1 + Ki1,i2 − 1

}
) ∈ P(M,J ). �


Our second lifting procedure is based on the following result by Haouari and Jem-
mali (2008) which proved to be effective in lifting P||Cmin-upper bounds: In any
feasible P||Cmin-schedule there exists at least a set of i machines (i = 1, . . . , m) on
which in total at most

μi (n, m) = i �n/m� + max {0, n − m(�n/m� + 1) + i} (13)

jobs are processed. Equation (13) is readily obtained when a “cardinality-balanced”
schedule is considered in which the numbers of jobs assigned to the machines are as
equal as possible, i.e. each machine processes either �n/m� or �n/m� jobs. However,
as such a schedule might not be realizable when cardinality limits have to be taken into
account, there is some potential to tighten Eq. (13). In that regard, observe that when
the first i − 1 machines process their maximal number of K1,i−1 jobs and the upper
cardinality limit ki of the next machine is smaller than or equal to the average number
of jobs � n−K1,i−1

m−(i−1) � on the remaining machines i, . . . , m, then the first i machines can
process at most K1,i jobs instead of μi (n, m). It is not difficult to see that K1,i is
smaller than (or equal to) μi (n, m). We let ρ denote the maximum machine index so
that the aforementioned inequality is fulfilled, i.e.

ρ = argmax
i=1,...,m

{

ki ≤
⌊

n − K1,i−1

m − (i − 1)

⌋}

. (14)

Note that ρ is well-defined: For any instance of the max–min ki -partitioning problem
we have ρ ≥ 1 because k1 ≤ �n/m�. Then, given k = (k1, . . . , km), in any feasible
schedule there exists at least a set of i machines (1 ≤ i ≤ m) on which in total at most

μ̄i (n, m, k) =
{

K1,i , if i ≤ ρ

K1,ρ + μi−ρ(n − K1,ρ, m − ρ), otherwise
(15)
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jobs are processed. This is a tighter version of Eq. (13), i.e. μ̄i (n, m, k) ≤ μi (n, m)

for all n, m, k, and i . Considering the first i machines and the longest μ̄i (n, m, k) jobs
directly yields the following corollary.

Corollary 3.3 For all i = 1, . . . , m, the partial instance P P({1, . . . , i}, {1, . . . , μ̄i

(n, m, k)}) is an element of P(M,J ).

Note that for i ≤ q the partial instances considered in Corollary 3.3 are identical with
the ones in Corollary 3.2 for i1 = 1 and i2 = i .

In sum, we have identified O(m2) partial instances (cf. Corollaries 3.2 and 3.3)
whose optimal objective values represent upper bounds on the optimal objective value
of the given instance. However, as each partial instance itself represents an instance
of the max–min ki -partitioning problem we can combine the two lifting procedures,
meaning Corollary 3.2 can also be applied to each partial instance obtained from
Corollary 3.3 and vice versa. This way, O(m3) partial instances are received. Prelim-
inary tests revealed that application of Corollary 3.3 to each partial instance obtained
from Corollary 3.2 performs slightly better than the other way around.

Before we proceed to the development of upper bounding procedures we want to
emphasize once again that it is not necessary to optimally solve the identified partial
instances. Instead, application of upper bounding procedures to the partial instances
is sufficient to potentially tighten the upper bound on C∗

min of the initial instance.

3.2 Upper bounding procedures

We also derive several upper bound arguments. At first note that any upper bound
for P||Cmin (cf., e.g., Haouari and Jemmali 2008; Walter et al. 2017) is also valid
for our max–min ki -partitioning problem. However, as these bounds disregard the
cardinality constraints, we will not only consider bounds adapted from P||Cmin but
mainly introduce new upper bounds that explicitly take into account the additional
constraints on theminimumaswell asmaximumnumber of jobs that can be assigned to
eachmachine. Inwhat follows, we present all of our upper bounds in theirmost general
form, i.e. their computation does not require the application of our preprocessing
procedures (see Sect. 2) in advance.

We begin with two simple bounds. The first one is an immediate consequence of
Criterion 2.2 (see Sect. 2.2). Recalling that a machine whose upper cardinality limit
equals 1 should process the overall longest available job,

UB0 = ph′ (16)

where h′ = argmaxi=1,...,m{ki = 1} constitutes a trivial upper bound. Note also that
UB0 is the optimal objective if there exists a feasible, but not necessarily optimal,
assignment of the remaining jobs to the remaining machines so that each of these
machines runs at least as long as UB0.

Solving the continuous relaxation of P||Cmin (i.e. (1)–(3) and (5) replaced by 0 ≤
xi j ≤ 1 for i = 1, . . . , m and j = 1, . . . , n) yields the second straightforward upper
bound:
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UB1 =
⌊∑n

j=1 p j

m

⌋

. (17)

Since UB1 is easy to compute, application of our two lifting procedures (cf. Sect. 3.1)
is to be recommended. If both procedures are combined as described at the end of
Sect. 3.1, then the resulting lifted bound is

ŨB1 = min
1≤ i1 ≤ i2 ≤ m

⎧
⎨

⎩
min

i=1,...,i2−i1+1

⎧
⎨

⎩

⎢
⎢
⎢
⎣

∑i1+μ̄i (Ki1,i2 ,i2−i1+1,k)−1
j=i1

p j

i

⎥
⎥
⎥
⎦

⎫
⎬

⎭

⎫
⎬

⎭
. (18)

Note that ŨB1 ≤ UB1 and, if Criterion 2.2 is not applied in advance, we also have
that ŨB1 ≤ UB0.

At this point, we shall remark that one can also solve the continuous relaxation
of the max–min ki -partitioning problem instead of its unconstrained version P||Cmin.
However, in order to obtain a (lifted) upper bound from the solution of the continuous
relaxation it turned out to be sufficient to consider the unconstrained problem which
is not only easier to solve but usually also yields the same bound.

We continue with the development of a more complex upper bound. Let M ⊂
M and J ⊂ J denote a subset of the machines and jobs, respectively, the next
bound bases on the following observation. If the mean completion time of the partial
problem P P(M, J ) is less than or equal to a valid lower bound LB (cf. Sect. 4) on the
optimal objective value C∗

min, then the mean completion time of the residual problem
P P(M\ M,J \ J ) is greater than or equal toC∗

min and, thus, provides an upper bound
UB, i.e. ∑

j∈J p j

|M | ≤ LB ≤ C∗
min ⇒ C∗

min ≤
∑

j∈J \J p j

m − |M | = UB. (19)

To obtain a tight bound, the determination of M and J is crucial. For this purpose
we suggest to solve the following variant of a subset sum problem for each i ∈
{1, . . . , m − 1}:

Minimize Zi =
n∑

j=1

p j · xi
j (20)

s.t.
n∑

j=1

p j · xi
j ≥ i · LB (21)

n∑

j=1

xi
j ≤ μ̄i (n, m, k) (22)

xi
j ∈ {0, 1} j = 1, . . . , n. (23)

By reduction from subset sum, which is well-known to be NP-complete (Garey and
Johnson 1979), we obtain that problem (20)–(23) isNP-hard. It seeks for a subset of
the jobs whose sum of processing times is minimal (cf. (20)) subject to the constraints
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that the respective sum is not smaller than i times a given lower bound LB (cf. (21))
and the subset must not contain more than μ̄i (n, m, k) jobs (cf. (22)). Then,

UB2 = min
i=1,...,m−1

{⌊∑n
j=1 p j − Z∗

i

m − i

⌋}

(24)

constitutes an upper bound on C∗
min because of the following facts: As LB is a valid

lower bound on C∗
min, in an optimal schedule each machine runs at least as long as LB.

In particular, the cumulative completion time of the i machines that process in total
at most μ̄i (n, m, k) jobs is at least as large as i · L B. Recall from Corollary 3.3 that
there always exists such a subset of the machines. The optimal objective value Z∗

i of
problem (20)–(23) gives the smallest realizable cumulative completion time of the i
machines. Hence, the cumulative completion time of the remaining m − i machines
is at most

∑n
j=1 p j − Z∗

i , i.e. the average completion of these machines is at most
�(∑n

j=1 p j − Z∗
i )/(m − i)� so that UB2 ≥ C∗

min. Clearly, the better the LB the better
UB2. We refer to Sect. 4 for the computation of lower bounds.

Since solving each of the m − 1 problems (20)–(23) requires (at least) pseudo-
polynomial time, we abstained from applying our combined lifting approach to UB2.
In our experiments (see Sect. 5), we used Gurobi 6.0.3 to solve (20)–(23).

Our next upper bound is a generalization of UB0. Let r1 ≥ 1 denote the
index of the last machine whose upper cardinality limit equals k1, i.e. r1 =
argmaxh=1,...,m {kh = k1}. Then,

UB3 =
{∑k1−1

j=1 p j + pK1,r1
, if K1,r1 = r1 · k1,

∑k1−1
j=1 p j , if K1,r1 < r1 · k1

(25)

constitutes an upper bound. The correctness of UB3 is readily verified. At first recall
that K1,r1 ≤ r1 · k1 (cf. (6)) and P P({1, . . . , r1} ,

{
1, . . . , K1,r1

}
) ∈ P(M,J )

(cf. Corollary 3.2). In case K1,r1 = r1 · k1, the shortest of these jobs, i.e. job K1,r1 ,
must be assigned to one of the first r1 machines. Thus, its assignment to a machine
together with the k1 − 1 longest jobs yields a valid upper bound. In the other case,
i.e. K1,r1 < r1 · k1, there exists at least one machine which processes less than k1 jobs.

Since UB3 is easy to compute we suggest to lift this bound according to Corollary
3.2. Let ri = argmaxh=i,...,m {kh = ki } for i = 1, . . . , m, then by considering the
partial instances P P({i, . . . , ri }, {i, . . . , i + Ki,ri − 1}) for i = 1, . . . , m we arrive at
the lifted upper bound ŨB3 = mini=1,...,m {UB3(i)} where

UB3(i) =
{∑i+ki −2

j=i p j + pi+Ki,ri −1, if Ki,ri = (ri − i + 1) · ki ,
∑i+ki −2

j=i p j , if Ki,ri < (ri − i + 1) · ki .
(26)

It is readily verified that no other partial instances resulting from application of our
lifting procedures (cf. Corollaries 3.2 and 3.3) are able to further improve ŨB3.

Our last upper bound exploits the fact that the well-known LPT algorithm is optimal
when ki ≤ 2 for all i = 1, . . . , m (cf. also Dell’Amico and Martello 1995). So, let r
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and r̄ denote the index of the first and lastmachinewhose upper cardinality limit equals
2, i.e. r = min{i ∈ {1, . . . , m} : ki = 2} and r̄ = max{i ∈ {r , . . . , m} : ki = 2},
respectively. If r exists, then

UB4 =
{
min j=r ,...,r̄

{
p j + p2r̄− j+1

}
, if Kr ,r̄ = 2(r̄ − r + 1)

min
{
min j=r ,...,2r̄−K1,r̄ {p j },min j=2r̄−K1,r̄ +1,...,r̄ {p j + p2r̄− j+1}

}
, if Kr ,r̄ < 2(r̄ − r + 1)

(27)

represents an upper bound which is derived from the (partial) instance P P({r , . . . , r̄},
{r , . . . , K1,r̄ }). It is not difficult to see that, this time, the consideration of other partial
instances resulting from Sect. 3.1 will not yield a tighter version of UB4.

In case that the best upper bound (denoted by U∗) is given by ŨB1 or UB2 there
is potential for further improvement. Both ŨB1 and UB2 are grounded on averaged
machine completion times, but this does not necessarily mean that a machine can
indeed finish exactly at that time. Therefore, we apply the following enhancement
procedure (due to Haouari and Jemmali 2008) which computes the largest sum of
processing times that is less than or equal to U∗ by solving the subset problem (28)–
(30):

Maximize UB5 =
n∑

j=1

p j · x j (28)

s.t.
n∑

j=1

p j · x j ≤ U∗ (29)

x j ∈ {0, 1} j = 1, . . . , n. (30)

Clearly, we have C∗
min ≤ UB5 ≤ U∗. In our experiments, problem (28)–(30) is solved

via dynamic programming.
We finish this section with an example to illustrate the application of the adjustment

procedures (7)–(8) and the lifting procedures (cf. Corollaries 3.2 and 3.3). The effect
of combining our two lifting procedures will be clarified as well.

Example 3.4 We consider n = 10 jobs with processing times p = (201, 102, 99, 86,
82, 79, 74, 73, 65, 64) and m = 5 machines with upper cardinality limits k =
(3, 5, 5, 5, 5) and implicit lower limits l = (1, 1, 1, 1, 1). An optimal partition
of the processing times is {{201}, {102, 74}, {99, 79}, {86, 82}, {73, 65, 64}} with
C∗

min = 168.
At first, we apply (7) to tighten the upper limits:

k1 = min

{⌊
K1,5

5

⌋

,

⌊
K1,4

4

⌋

,

⌊
K1,3

3

⌋

,

⌊
K1,2

2

⌋

,

⌊
K1,1

1

⌋}

= min

{⌊
10

5

⌋

,

⌊
9

4

⌋

,

⌊
8

3

⌋

,

⌊
7

2

⌋

,

⌊
3

1

⌋}

= 2,

k2 = min

{⌊
9

4

⌋

,

⌊
8

3

⌋

,

⌊
7

2

⌋

,

⌊
5

1

⌋}

= 2, k3 = 2, k4 = 3, k5 = 5.
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Table 1 Upper bounds UB1
1(i1, i2), UB

2
1(i), and UB3(i)

i1 i2 Ki1,i2 UB1
1 i1 i2 Ki1,i2 UB1

1 i1 i2 Ki1,i2 UB1
1 i μ̄i UB2

1 i ri UB3

1 1 2 303 2 2 2 201 3 4 5 210 1 2 303 1 3 280

2 4 244 3 4 184 5 8 207 2 4 244 2 3 184

3 6 216 4 7 198 4 4 3 247 3 6 216 3 3 185

4 8 199 5 9 181 5 7 261 4 8 199 4 4 247

5 10 185 3 3 2 185 5 5 5 373 5 10 185 5 5 373

The enhanced upper limits k = (2, 2, 2, 3, 5) are now used to improve the lower limits
according to (8):

l1 =
⌈

L1,1

1

⌉

=
⌈
1

1

⌉

= 1, l2 = max

{⌈
L1,2

2

⌉

,

⌈
L2,2

1

⌉}

= max

{⌈
2

2

⌉

,

⌈
1

1

⌉}

= 1,

l3 = max

{⌈
3

3

⌉

,

⌈
2

2

⌉

,

⌈
1

1

⌉}

= 1, l4 = max

{⌈
5

4

⌉

,

⌈
3

3

⌉

,

⌈
2

2

⌉

,

⌈
1

1

⌉}

= 2,

l5 = 2.

It is readily verified that a repeated application of (7) using the enhanced lower limits
l = (1, 1, 1, 2, 2) cannot further reduce the upper limits.

Computation of the upper bounds UB1 and UB3 yields

UB1 =
⌊
925

5

⌋

= 185 and UB3 = p1 + p6 = 201 + 79 = 280.

Next, we demonstrate the effect of our lifting procedures. With regards to UB1 we first
apply Corollaries 3.2 and 3.3 individually. The respective lifted bounds are denoted
by ŨB

1
1 = min1≤i1≤i2≤5{UB1

1(i1, i2)} and ŨB
2
1 = mini=1,...,5{UB2

1(i)} where

UB1
1(i1, i2) =

⎢
⎢
⎢
⎣

∑i1+Ki1,i2−1
j=i1

p j

i2 − i1 + 1

⎥
⎥
⎥
⎦ , UB2

1(i) =
⎢
⎢
⎢
⎣

∑μ̄i (n,m,k)
j=1 p j

i

⎥
⎥
⎥
⎦ .

Now, we briefly present the result of the combined lifting approach (cf. last paragraph
of Sect. 3.1). Table 1 provides detailed information on the bounds ŨB

1
1, ŨB

2
1, and

ŨB3. Regarding ŨB
2
1, we have ρ = 3 since k4 > �4/2� (cf. (14)). As can be seen,

we obtain ŨB
1
1 = 181, ŨB

2
1 = 185, and ŨB3 = 184. Up to this point, ŨB

1
1 is the

best upper bound. However, when we combine our two lifting procedures as done in
(18) we finally receive ŨB1 = 174 which is due to the application of Corollary 3.3 to
the partial instance P P({2, . . . , 5}, {2, . . . , 10}). Regarding this partial instance, it is
readily verified that ŨB

2
1 = min{201, 184, 174, 181} = 174.
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4 Algorithms

This section is concerned with the development of lower bounds for the max–
min ki -partitioning problem. Specifically, we introduce two LPT-based construction
algorithms (Sect. 4.1) and a dynamic programming based improvement heuristic
(Sect. 4.2).

4.1 Construction heuristics

To construct initial solutions,we propose twomodifiedLPT algorithms that adequately
take the cardinality constraints into account. The two algorithms differ in the way they
incorporate the upper and lower limits. While our first variant (called LPT1) primarily
concentrates on the upper limits, the second variant (called LPT2) focuses on the
lower limits first and observes the upper limits subsequently. Let ni denote the current
number of jobs assigned to machine i , a brief description of our two variants is given
below.

LPT1As long as the number of unassigned jobs, i.e. n−∑m
i=1 ni , is greater than the

total number of jobs that are still required to satisfy all lower limits, i.e.
∑m

i=1 max{li −
ni , 0}, LPT1 successively assigns the longest remaining job to the machine with the
current shortest completion time among all i where ni < ki . Ties are broken in
favor of the machine that has the largest difference li − ni . Once n − ∑m

i=1 ni =∑m
i=1 max{li − ni , 0}, LPT1 successively assigns the longest remaining job to the

machine with the current shortest completion time among all i where ni < li until
no job remains unassigned. Now, ties are broken in favor of the machine that has the
smallest difference li − ni .

LPT2 As long as not all lower limits are satisfied, LPT2 successively assigns the
longest remaining job to the machine with the current shortest completion time among
all i where ni < li . This time, ties are broken in favor of the machine that has the
smallest lower limit li . Once ni = li for all i , LPT2 successively assigns the longest
remaining job to the machine with the current shortest completion time among all i
where ni < ki until no job remains unassigned. Now, ties are broken in favor of the
machine that has the smallest difference ki − ni .

4.2 A subset sum based improvement heuristic

To improve on the quality of a given solution we propose an iterative approach whose
underlying idea is related to the multi-start local search method used in Haouari and
Jemmali (2008)which has proved to be effective for the unconstrained problemversion
P||Cmin. Assuming themachines to be sorted according to non-decreasing completion
times, i.e. C1 ≤ · · · ≤ Cm , their method iteratively selects pairs of machines (1, h) for
h = m, . . . , 2 and solves the resulting P2||Cmin instance to optimality. Each P2||Cmin

instance is reformulated as a subset sum problem as follows:
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Table 2 Solution
w.r.t. (31)–(33) + (34)

i ki Ji Ci

1 2 {2, 3} 18

2 3 {1, 4, 5} 21

Maximize
∑

j∈J

p j · z j (31)

s.t.
∑

j∈J

p j · z j ≤
⌊∑

j∈J

p j/2

⌋

(32)

z j ∈ {0, 1} ∀ j ∈ J (33)

where J = J1 ∪ Jh is the union of jobs that are assigned either to machine 1 or h in
the current solution and z j ( j ∈ J ) are binary variables that take the value 1 if j is
assigned to machine 1 and 0 otherwise. Once a better value for C1 is identified, the
machines are resorted and the next iteration begins. If C1 could not be increased after
considering all m − 1 pairs, then the procedure stops. For further details we refer to
Haouari and Jemmali (2008).

In the subset sum formulation (31)–(33) for the unconstrained version, one can
assume without loss of generality that machine 1 is the one whose completion is not
greater than the one of machine h. However, the situation is different when cardinality
constraints have to be taken into account. Here, it is not sufficient to simply add the
constraint

max{l1, |J | − kh} ≤
∑

j∈J

z j ≤ min{k1, |J | − lh} (34)

to (31)–(33) and to solve the model because we can no longer assume the comple-
tion time of machine 1 to be smaller than or equal to machine’s h completion time
(cf. Example 4.1). Therefore, it is necessary to solve a second model as well where
the constraint

max{lh, |J | − k1} ≤
∑

j∈J

z j ≤ min{kh, |J | − l1} (35)

is added to (31)–(33) instead of constraint (34) so that this second model, now, forces
the completion time of machine h to be not greater than the one of machine 1. In
the second model, it is important to note that z j takes the value 1 if j is assigned to
machine h and 0 otherwise.

Example 4.1 Consider n = 5 jobs with processing times p = (13, 11, 7, 5, 3) and
m = 2 machines with upper and lower cardinality limits k = l = (2, 3). The corre-
sponding solutions are provided in Tables 2 and 3.
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Table 3 Solution
w.r.t (31)–(33) + (35)

i ki Ji Ci

1 2 {1, 3} 20

2 3 {2, 4, 5} 19

4.2.1 Procedure ki -DP for solving the case m = 2

To avoid solving two subset sum problems for each pair of machines, we propose the
following model (36)–(40) which optimally solves ki -partitioning problems on two
parallel machines by minimizing the absolute difference � between the completion
time

∑
j∈J p j · z j of machine 1 and the average completion time

∑
j∈J p j/2 of the

two machines 1 and h (cf. (36)–(38)) while observing the machine’s cardinality limits
(cf. (39)).

Minimize � (36)

s.t.
∑

j∈J

p j · z j ≤
∑

j∈J

p j/2 + � (37)

∑

j∈J

p j · z j ≥
∑

j∈J

p j/2 − � (38)

max {l1, |J | − kh} ≤
∑

j∈J

z j ≤ min {k1, |J | − lh} (39)

z j ∈ {0, 1} ∀ j ∈ J (40)

By reduction from subset sum we obtain that problem (36)–(40) isNP-hard. So, we
develop a generic dynamic programming procedure (called ki -DP) to exactly solve ki -
partitioning problems on two machines. The input of the procedure is summarized in
Table 4. Furthermore, we define a 2-dimensional binary array S of size (n + 1)×(C +
1)which stores the recursively determined information on thefirstmachine’s realizable
completion times—depending on how many of the shortest jobs are considered—
without exceeding themaximum allowable number of jobs on thatmachine (cf. Fig. 3).
More precisely, S[ j, c] = 1 (0 ≤ j ≤ n, 0 ≤ c ≤ C) if there exists a subset of
the first j jobs (i.e. the shortest ones) so that the subset sum—which represents the
completion time of the first machine—equals c and the subset contains at most k
elements; otherwise S[ j, c] = 0. Moreover, associated with each array element [ j, c]
of S are (i) a binary array S′

j,c of length k + 1 where S′
j,c[k′] = 1 (0 ≤ k′ ≤ k) if there

exists a subset of the first j jobs so that the subset sum equals c and the subset contains
exactly k′ elements; otherwise S′

j,c[k′] = 0, and (ii) an array Pj,c of length k +1 where
Pj,c[k′] (0 ≤ k′ ≤ k) stores the preceding c-value in case that S′

j,c[k′] = 1; otherwise
Pj,c[k′] = −1. The arrays S′

j,c and Pj,c are required to observe the cardinality limits
and for backtracking, respectively.
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Table 4 Input of ki -DP

n Positive integer representing the number of jobs in the two machine problem

p Array of size n where p[ j] is a positive integer representing the j-th shortest processing time

(i.e., the times are sorted in non-decreasing order)

C Positive integer representing the maximum allowable completion time of the first machine

k Positive integer representing the maximum allowable number of jobs on the first machine

(cf. also right-hand side of (39))

l Positive integer representing the minimum allowable number of jobs on the first machine

(cf. also left-hand side of (39))

Fig. 3 Dynamic programming procedure ki -DP
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The initialization of the arrays is as follows:

S[0, 0] = 1; S[0, c] = 0 (c = 1, . . . , C)

S′
0,0[0] = 1; S′

0,0[k′] = 0 (k′ = 1, . . . , k); S′
0,c[k′] = 0 (k′ = 0, . . . , k)

P0,c[k′] = −1 (c = 0, . . . , C; k′ = 0, . . . , k).

Figure 3 provides the pseudo code of ki -DP and the recursion formulas to fill S as
well as S′

j,c and Pj,c for each element [ j, c] of S. As can be seen, the respective
arrays are filled within three nested loops using conditional statements. The outer
loop iterates over the elements p[ j] of the array of processing times, the intermediate
loop iterates over the allowable completion times c, and the inner loop iterates for
each pair ( j, c) over the allowable number of jobs k′. In case c < p[ j] (see 03.–
07.), S[ j, c] = S[ j − 1, c] and all entries in the associated S′

j,c- and P ′
j,c-arrays are

copied from the previous row as well. In the other case, i.e. c ≥ p[ j], it is checked
which c-values can be realized—without exceeding the maximum allowable number
of addends (or jobs) k—when the integer (or processing time) p[ j] becomes available
in addition to p[1], . . . , p[ j − 1] (08.–26.). If c can be realized using p[ j] (09.–19.),
S[ j, c] is set to one (11.) and the entries in the associated arrays S′

j,c and P ′
j,c are

determined by checking (13.–19.) how many jobs are required to realize c when p[ j]
is used. Only if c is realized for the first time using exactly k′ (k′ = 1, . . . , k) out of the
shortest j jobs, S′

j,c[k′] is set to one and P ′
j,c[k′] = c − p[ j] (14.–15.). For all other

k′, the entries in S′
j,c and P ′

j,c are copied from the previous row (16.–18.). The same is
done if c cannot be realized using p[ j] (see 20.–25.). After filling the last row of S and
the associated arrays S′

n,c and P ′
n,c for all c = 0, . . . , C , the optimal objective value

c∗ is represented by that column which fulfills S[n, c∗] = 1, S′
n,c∗ [k′] = 1 for at least

one k′ ∈ {l, l + 1, . . . , k}, and
∣
∣
∣c∗ −∑n

j=1 p[ j]/2
∣
∣
∣ is minimal. The corresponding

solution is obtained by backtracking through the P ′-arrays.

4.2.2 Procedure ki -LS for solving the general case

We use the ki -DP procedure within our iterative local search algorithm (called ki -LS)
to generate high-quality solutions for the max–min ki -partitioning problem on an arbi-
trary (but fixed) number m of machines. Given a feasible solution, each iteration of
ki -LS begins with relabeling the machines so that C1 ≤ · · · ≤ Cm . Then, we succes-
sively consider the machine pair (1, h) for h = m, . . . , 2 and solve the corresponding
two machine problem (36)–(40) via ki -DP (where n = |J | (J = J1 ∪ Jh), k =
min {k1, |J | − lh}, l = max {l1, |J | − kh}, and C = Ch). If C1 <

∑
j∈J p j · z j < Ch ,

then we adopt the new assignment of the jobs in J , i.e. the current solution (to the
m-machine problem) is modified by setting J1 := {

j ∈ J : z j = 1
}
, Jh := J \ J1,

and Ci := ∑
j∈Ji

p j for i = 1, h. Afterward, the next iteration starts. Otherwise, h is
decremented by one. The procedure is stopped if no improvement has been achieved
within an iteration, i.e. after sequentially considering all m − 1 machine pairs (1, h)

(h = m, m − 1, . . . , 2).
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Table 5 Parameters used for
the processing time classes
(cf. Dell’Amico and Martello
2001; Dell’Amico et al. 2006)

pmin pmax λ μ σ

P1 10 1000 P4 1/25 P7 100 33

P2 200 1000 P5 1/50 P8 100 66

P3 500 1000 P6 1/100 P9 100 100

5 Computational study

This section elaborates on the details of our computational study where we examine
the effectiveness of our preprocessing procedures, the tightness of our upper bounding
procedures, and the performance of the developed heuristic algorithms. As there is
no established test bed available we, first, describe how our test instances have been
generated (Sect. 5.1). Then, we specify in which order the developed methods for
preprocessing, bounding, and solving a given instance are executed (Sect. 5.2). Finally,
we computationally examine the performance of our solution approaches and report
on the relevant results in Sect. 5.3.

5.1 Instance generation

In order to generate test instances for ourmax–min ki -partitioningproblem,weadopted
the generation schemeused inDell’Amico et al. (2006)who studied the “dual” problem
version, i.e. ki -partitioning with minimum makespan objective. Assuming n/m ≥ 2,
we consider 26 pairs of n ∈ {10, 25, 50, 100, 200} and m ∈ {3, 4, 5, 10, 20, 40, 50}.
For each of these pairs we investigate 81 different combinations of 9 processing
time classes (labeled Pj ) and 9 cardinality classes (labeled Ki ). For each quadru-
ple (n, m, Pj , Ki ), 10 independent instances have been randomly generated resulting
in a total number of 21,060 (= 26 × 81 × 10) instances. The full set of instances
is available for download from: https://assembly-line-balancing.de/further-data-sets/
ki-partitioning.

Regarding the classes Pj , the processing times are independently drawn from a
discrete uniform distribution on {pmin, . . . , pmax} for classes P1–P3, an exponential
distribution with parameter λ for classes P4–P6 (disregarding non-positive values),
and a normal distribution with mean μ and standard deviation σ for classes P7–P9
(disregarding non-positive values), respectively. Table 5 lists the corresponding param-
eter values. Turning to the classes Ki , the upper cardinality limits are independently
drawn from a uniform distribution on {kmin, . . . , kmax} for classes K1–K6 while they
are generated according to Fig. 4 for classes K7–K9. The respective parameter values
are given in Table 6. Instances where

∑m
i=1 ki < n have been discarded and replaced

by new ones. For further information on the cardinality classes we refer to Dell’Amico
et al. (2006).
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Fig. 4 Cardinality generation method for classes K7–K9 (cf. Dell’Amico et al. 2006)

Table 6 Parameters used for the cardinality classes (cf. Dell’Amico et al. 2006)

kmin kmax kmin kmax δ

K1 �n/m� − 1 �n/m� K4 �n/m� �n/m� + 1 K7 1

K2 �n/m� − 1 �n/m� + 1 K5 �n/m� �n/m� + 2 K8 3/2

K3 �n/m� − 2 �n/m� + 2 K6 �n/m� �n/m� + 3 K9 2

5.2 Execution scheme

The order in which we executed the developed preprocessing, bounding, and solution
methods is provided by Fig. 5. As can be seen, a great deal of effort is put into
the preprocessing and bounding step (see Phase 1). With the intention to reduce the
problem’s size and to obtain strong upper bounds as well as a good initial solution, we
iteratively apply the methods from Sects. 2, 3 and 4.1. Our improvement procedure
ki -LS is only applied if the reduced problem contains more than one machine and if
there is still a gap between the current best upper and lower bound value U∗ and L∗
(see Phase 2). After application of ki -LS, we compute the upper bound UB2 (see 26.).
The respective subset sum problems (cf. (20)–(23)) are solved with the help of Gurobi
(version 6.0.3). Finally, we calculate UB5 in case that the current best upper bound is
neither given by ŨB3 nor UB4 (27.–29.; cf. also paragraph on UB5 within Sect. 3.2).

All of our methods have been implemented in C++ using the Visual C++ 2010
compiler and the tests have been carried out on a personal computer with an Intel Core
i7-2600 processor (3.4 GHz), 8 GB RAM, and Windows 7 Professional SP1 (64 bit).

5.3 Experimental results

This section reports on the results of our computational tests. Table 7 lists the
12 relevant performance criteria. The first group of criteria (#Ph1, #Red, %melim,
%nelim) focuses on the performance of the preprocessing and reduction procedures
(see Tables 8 and 9). The second group (%GAP, MAX, #OPT, TIME) allows for a
general assessment of the overall performance of our bounding and solution methods
(see Tables 10 and 11) while the third group (%BESTi, %OPTi, #ImpLift, #< ŨB1)
is meant to provide a clear picture on the effectiveness of our bounding and lifting
procedures (see Tables 12, 13, 14 and 15).
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Fig. 5 Execution scheme

We start with evaluating the performance of Phase 1 (cf. Fig. 5, steps 01.–22.). The
values of the respective performance criteria (cf. first group in Table 7) are provided
by Table 8 (broken down by the processing time classes) and Table 9 (broken down
by the cardinality classes). The column #Ph1 gives the number of instances that have
already been solved within Phase 1 and, thus, allows for an overall assessment of
the effectiveness of Phase 1. The column #Red displays the number of instances for
which the size could be reduced successfully by application of our reduction criteria
(i.e. Criterion 2.2 as well as reduction procedures 1 and 2). In conjunction with the
two other criteria %melim and %nelim, #Red allows to judge the performance of the
reduction criteria.

As can be seen from the #Ph1-column, we are able to optimally solve 3937 out
of the 21,060 instances (i.e. almost 19%) already within Phase 1. It is worth noting
that for 416 out of the 3937 instances our algorithm has already terminated after step
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Table 7 Performance criterion

Criteria Description

#Ph1 Number of instances solved in Phase 1 (cf. Fig. 5, steps 01.–22.)

#Red Number of instances where the problem size could be reduced

%melim Average relative number of eliminated machines (in %)

%nelim Average relative number of eliminated jobs (in %)

%GAP Average relative gap (U∗ − L∗)/U∗ between U∗ and L∗ (in %)

MAX Maximum relative gap between U∗ and L∗ (in %)

#OPT Number of optimally solved instances (i.e. U∗ = L∗)
TIME Average computation time required by ki -LS (in seconds)

%BESTi Relative number of instances where UBi = U∗ (in %)

%OPTi Relative number of instances where UBi = L∗ (in %)

#ImpLift Number of instances where ŨBi < UBi

# < ŨB1 Number of instances where UBi < ŨB1 (or ŨBi < ŨB1)

Table 8 Performance of the
reduction
procedures—processing time
classes (#instances per class:
2340)

#Ph1 #Red %melim %nelim

P1 138 137 1.63 1.27

P2 212 114 1.59 1.54

P3 232 130 2.36 2.26

P4 208 125 1.93 1.86

P5 182 251 2.30 2.03

P6 177 376 3.55 3.16

P7 1266 331 4.43 4.20

P8 921 435 5.80 4.97

P9 601 544 7.01 5.74

Avg/tot 3937 2443 3.40 3.00

Table 9 Performance of the
reduction
procedures—cardinality classes
(#instances per class: 2340)

#Ph1 #Red %melim %nelim

K1 557 122 1.11 0.82

K2 464 276 3.41 2.00

K3 569 536 6.46 3.73

K4 563 183 1.73 0.86

K5 594 165 1.51 0.71

K6 594 158 1.41 0.65

K7 207 374 6.01 8.55

K8 166 331 4.80 5.33

K9 223 298 4.15 4.39

Avg/tot 3937 2443 3.40 3.00
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Table 10 Overall performance of U∗ and L∗—processing time classes (#instances per group: 7020)

P1–P3 P4–P6 P7–P9

n m %GAP MAX #OPT TIME %GAP MAX #OPT TIME %GAP MAX #OPT TIME

10 3 0.81 8.65 90 0.01 1.12 11.17 63 0.00 1.36 8.67 142 0.00

10 4 2.22 24.14 109 0.01 2.66 25.36 66 0.00 2.36 22.41 138 0.00

10 5 0.88 18.64 233 0.00 1.80 17.24 188 0.00 2.50 26.67 158 0.00

25 3 0.01 0.20 212 0.12 0.04 1.28 216 0.01 0.16 4.69 223 0.00

25 4 0.04 5.55 172 0.07 0.09 4.56 205 0.01 0.34 16.04 218 0.00

25 5 0.07 1.45 99 0.06 0.12 1.70 162 0.01 0.55 12.27 190 0.00

25 10 1.92 14.56 107 0.03 2.74 9.97 46 0.00 1.64 10.26 119 0.00

50 3 0.01 1.05 200 0.62 0.04 5.77 210 0.06 0.04 1.47 237 0.01

50 4 0.01 1.21 209 0.34 0.02 0.60 216 0.03 0.04 3.90 248 0.00

50 5 0.01 0.09 209 0.29 0.05 4.27 220 0.03 0.18 8.49 232 0.00

50 10 0.07 1.32 119 0.15 0.25 6.02 187 0.02 0.53 8.93 200 0.00

50 20 1.64 8.06 113 0.08 2.52 9.03 50 0.01 1.47 7.41 125 0.00

100 3 0.01 2.14 224 3.74 0.01 0.78 218 0.67 0.03 3.16 246 0.05

100 4 0.01 0.79 220 1.49 0.02 3.28 221 0.22 0.04 2.87 240 0.02

100 5 0.00 0.02 235 1.35 0.02 1.29 211 0.16 0.06 2.84 244 0.02

100 10 0.01 0.21 222 0.71 0.02 1.45 235 0.07 0.89 17.94 212 0.01

100 20 0.04 1.81 142 0.64 0.10 6.38 218 0.07 1.00 10.53 192 0.01

100 40 1.59 7.13 112 0.27 2.46 9.51 66 0.03 1.87 9.26 107 0.00

100 50 0.76 8.94 226 0.03 1.57 11.22 155 0.01 1.95 10.11 125 0.00

200 3 0.00 0.47 203 33.31 0.00 0.15 217 1.95 0.03 3.71 251 0.26

200 4 0.01 1.04 219 6.16 0.00 0.04 225 1.01 0.02 1.39 254 0.10

200 5 0.00 0.01 230 4.91 0.01 0.85 217 0.76 0.05 2.96 244 0.10

200 10 0.00 0.01 239 2.39 0.01 0.09 238 0.32 0.11 7.23 242 0.04

200 20 0.00 0.15 231 2.96 0.01 0.46 239 0.42 0.41 11.58 236 0.03

200 40 0.04 2.12 161 3.42 0.05 4.15 243 0.35 0.19 6.73 246 0.03

200 50 0.05 1.28 123 3.72 0.17 4.55 193 0.41 0.26 4.88 227 0.03

Avg/tot 0.39 24.14 4659 2.57 0.61 25.36 4725 0.26 0.70 26.67 5296 0.03

02. (cf. Fig. 5) because the inequality UB0 ≥ L∗ was fulfilled. Most of these 416
instances belong to the classes K2 and K3 and satisfy ki < �n/m� for all i .

Phase 1 turned out to be particularly effective when the processing times are drawn
from one of the three normal distributions (i.e. P7–P9). Here, 2788 out of the 7020 cor-
responding instances (i.e. almost 40%) are optimally solvedwithin Phase 1. Regarding
the cardinality classes, K7–K9 appear to be the more difficult ones for our reduction
procedures as here only 596 (i.e. less than 9%) instances have been solved to optimality
at Phase 1.

Taking a look at the other three columns, we can state that at least one of our
reduction procedures is able to successfully decrease m and/or n for 2443 instances
and the overall reduction of m and n is about 3.40 and 3.00% on average, respectively.
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Table 11 Overall performance of U∗ and L∗—cardinality classes (#instances per group: 7020)

K1–K3 K4–K6 K7–K9

n m %GAP MAX #OPT TIME %GAP MAX #OPT TIME %GAP MAX #OPT TIME

10 3 1.12 9.03 94 0.00 1.00 8.21 77 0.00 1.17 11.17 124 0.00

10 4 2.39 23.20 113 0.00 2.51 25.36 98 0.00 2.35 24.14 102 0.00

10 5 0.87 13.68 224 0.00 2.68 26.67 160 0.00 1.62 20.00 195 0.00

25 3 0.05 1.35 211 0.05 0.03 1.27 216 0.04 0.12 4.69 224 0.04

25 4 0.04 1.22 205 0.03 0.05 1.38 201 0.02 0.39 16.04 189 0.03

25 5 0.18 1.75 137 0.02 0.09 2.38 142 0.02 0.47 12.27 172 0.02

25 10 1.83 9.97 120 0.01 2.22 14.56 73 0.01 2.24 9.52 79 0.01

50 3 0.02 0.49 209 0.24 0.02 0.55 205 0.24 0.06 5.77 233 0.20

50 4 0.02 0.70 219 0.12 0.01 0.54 217 0.11 0.04 3.90 237 0.14

50 5 0.02 0.85 211 0.11 0.01 0.44 225 0.09 0.20 8.49 225 0.12

50 10 0.15 3.23 138 0.06 0.04 0.56 181 0.04 0.65 8.93 187 0.07

50 20 1.57 7.41 124 0.02 1.99 6.80 80 0.03 2.08 9.03 84 0.04

100 3 0.01 0.35 228 1.55 0.00 0.06 231 1.52 0.05 3.16 229 1.39

100 4 0.01 0.33 224 0.51 0.00 0.09 230 0.50 0.06 3.28 227 0.72

100 5 0.01 0.24 215 0.48 0.00 0.12 235 0.41 0.07 2.84 240 0.65

100 10 0.03 1.03 221 0.20 0.01 0.25 225 0.15 0.87 17.94 223 0.44

100 20 0.10 2.76 160 0.13 0.03 1.61 191 0.07 1.00 10.53 201 0.51

100 40 1.46 8.48 124 0.06 2.03 9.51 82 0.09 2.43 9.26 79 0.15

100 50 0.48 6.25 230 0.01 2.08 11.22 115 0.02 1.71 10.11 161 0.02

200 3 0.00 0.14 217 12.65 0.00 0.03 219 12.41 0.03 3.71 235 10.46

200 4 0.00 0.16 225 2.15 0.00 0.03 229 1.87 0.03 1.39 244 3.25

200 5 0.00 0.24 227 1.71 0.00 0.05 229 1.41 0.05 2.96 235 2.65

200 10 0.01 0.47 232 0.70 0.00 0.05 242 0.57 0.10 7.23 245 1.47

200 20 0.01 0.89 236 0.37 0.01 0.22 230 0.25 0.40 11.58 240 2.78

200 40 0.10 4.15 179 0.36 0.03 1.79 214 0.13 0.15 6.73 257 3.31

200 50 0.26 4.55 139 0.42 0.08 2.22 148 0.18 0.14 4.88 256 3.56

Avg/tot 0.41 23.20 4862 0.84 0.57 26.67 4695 0.78 0.71 24.14 5123 1.23

We shall also remark that m = 2 holds for 217 of the 2443 reduced instances. Due to
the nature of our ki -DP, these instances have later been optimally solved in Phase 2.
The largest entries in the columns %melim and %nelim are to be found in Table 9 (see
classes K7–K9). Although the number of instances solved at Phase 1 is rather small
for K7–K9, the average numbers of eliminated machines and jobs are ranging between
4.15 and 8.55%. This striking behavior seems to be due to the fact that the cardinality
limits are more diverse when they are generated according to K7–K9 (cf. Fig. 4). So,
on the one hand, the elimination of machines and/or jobs in advance is fostered but, on
the other hand, it is more difficult to optimally solve such instances without application
of more elaborate upper and lower bounding procedures as done in Phase 2.
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Table 12 Performance of the upper bounding procedures—processing time classes

%BESTi %OPTi

UB1 ŨB1 UB2 UB3 ŨB3 UB4 UB1 ŨB1 UB2 UB3 ŨB3 UB4

P1 82.95 85.26 39.91 13.59 20.04 9.66 44.27 46.54 24.23 13.50 19.87 9.53

P2 78.68 82.74 36.71 16.15 26.15 14.23 45.38 49.23 23.08 15.77 24.87 13.16

P3 67.31 74.36 34.79 20.94 39.79 26.88 48.03 55.00 23.29 20.85 39.62 26.79

P4 78.85 87.95 41.97 15.38 32.01 19.02 53.68 61.58 30.38 15.04 29.06 16.24

P5 85.90 90.81 47.65 11.20 20.56 10.56 52.35 56.75 32.01 10.85 19.27 9.57

P6 85.85 90.38 47.65 10.09 18.29 9.10 51.15 55.60 30.56 9.66 17.48 8.59

P7 78.63 98.38 54.83 5.09 11.24 6.50 61.71 81.20 44.40 4.53 9.96 5.68

P8 80.38 96.92 52.82 5.34 11.24 6.41 55.94 72.05 38.76 4.87 9.74 5.30

P9 81.88 94.57 54.66 4.32 10.00 6.45 51.45 63.68 36.28 4.10 9.06 5.68

Avg 80.05 89.04 45.66 11.34 21.04 12.09 51.55 60.18 31.44 11.02 19.88 11.17

Table 13 Performance of the upper bounding procedures—cardinality classes

%BESTi %OPTi

UB1 ŨB1 UB2 UB3 ŨB3 UB4 UB1 ŨB1 UB2 UB3 ŨB3 UB4

K1 82.65 89.79 56.41 1.62 9.02 10.04 53.89 60.90 39.40 1.58 8.68 9.70

K2 87.48 93.46 57.14 0.81 3.21 3.21 53.42 59.27 40.26 0.73 2.48 2.48

K3 87.18 92.82 49.83 2.61 5.09 3.03 51.97 57.31 36.62 2.48 4.66 2.74

K4 85.13 92.56 59.96 1.75 5.00 5.43 55.13 62.31 42.31 1.67 4.27 4.74

K5 85.34 92.65 62.01 1.07 5.17 5.68 56.75 63.85 45.30 0.94 4.79 5.30

K6 85.68 92.86 60.09 1.37 5.21 5.64 55.38 62.26 42.52 1.28 4.62 5.04

K7 63.29 78.80 13.55 36.41 63.42 32.09 44.49 59.06 6.79 35.51 60.21 29.66

K8 70.98 83.55 23.16 31.20 50.56 22.95 46.54 58.59 12.22 30.64 48.63 21.50

K9 72.69 84.87 28.85 25.26 42.65 20.73 46.41 58.08 17.56 24.36 40.60 19.40

Avg 80.05 89.04 45.66 11.34 21.04 12.09 51.55 60.18 31.44 11.02 19.88 11.17

The overall performance of our algorithmic approach and, in particular, Phase 2
is evaluated next. The respective results for each of the 26 parameter settings (n, m)

are summarized in the Tables 10 and 11—again broken down by the processing time
and cardinality classes, respectively. Analogous to the results reported in Dell’Amico
et al. (2006), we noticed that our results are very similar for the related classes P1–P3,
P4–P6, P7–P9, K1–K3, K4–K6, and K7–K9, respectively. Therefore, we abstain from
providing the results for each individual processing time and cardinality class. Instead,
we group the classes accordingly so that each entry in Table 10 and 11 corresponds to
270 (= 3 × 9 × 10) instances.

Out of the 17,123 instances that remained unsolved after Phase 1, our subset sum
based heuristic ki -LS improved the best LPT-solution 15,921 times and UB5 tightened
the best upper bound 696 times so that we were able to solve another 10,743 instances
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Table 14 Performance of the
lifting procedures and
improvement of
ŨB1—processing time classes
(#instances per class: 2340)

#ImpLift # < ŨB1

UB1 UB3 UB2 ŨB3 UB4

P1 146 947 10 169 169

P2 211 929 12 239 236

P3 381 933 13 460 459

P4 363 1335 1 222 221

P5 216 1455 2 131 131

P6 200 1528 11 112 112

P7 486 1845 2 30 30

P8 430 1822 2 47 47

P9 357 1815 10 66 66

Tot 2790 12,609 63 1476 1471

Table 15 Performance of the
lifting procedures and
improvement of
ŨB1—cardinality classes
(#instances per class: 2340)

#ImpLift # < ŨB1

UB1 UB3 UB2 ŨB3 UB4

K1 282 1936 7 163 162

K2 168 1617 4 45 45

K3 152 1175 5 38 37

K4 217 1749 6 88 88

K5 221 1638 3 88 88

K6 208 1532 4 95 95

K7 632 1059 12 406 404

K8 472 958 14 287 287

K9 438 945 8 266 265

Tot 2790 12,609 63 1476 1471

within Phase 2. More precisely, subtracting out the number of instances that have
already been solved at Phase 1, we optimally solved 4077 out of the remaining 6438
instances of class P1–P3, 4158 out of 6453 instances of class P4–P6, and 2508 out
of 4232 instances of class P7–P9. Regarding the cardinality classes, we optimally
solved 3272 out of the remaining 5430 instances of class K1–K3, 2944 out of 5269
instances of class K4–K6, and 4527 out of 6424 instances of class K7–K9. So, the
success of Phase 2 in solving an instance is more sensitive to the cardinality limits
than the processing times as here the share of solved instances ranges between 55.87
and 70.47% while it ranges only between 59.26 and 64.44% for the processing time
classes.

Considering both phases together, we see from the last row in Table 10 that we were
able to solve significantly more instances with normally distributed processing times
(5296 out of 7020) than with exponentially and uniformly distributed times (4725 and
4659), respectively, and at the same time less computation timewas required (0.03 s on
average compared to 0.26 and 2.57 s) by ki -LS. On the downside, the overall relative
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gap between U∗ and L∗ averages 0.70% for the classes P7–P9 and is therefore greater
than the respective average gap (0.61 and 0.39%) for the two other groups of processing
time classes. Regarding the cardinality classes, the last row in Table 11 reveals that
we identified more optimal solutions (5123 out of 7020 compared to 4862 and 4695)
when the cardinality limits were generated according to K7–K9 instead of K1–K3 or
K4–K6 although our reduction procedures were not that effective for the classes K7–
K9 (cf. Table9). Altogether, by means of U∗ = L∗, we were able to identify optimal
solutions for 14,680 out of the 21,060 test instances (i.e. almost 70%) and the overall
relative gap averaged about 0.57%. While configurations with n/m > 5 turned out to
be rather simple to solve (we found optimal solutions for 9440 out of the corresponding
11,340 instances, i.e. more than 83%), the case n/m = 2.5 appears to be particularly
difficult as we were able to solve only 1154 out of the corresponding 3240 instances
(i.e. less than 36%) and the relative gap between U∗ and L∗ averaged about 2.09%.
The greatest relative gaps of up to 27% were also recorded for instances with a small
ratio of n to m. The conspicuous behavior of our algorithm on such instances is not
that surprising. Haouari and Jemmali (2008) and Walter et al. (2017) also report on
similar observations.

Looking at the computational effort of our algorithm,we see that ki -LS requires less
time when processing times are small and/or the ratio of n to m is small. These cases
typically result in smaller values of C (cf. Sect. 4.2) which itself strongly impacts the
time requirement of ki -LS’s sub-routine ki -DP. Clearly, the smaller C , the faster ki -
DP determines a solution. Consequently, the computation time of ki -LS is higher for
the processing time classes P1–P3 which generate larger processing times on average
than the other time classes. Furthermore, the computation time increases when (i) n
increases and m is fixed and (ii) n and m increase and n/m is fixed. In both cases, the
number of pairs of machines that has to be investigated within the local search part is
increasing.

In the last part of our computational study, we carefully evaluate the effectiveness of
our upper bound as well as lifting procedures. The respective results are presented in
the Tables 12, 13, 14 and 15. The first two tables provide for each of our upper bounds
(except UB0 and UB5) the relative number of instances for which the respective bound
is equal to U∗ and L∗, respectively. The last two tables display the impact of the lifting
procedures by counting (i) the number of instances where ŨBi < UBi (for i ∈ {1, 3})
and (ii) the number of instances where UBi < ŨB1 (for i ∈ {2, 4}) and ŨB3 < ŨB1.

To allow for a fair comparison of the different upper bounds, we slightly modified
the execution scheme in that we did not abort the algorithm as soon as an optimal
solution is found but applied each upper bound except for UB0 and UB5 since UB0
can only be calculated in special cases andUB0 is also dominated by ŨB1.Determining
UB5 is also not meaningful since naturally U∗ = UB5 holds.

As can be seen from Tables 12 and 13, the rather simple LP-based bound UB1 and
its lifted version ŨB1 are outperforming the other bounds. In terms of numbers, we
observed that ŨB1 = U∗ for 89.04% of the 21,060 problem-instances and ŨB1 = L∗
for 60.18%. Considering the other, more specialized bounds and their performance
with respect to the different cardinality classes it is interesting to note that UB2 per-
forms quitewell for the classes K1–K6 and rather poor for K7–K9 whereas the opposite
is the case with the three other bounds. Obviously, the poor quality of UB3 andUB4 for
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K1–K6 is caused by the distribution of the ki -values. Furthermore, Tables 12 and 13
already reveal the significant improvement of UB1 and UB3 by application of the
combined lifting procedures. From the last two Tables 14 and 15 we see that lifting
UB1 improves the bound for a total of 2790 out of 21,060 instances (i.e. 13.25%)while
lifting UB3 even improves its non-lifted version for a remarkable number of 12,609
instances (i.e. 59.87%) so that application of the lifting procedures is well justified.

Although ŨB1 equals the best upper bound in almost 90%, the last two tables reveal
that there exist some instances (about 7%) where ŨB3 and/or UB4 yield a better
upper bound. Most of these instances belong to the class P3 and K7, respectively.
So, application of these two bounds is also justified whereas we found that it is not
beneficial to also apply UB2 since it cannot improve on the best upper bound value in
about 99.7% although UB2 equals the best bound in about 45%.

6 Conclusion

The present paper treats the ki -partitioning problem with the objective of maximizing
the minimum completion time subject to machine-dependent upper cardinality limits
ki on the maximum number of jobs that can be assigned to machine i . To tackle this
problem, we developed powerful preprocessing procedures which proved to be able
to reduce the problem’s size by eliminating machines and jobs in advance. One of
our preprocessing steps is to exploit the implicitly given lower cardinality limits li
in order to enhance the upper limits. We also derived several upper bound arguments
and proposed effective lifting procedures which often led to even tighter bounds in
our experiments. When it comes to generating high-quality solutions to the max–
min ki -partitioning problem, we designed a powerful subset sum based improvement
procedure ki -LS whose core is built by our exact dynamic programming procedure
ki -DP that optimally solves the two-machine case. Computational tests on a large
set of randomly generated instances attest to the efficacy of our solution methods:
reductions were obtained for about 12% of the instances, the lifting procedures helped
to tighten the best upper bound in about 62% of the cases, and the overall relative gap
between the best upper and the best lower bound averages 0.57% while we optimally
solved at least 70% of the instances within less than one second of computation time
on average.

We see the following directions for future research. From a theoretical point of
view, analyzing the worst case behavior of our upper bounding procedures as well
as the two LPT-based construction heuristics constitutes a challenging task. From
an algorithmic point of view, we believe that further improvements in the quality of
the generated solutions can be obtained by tailor-made metaheuristics or sophisticated
exact algorithms.Moreover, we suggest two ideas that potentially result in even tighter
bounds. The first one is to enhance the lifting procedures by explicitly using the
information provided by the gaps ki − li between the upper and lower cardinality
limits. The second idea is to combine the preprocessing and lifting procedures by
applying the reduction criteria not only to the given problem instance but also to the
derived partial instances.
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