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Abstract Nowadays, a number of metaheuristics have been developed for efficiently
solving multi-objective optimization problems. Estimation of distribution algorithms
are a special class of metaheuristic that intensively apply probabilistic modeling and,
as well as local search methods, are widely used to make the search more efficient.
In this paper, we apply a Hybrid Multi-objective Bayesian Estimation of Distribution
Algorithm (HMOBEDA) in multi and many objective scenarios by modeling the joint
probability of decision variables, objectives, and the configuration parameters of an
embedded local search (LS). We analyze the benefits of the online configuration of
LS parameters by comparing the proposed approach with LS off-line versions using
instances of themulti-objective knapsack problemwith two tofive and eight objectives.
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HMOBEDA is also comparedwith five advanced evolutionarymethods using the same
instances. Results show that HMOBEDA outperforms the other approaches including
those with off-line configuration. HMOBEDA not only provides the best value for
hypervolume indicator and IGD metric in most of the cases, but it also computes a
very diverse solutions set close to the estimated Pareto front.

Keywords Multi-objective estimation of distribution algorithms · Probabilistic
modeling · Local search · Hybridization · Automatic algorithm configuration

1 Introduction

In many optimization problems, maximizing/minimizing several objective functions
represents a challenge to a large number of optimizers (specially for single-objective
approaches which are usually no longer applicable in these cases) (Luque 2015). This
class of problems is known as Multi-objective Optimization Problems (MOPs), and
multi-objective optimization has thus been established as an important field of research
(Deb 2001). Recently, problems with more than three objectives are becoming usual
and the area has been referred to asmany objective optimization (Ishibuchi et al. 2008).

Evolutionary algorithms (EAs) and other metaheuristics have been widely used for
solving multi and many objective optimization, mainly due to their ability to discover
multiple solutions in parallel and to handle the complex features of such problems
(Coello 1999). In most of cases, local optimizers and probabilistic modeling can also
be aggregated to capture and exploit the potential regularities that arise in the promising
solutions.

As a special case of these hybrid approaches, Multi-objective Evolutionary Algo-
rithms (MOEAs) incorporating local search (LS) have been investigated, and can often
achieve good performance formany problems (Lara et al. 2010; Zhou et al. 2011, 2015.
However, as discussed in Martins et al. (2016), they still present challenges, like the
choice of suitable LS parameters (e.g., the type, frequency and intensity of LS applied
on a specific candidate solution).

Some previous works have proposed techniques for configuring and tuning the
parameters, like in Freitas et al. (2014), where the authors present a method based
on evolutionary strategies with local search and self-adaptation of the parame-
ters for single-objective optimization. Another example is Corriveau et al. (2016),
where an adaptive parameter setting approach solves multimodal problems using
genetic algorithms and Bayesian networks. These techniques can also be extended
to multi-objective optimization. In López-Ibáñez et al. (2011), the I/F-race tool inte-
grates the hypervolume indicator into the iterated process to automatically configure
multi-objective algorithms with many parameters for an optimization problem. This
technique can be used with other unary quality indicators, such as epsilon or R-
indicator.

Another strategy widely used in evolutionary optimization is probabilistic mod-
elling,which is the base ofEstimation ofDistributionAlgorithms (EDAs) (Mühlenbein
and Paab 1996). The main idea of EDAs (Larrañaga and Lozano 2002) is to extract
and represent, using a probabilistic graphical model (PGM), the regularities shared by
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a subset of high-valued problem solutions. New solutions are then sampled from the
PGM biasing the search to areas where optimal solutions are more likely to be found.
Normally, EDAs integrate both, the model building and sampling techniques, into
evolutionary optimizers using special selection schemes (Laumanns and Ocenasek
2002).

This paper addresses a combinatorialMOP—themulti-objective version of thewell
known knapsack problem named Multi-objective Knapsack Problem (MOKP) which
has been recently explored in other works in the literature (Ishibuchi et al. 2015; Ke
et al. 2014; Tan and Jiao 2013; Tanigaki et al. 2014; Vianna and de Fátima Dianin
Vianna 2013). In particular, Multi-objective Estimation of Distribution Algorithms
(MOEDAs) that use different types of probabilistic models have already been applied
to MOKP (Li et al. 2004; Wang et al. 2012), specially those EDAs based on Bayesian
networks as reported in Laumanns and Ocenasek (2002), Martins et al. (2016) and
Schwarz and Ocenasek (2001).

The approach considered in this paper is named HMOBEDA and is based on a joint
probabilistic modeling of decision variables, objectives, and parameters of the local
optimizer. As discussed inMartins et al. (2016), the rationale of HMOBEDA is that the
embedded PGM can be structured to sample appropriate LS parameters for different
configurations of decision variables and objective values during the search (which
is named online configuration). However, differently from Martins et al. (2016), this
work includes an additional investigation of off-line versions of LS parameter tuning:
HMOBEDA f , HMOBEDA finst and HMOBEDAirace.

In HMOBEDAirace for example, an automatic configuration tool (irace) that is
considered a state-of-the-art method for parameter tuning is adopted to define the
LS parameters. Therefore in our framework it is possible to compare both techniques:
online and off-lineLS configuration approaches.Aiming to evaluate an indicator-based
approach, this work presents another HMOBEDA version based on the hypervolume
indicator (Bader 2009) as part of the selection procedure.

This work also compares HMOBEDA with traditional approaches for multi and
many objective optimization based on the Inverted Generational Distance (IGD) qual-
ity indicator in addition to the hypervolume (HV) metric. Our work has intersections
with other previous published works (Bader 2009; Karshenas et al. 2014; Li et al.
2004). It is linked to the work presented in Karshenas et al. (2014) in which a joint
probabilistic model of objectives and variables is proposed, and related to Li et al.
(2004) by considering a weighted sum method in the fitness computation of each
neighbor produced by the LS procedure. In contrast with the research presented in Li
et al. (2004), our work considers an objective alternate mode to fitness computation
and a bayesian network as the PGM.

Therefore, besides providing a natural extension of previous works to investigate
probabilisticmodeling of variables, objectives andLSparameters all together, themain
contributions on the present work are: (i) it extends the original HMOBEDA proposal
providing other variants where the LS parameters are determined in different ways
and fixed along the search (off-line configuration); (ii) it also presents a different
HMOBEDA version that computes and uses the hypervolume indicator (Bader 2009)
as part of the selection procedure; (iii) the comparison with state-of-the-art-algorithms
includes the IGD metric to provide a more complete picture of HMOBEDA behavior.
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28 M. S. R. Martins et al.

This paper is organized as follows. Section 2 provides a brief introduction to EDAs
and Bayesian network as PGM (Larrañaga et al. 2012). Section 3 details the proposed
approach. Results from numerical experiments are shown and discussed in Sect. 4,
with the conclusions and future directions presented in Sect. 5.

2 Preliminaries

EDAs are population based optimization algorithms that have been claimed as a
paradigm shift in the field of EA, which employ explicit probability distributions
in optimization (Larrañaga and Lozano 2002).

EDAs have achieved good performance when applied in several problems (Pham
2011) including environmental monitoring network design (Kollat et al. 2008), pro-
tein side chain placement problem (Santana et al. 2008), table ordering (Bengoetxea
et al. 2011), multi-objective knapsack (Shah and Reed 2011) and MOPs in a noisy
environment (Shim et al. 2013).

Based on the problem solution representation, EDAs can be classified in discrete and
real-valued, considering the variables that can either be discrete ones or receive a real
value that covers an infinite domain. According to the interactions between variables,
EDAmodels can be categorized into three classes (Hauschild and Pelikan 2011): Uni-
variate, Bivariate and Multivariate based on the level of interactions among variables.

Univariate EDAs assume no interaction among variables, and Univariate Marginal
Distribution Algorithm (UMDA) (Mühlenbein and Paab 1996) is an example. For
bivariate EDAs, pairwise interactions among variables in the solutions are considered,
like in BivariateMarginal Distribution Algorithm (BMDA) (Pelikan andMuehlenbein
1999). Multivariate EDAs use probabilistic models capable of capturing multivariate
interactions between variables (Bengoetxea et al. 2011). Algorithms using multivari-
ate models of probability distribution include: Extended Compact Genetic Algorithm
(ECGA) (Harik 1999), Bayesian Network Algorithm (EBNA) (Etxeberria and Lar-
rañaga 1999), Factorised Distribution Algorithm (FDA) (Mühlenbein and Mahnig
1999), Bayesian Optimisation Algorithm (BOA) (Pelikan et al. 1999), Hierarchical
Bayesian Optimisation Algorithm (hBOA) (Pelikan et al. 2003), Markovianity-based
Optimisation Algorithm (MOA) (Shakya and Santana 2008) and Affinity Propagation
EDA (AffEDA) (Santana et al. 2010).

Another relevant classification is according to the probability model learning: algo-
rithms that only make a parametric learning of the probabilities, like UMDA; and
algorithms where structural learning of the model is also done, like the ones using
Bayesian networks (Santana et al. 2008).

2.1 Bayesian network as PGM

Bayesian networks (BN) are directed acyclic graphs (DAG) whose nodes repre-
sent variables, and whose missing edges encode conditional independencies between
triplets of variables. Random variables represented by nodes may be observable quan-
tities, latent variables, unknown parameters or hypotheses. Each node is associated
with a probability function that takes as input a particular set of values for the node’s
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parent variables and gives the probability of the variable represented by the node
(Cooper and Herskovits 1992; Korb and Nicholson 2010).

Let Y = (Y1, . . . ,YM ) be a set of random variables, and let ym be a value of
Ym , them-th component of Y. The representation of a bayesian model is given by two
components (Larrañaga et al. 2012): a structure and a set of local parameters. The set of
local parameters θB ∈ �B containing, for each variable, the conditional probability
distribution of its values given different value settings for its parents, according to
structure B.

The structure B for Y is a DAG that describes a set of conditional independencies
about triplets of variables inY.PaB

m represents the set of parents (variables fromwhich
an arrow is coming out in B) of the variable Ym in the PGMwhich structure is given by
B (Bengoetxea 2002). The structure B for Y assumes that Ym and its non descendants
are conditionally independent given PaB

m , m = 2, . . . , M , where Y1 is the root note.
Therefore, a Bayesian network encodes a factorization for the joint probability

distribution of the variables as follows:

ρ(y) = ρ(y1, y2, . . . , yM ) =
M∏

m=1

ρ(ym |paB
m) (1)

Equation 1 states that the joint probability distribution of the variables can be computed
as the product of each variables conditional probability distributions given the values
of its parents. These conditional probabilities are stored as local parameters θB , where
θB = (θ1, . . . , θM ).

In discrete domains, Ym has sm possible values, y1m, . . . , ysmm , therefore the local

distribution, p(ym |pa j,B
m , θm) is a discrete distribution:

p(ykm |pa j,B
m , θm) = θ

ykm |pa j,B
m

= θmjk (2)

where pa1,Bm , . . . , patm ,B
m denotes the combination of values of PaB

m , that is the set of
parents of the variable Ym in the structure B; tm is the number of different possible
instantiations of the parent variables of Ym . The possible number of tm combination
of values that Pam can assumes is tm = ∏

Yv∈PaB
m
sv . The parameter θmjk represents

the conditional probability that variable Ym takes its k−th value (ykm), knowing that

its parent variables have taken their j-th combination of values (pa j,B
m ).

The BN learning process can be divided into (i) structural learning, i.e., identifi-
cation of the topology B of the BN and (ii) parametric learning, estimation of the
numerical parameters (conditional probabilities �) for a given network B.

Most of the developed structure learning algorithms fall into the score-based
approaches. Score-based learning methods evaluate the quality of BN structures using
a scoring function, like Bayesian Dirichlet (BD)-metric (Heckerman et al. 1995), and
search for the best one. TheBDmetric, defined byEq. 3, combines the prior knowledge
about the problem and the statistical data from a given data set.

p(B|Pop) = p(B)

M∏

m=1

tm∏

j=1

Γ (αmj )

Γ (αmj + Nmj )

sm∏

k=1

Γ (αmjk + Nmjk)

Γ (αmjk)
(3)
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where p(B) is the prior factor of quality information of the network B. If there is
no prior information for B, p(B) is considered a uniform probability distribution
(Luna 2004) and generally its value is set to 1 (Crocomo and Delbem 2011). The
product on j ∈ {1, . . . , tm} runs over all combinations of the parents of Ym and the
product on k ∈ {1, . . . , sm} runs over all possible values of Ym . Nmj is the number of
instances in Pop with the parents of Ym instantiated to its j-th combination. By Nmjk ,
we denote the number of instances in Pop that have both Ym set to its k-th value as
well as the parents of Ym set to its j-the combination of values. Γ (x) = (x − 1)! for
x ∈ N is the Gamma function used in Dirichlet prior (DeGroot 2005) that satisfies
Γ (x + 1) = xΓ (x) and Γ (1) = 1.

Through αmjk and p(B), prior information about the problem is incorporated into
the metric. The parameters αmjk stands for prior information about the number of
instances that have Ym set to its k-th value and the set of parents of Ym is instantiated
to its j-th combination. The prior network can be set to an empty network, when there
is no such information.

In the so-called K2 metric (Cooper and Herskovits 1992) for instance, the parame-
ters αmjk can be set to 1 as there is no prior information about the problem, and Eq. 3
becomes Eq. 4:

p(B|Pop) = p(B)

M∏

m=1

tm∏

j=1

(sm − 1)!
(Nmj + sm − 1)!

sm∏

k=1

(Nmjk)! (4)

Since the factorials in Eq. 4 can grow to huge numbers, a computer overflow might
occur. Thus the logarithm of the scoring metric log(p(B|Pop)) is usually used, as
shown in Eq. 5.

log(p(B|Pop)) = log(p(B)) +
M∑

m=1

tm∑

j=1

⎛

⎝log

(
(sm − 1)!

(Nmj + sm − 1)!
)

+
sm∑

k=1

log((Nmjk)!)
⎞

⎠

(5)

Various algorithms can be used for searching the networks structures to maximize
the value of a scoring metric, like a simple greedy algorithm, local hill-climbing,
simulated annealing, tabu search and evolutionary computation (Larrañaga et al. 2012).

The K2 algorithm is a greedy local search technique that applies K2 metric in its
logarithmic form (Eq. 5). It starts by assuming that a node does not have parents, then
in each step it gradually adds the edges which increase the scoring metric the most
until no edge increases the metric anymore. The variables ordering are the incoming
input to the algorithm, which might heavily alter the results (Larrañaga et al. 2013), as
it pre-establishes a possible relation between a node and its parents (ascendent nodes).

Other greedy local search techniques also apply K2 metric, like in Pelikan (1999),
where the authors implemented a modified K2 algorithm considering no variables
ordering, resulting in a high DAG search space.

In this work we adopted K2 metric as score-based technique, although any other
method could be used as well. We use the K2 algorithm considering the objectives as
parents in the network.
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Regarding to the parameter estimation and considering that BN’s are often used
for modeling multinomial data with discrete variables (Pearl 1988), we applied the
Bayesian estimate, which considers the expected value E(θmjk |Nmj , B) of θmjk as an
estimate of θmjk , as shown in Eq. 6.

E(θmjk |Nmj , B) = (1 + Nmjk)/(sm + Nmj ). (6)

where Nmjk fits a multinomial distribution, and Nmj = ∑sm
k=1 Nmjk .

3 The algorithm: HMOBEDA

In this section, we detail the HMOBEDA framework emphasizing its main charac-
teristics, i.e., the probabilistic model encompassing three types of nodes: decision
variables, objectives and configuration parameters of its embedded LS.

3.1 Encoding scheme

Every individual is represented by a joint vector with Q + R + L elements, y =
(x, z, p) = (X1, . . . , XQ, Z1, . . . , ZR, P1, . . . , PL), denoting the decision variables
(X1, . . . , XQ), objectives (Z1, . . . , ZR) and LS parameters (P1, . . . , PL). Subvectors
x, z and p can be specified as:

– x is a binary subvector of items, with element Xq ∈ {0, 1}, q = 1 . . . Q, indicating
the presence or absence of the associated item;

– z is a subvector of objectives, with element Zr , r = 1 . . . R, representing the
discrete value of the r th objective.

– p is a subvector of elements, where each element Pl , l = 1 . . . L , indicates the
value associatedwith anLSparameter. Different parameters can be considered. For
example, the maximum number of iterations performed by LS, the neighborhood
type and the type of procedure used to compute the neighbor fitness.

3.2 The HMOBEDA framework

A general schema of the adopted version of HMOBEDA is presented in Fig. 1.
The Initialization process randomly generates N subvectors x and p to compose

the initial population Pop1. For each subvector x, the values of the corresponding
objectives are calculated based on the objective functions of the addressed problem
and further made discrete to form the subvector z.

The Survival block sorts individuals using the non-dominated sorting procedure
(Srinivas and Deb 1994). It calculates the Dominance Rank (DR) (Zitzler et al. 2000),
and also a diversity criterion named Crowding Distance (CD) (Deb et al. 2002). Indi-
viduals are sorted taking at first DR and secondly (in case of ties) the CD criterion.
Finally, truncation selection takes place selecting the best N solutions (at the first gen-
eration the entire population is selected). Besides the original HMOBEDA(Martins
et al. 2016), in this work we have also implemented another online configuration of
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Fig. 1 HMOBEDA framework

HMOBEDAbased on the hypervolume indicator, namedHMOBEDAhype, which sub-
stitutes the CD tie-breaker criterion by the hypervolume fitness value in the Survival
block of Fig. 1.

In the sequence, the Local Search block adopts a very simple LS procedure based
on Hill Climbing (HC) (Russel and Norvig 2003). For every solution in Popg ,
HCLS generates a neighbor (nhb), calculates its fitness and nhb substitutes the
original solution in case it has a better fitness. As previously discussed, the sub-
vector p defines the parameters associated with HCLS. In this paper it defines how
many iterations (Niter ) will be used, how each neighbor will be generated (Tnbh),
and finally how to compute the neighbor fitness (TFnbh) in a single-objective way.
If a neighbor is infeasible, the algorithm applies the same greedy repair method
as in Zitzler and Thiele (1999). It repairs the solution by removing items in an
ascending order of the relation profit/weight until all the constraints conditions are
satisfied.

The EDA Selection block starts with the PGM construction phase. A binary tour-
nament selects NPGM individuals from Popg . The procedure randomly selects two
solutions and the one positioned in the best front is chosen. If they lie in the same front,
it chooses that solution with the greatest CD. Then, PopgPGM is obtained encompass-
ing NPGM good individuals.

BN structure and BN parameters are estimated based on the joint probabilistic
model of Q decision variables, R objectives and L local search parameters, (i.e. Y =
(Y1, . . . YM ) = (Z1, . . . ZR, X1, . . . XQ, P1, . . . PL)). It encodes a factorization of the
joint probability distributions ρ(y) = ρ(z1, . . . , zR; x1, . . . , xQ; p1, . . . , pL ; ) given
by:

ρ(y) =
R∏

r=1

ρ(zr |paB
r ).

Q∏

q=1

ρ(xq |paB
q ).

L∏

l=1

ρ(pl |paB
l ) (7)

where PaB
r = ∅, PaB

q ⊆ {Z1, . . . ZR} and PaB
l ⊆ {Z1, . . . ZR} are the parents of

each objective, variable and LS parameter node respectively, and paB
r , paB

q and paB
l

represent one of their combination of values.
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Fig. 2 An example of a PGM
used by HMOBEDA

Therefore, aiming to learn the probabilistic model, the EDA Model block divides
the objective values collected from vector z in PopgPGM into sdr discrete states.1

Considering that the BN model is estimated using the K2-metric (Eq. 5) and the
Bayesian estimate (Eq. 6) with objectives as BN nodes, z also fits a multinomial
distribution. Thus, to minimize the computational efforts to model B using all the sr
states, we have applied the discretization process with a limited number of possible
values for each zr ∈ z fixed as sdr . In this case we assume the same sdr value for each
zr node. The K2 algorithm is used here by setting parent nodes as objectives in the
network. The same parents relationship was considered in Karshenas et al. (2014).

As discussed inMartins et al. (2016), the advantage of HMOBEDA over traditional
EDA-based approaches is that besides providing good decision variables (based on
the model captured from good solutions present in PopgPGM ) it can also provide LS
parameters more related to good objective values which are fixed as evidence.

In theSampling block, the obtainedPGMis used to sample the set of new individuals
(Popsmp). In this case, not only decision variables x, but also, local search parameters
p can be sampled. Although the proposed methodology accepts any Bayesian Net-
work structure, in the experiments, all learned structures are as the one represented in
Fig. 2, considering no relation between variables, between parameters and between
both (variables and parameters). This naive Bayesian model, is adopted to facilitate
the sampling process: fixing objective values with high values (for maximization prob-
lems) enables the estimation of their associated decision variables and LS parameters.

The union of the sampled population (Popsmp) and the current population (Popg)
in the EDA Merge block is used to create the new population for the next generation
g+ 1. Individuals (the old and the new ones) are selected to the next generation in the
Survival block, and the main loop continues until the stop condition is achieved.

4 Experiments and results

The multi-objective knapsack problem addressed in this paper can be formulated as
follows:

max
x

z(x) = (z1(x), . . . , zR(x))

1 The discretization process converts each objective value into sdr discrete states considering themaximum
possible value for each objective (Maxr ). For each objective r , its discrete value is calculated as zdr =
�zr sdr /Maxr �.
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Table 1 Parameters of the algorithms

Description Value Algorithm

N Population size 100 HMOBEDA, MBN-EDA, NSGA-II, S-MOGLS

Beta Local search 1 HMOBEDA, S-MOGLS

NPGM PopgPGM size N/2 HMOBEDA, MBN-EDA, NSGA-II, S-MOGLS

Nsmp Popgsmp size 10 ∗ N HMOBEDA, MBN-EDA

sdr Total of disc. states 10 HMOBEDA

pcr Uniform cross prob. 0.8 NSGA-II, S-MOGLS, NSGA-III, MOEA/D

pmu Bit flip mutat. prob. 1/500 NSGA-II, S-MOGLS,NSGA-III, MOEA/D

subject to
∑Q

q=1
brq xq ≤ cr , r = 1, . . . , R (8)

with zr (x) =
∑Q

q=1
arq xq , x ∈ {0, 1}Q

where x is a Q-dimension binary vector, such that xq = 1means that item q is selected
to be in r -th knapsack and arq , brq and cr are nonnegative coefficients. Given a total of
R objective functions (knapsacks) and Q items, arq is the profit of item q = 1, . . . , Q,
according to knapsack r = 1, . . . , R, brq denotes the weight of item q according to
knapsack r , and cr is the constraint capacity of knapsack r .

Experiments conducted in this paper adopt the union of each set of instances con-
sidered in Ishibuchi et al. (2015), Tanigaki et al. (2014) and Zitzler and Thiele (1999).
We use thus instances for 100 and 250 items, with 2 to 5 and 8 objectives. We charac-
terize each instance as R-Q, where R is the number of objectives and Q is the number
of items. The values of arq and brq are specified as integers in the interval [10, 100].
According to Zitzler and Thiele (1999), the capacity cr is specified as 50% of the sum
of all weights related to each knapsack r .

In this section, we compare the original HMOBEDA(Martins et al. 2016) with four
modified versions: HMOBEDA f , HMOBEDA f −inst , HMOBEDAirace and
HMOBEDAhype; and, further, with MBN-EDA (Karshenas et al. 2014), NSGA-II
(Deb et al. 2002), S-MOGLS (NSGA-II with local search) (Ishibuchi et al. 2008),
MOEA/D (Zhang and Li 2007), and NSGA-III (Deb and Jain 2014).

All algorithms used for comparison are the original ones found in the literature.
The exception is NSGA-III that has been adapted for combinatorial optimization.
MOEA/D and NSGA-III are implemented in C++, and the remaining algorithms in
MatLab.

4.1 Algorithm settings

The parameters for each algorithm are shown in Table 1.
As in Ishibuchi et al. (2008), for S-MOGLS we set the probabilities Pls and bit-flip

operation in LS as 0.1 and 4/500, respectively; the number of neighbors (Nls) to be
examined as 20. Therefore, for NSGA-III, we adopt the same configuration used in
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Hybrid multi-objective Bayesian estimation… 35

Deb and Jain (2014), i.e., the number of reference points (H ) defines the population
size N . For R-objective functions, if p divisions are considered along each objective,
the authors in Deb and Jain (2014) define H = C p

R+p−1. In MOEA/D, the number

of subproblems equals the population size N and the weight vectors λ1, . . . ,λN are
controlled by the configuration parameter W , calculated as proposed in Zhang and Li
(2007) (this is the same procedure used to generate the reference points in NSGA-III).
As in Deb and Jain (2014), the size of the neighborhood for each weight vector is
T = 10. MOEA/D considers the weighted sum approach.2

The fitness calculation of HMOBEDAhype is based on a hypervolume approxima-
tion usingMonte Carlo simulation, as presented in HypE algorithm proposed by Bader
and Zitzler3 (Bader and Zitzler 2011) due to the very expensive and time consuming
computation of the exact hypervolume fitness (Bader and Zitzler 2011). This method
generates random samples in the objective space and it counts the number of sam-
ples which are dominated by Popg . The hypervolume is approximated by the ratio
between the dominated and total samples. The number of samples used for Monte-
Carlo approximation is 10,000.

4.2 Testing the influence of LS online configuration

TheLSonline configuration adoptedbyHMOBEDAduring the evolution considers the
following elements in the vector p: the number of LS iterations Niter ∈ {5, 6 . . . , 20};
the type of neighbor fitness calculation TFnbh ∈ {1, 2}: with (1) representing Linear
Combination and (2) Alternation of included objectives (i.e. one objective after the
other in each LS iteration); the neighborhood type Tnbh ∈ {1, 2}: with (1) defining
drop-add and (2) insertion.

This paper aims to answer the question “What is the influence (on the HMOBEDA
performance) of including LS parameters as BN nodes? As previously discussed,
this is a relevant question since the automatic and informed determination of the LS
parameters can notably improve the efficiency of the search.

As an attempt to answer this question, we modified the original version of
HMOBEDA providing three other versions: HMOBEDA f , HMOBEDA f −inst and
HMOBEDAirace. None of these versions has LS parameter encoded as nodes in the
PGM structure and all of them consider the same HMOBEDAparameters of Table 1.

In the LS off-line configuration adopted by the modified algorithms, the first ver-
sion, HMOBEDA f , considers Niter = 19, TFnbh = 0 and Tnbh = 1. These values
represent the most frequent value of each LS-parameter provided by the original
HMOBEDA in the set of non-dominated solutions, considering all the instances and
executions. HMOBEDA f −inst considers the same rule (i.e. the most frequent value
found in all HMOBEDA executions) but now separated for each instance. In this case

2 This approach is used in an usual application for MOKP (Zhang and Li 2007), which can be downloaded
from http://http://dces.essex.ac.uk/staff/zhang/webofmoead.htm and is also suggested in Ishibuchi et al.
(2015).
3 This implementation is used in Bader and Zitzler (2011) for more than three objectives and can be
downloaded from http://www.tik.ee.ethz.ch/sop/download/supplementary/hype/.
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we have TFnbh = 0 and Tnbh = 1 for all instances; Niter = 18 for 3-100, 2-250 and
4-250 instances; Niter = 10 for 3-250; Niter = 19 for 4-100; Niter = 16 for 2-100
and 5-100; and Niter = 20 for 8-100, 5-250 and 8-250 instances. HMOBEDAirace

considers Niter = 14, TFnbh = 0 and Tnbh = 1. The LS off-line configuration method
used for HMOBEDAirace is I/F-Race (Birattari et al. 2010), which is a state-of-the-art
automatic configuration method. We use the implementation of I/F-Race provided by
the irace package (López-Ibáñez et al. 2011). As in López-Ibáñez and Stützle (2012),
it performs the configuration process using the hypervolume (HV−) as the evaluation
criterion.

The same instances are used for training and testing off-line versions. The results
obtained by HMOBEDA f HMOBEDA f −inst and HMOBEDAirace are, thus, quite
better than would be expected if the test instances were different.

Aiming to be as fair as possible, we define a stop condition based on the maximum
number of fitness evaluations (Maxeval ), which includes repair procedures and LS-
iterations. Then, all algorithms stop when the total number of fitness computations
achieve the value 100, 000. A total of 20 independent executions are conducted for
each algorithm and from these results the performance metrics are computed.

4.3 Performance metrics

The optimal Pareto front for each instance of the addressed problem is not known.
So, we use a reference set, denoted by Ref , which is constructed by gathering all
non-dominated solutions obtained by all algorithms over all executions. Two main
convergence-diversity (Jiang et al. 2014) metrics, usually adopted for measuring the
quality of the optimal solution set for multi and many objective optimization, are then
considered: Hypervolume (HV) (Zitzler and Thiele 1999; Bader 2009) and Inverted
Generational Distance (IGD) (van Veldhuizen and Lamont 1999).

The hypervolume metric considers the difference (HV−) between the hypervolume
of the solution set of an algorithm and that of the reference set. The IGD metric is
the average distance from each solution in the reference set to the nearest solution
in the solution set. So, smaller values of HV− and IGD correspond to higher quality
solutions in non-dominated sets indicating both better convergence and good coverage
of the reference set.

4.4 Numerical results

In this section we aim to compare the results of HMOBEDA, HMOBEDA f ,
HMOBEDA f −inst , HMOBEDAirace, HMOBEDAhype, MOEA/D, MBN-EDA, NS-
GA-II, NSGA-III and S-MOGLS.

Table 2 shows the hypervolume difference (HV−) and IGD metric, both averaged
over 20 executions of each algorithm. The lowest values are highlighted (in bold). We
use PISA framework (Bleuler et al. 2003) to compute HV− and Matlab to compute
IGD.

We note, in Table 2, that HMOBEDA always produces the lowest average val-
ues for HV− (except in 2–500 instance, where MOEA/D has competitive values for
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Table 2 Average HV− and IGD

Instance 2–100 2–250 3–100 3–250 4–100 4–250 5–100 5–250 8–100 8–250
×107 ×108 ×1010 ×1011 ×1014 ×1015 ×1017 ×1019 ×1029 ×1033

Average hypervolume differences (HV−)
HMOBEDA 1.4835 1.0650 2.0899 3.6940 1.7725 3.9862 4.2648 5.4308 7.5813 1.2523

HMOBEDA f −inst 1.5202 1.0678 2.4453 4.0747 2.0224 4.7302 5.4628 6.1025 8.1005 1.3516

HMOBEDAirace 1.5180 1.0650 2.4673 4.2396 1.9092 4.5377 5.4746 6.0489 8.0908 1.3524

HMOBEDA f 1.5223 1.0660 2.4278 4.0875 2.0201 4.7015 5.5002 6.1018 8.0916 1.3545

HMOBEDAhype 1.4916 1.0651 2.2189 3.8202 1.8113 4.0142 5.0276 5.6555 8.0864 1.3509

MBN-EDA 1.5610 1.0990 2.7639 4.5370 2.1094 5.1974 5.7614 6.3583 8.1010 1.3649

NSGA-II 1.5372 1.1026 2.6175 4.5576 2.0034 5.0852 5.4577 6.1535 8.0963 1.3701

S-MOGLS 1.6666 1.1026 2.6386 4.5535 1.9946 5.0912 5.3791 6.1863 8.0951 1.3637

NSGA-III 1.5011 1.0886 2.3985 4.1133 1.8134 4.8869 5.3693 6.0040 8.0820 1.3523

MOEA/D 1.5174 0.7239 2.7698 3.9393 1.9790 4.7003 5.4815 5.8308 8.0914 1.3567

×103 ×103 ×1 ×1 ×1 ×1 ×1 ×1 ×103 ×104

Average IGD metric

HMOBEDA 2.5101 6.5414 14.5456 42.0002 16.0165 23.3582 7.2521 18.1940 6.5080 1.432

HMOBEDA f −inst 2.5074 6.5730 21.7936 44.2133 19.9102 26.7763 10.7154 22.9736 6.6949 1.4641

HMOBEDAirace 2.5049 6.5379 22.9353 46.9815 18.2734 26.9977 11.2178 16.3553 6.6114 1.4735

HMOBEDA f 2.5068 6.5627 21.9104 44.2116 19.9058 26.6631 10.8391 23.0174 6.6035 1.4889

HMOBEDAhype 2.5291 6.5461 22.4088 46.5075 18.1240 26.4675 11.3363 16.2874 6.5827 1.463

MBN-EDA 2.5439 6.7465 24.9048 50.4658 20.8543 27.2950 11.8650 23.9795 6.7153 1.646

NSGA-II 2.5276 6.7807 24.1872 52.1838 20.8436 27.0147 12.1695 24.8114 6.9397 1.7074

S-MOGLS 2.7486 6.7645 24.4780 51.6336 20.6078 26.9242 12.2941 24.5989 6.8997 1.7049

NSGA-III 2.4921 6.7502 14.5150 42.8885 13.6707 26.5950 11.1986 22.9275 6.7402 1.5187

MOEA/D 2.5391 5.0365 18.9371 45.1457 17.3025 27.2128 11.6657 23.9553 6.6993 1.482

both HV− and IGD). Regarding IGDmetric, NSGA-III achieves lower average values
for instances that have 2, 3 and 4 objectives with 100 items, and HMOBEDAhype

has the lowest average value for 5–250. However the remaining instances stand
HMOBEDA as a competitive approach.

The analysis is now expanded to include statistical tests. First we aim to analyze
the use of CD versus hypervolume as tie-breaker criterion comparing HMOBEDAwith
HMOBEDAhype. Then we proceed with the analysis by evaluating the influence of LS
online configuration based on BN nodes, comparing the original HMOBEDA with its
off-line configured versions. Then, we define the standard version that will be further
compared with other approaches reported in the literature.

Based on the Shapiro-Wilk normality test (Conover 1999) we have concluded that
HV− and IGD results are not normally distributed. Then, the Kruskal-Wallis test has
been applied for statistical analysis (Casella and Berger 2001) of the results for the
LS off-line versions, and the Mann-Whitney-Wilcoxon test for HMOBEDAhype. All
tests have been executed with a significance level of α = 0.05.
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Table 3 Results for pairwise comparisons between HMOBEDAand HMOBEDAhype using Mann-
Whitney-Wilcoxon test with α = 0.05 for each problem instance

Algorithm 2–100 2–250 3–100 3–250 4–100 4–250 5–100 5–250 8–100 8–250

Hypervolume differences (HV−)

HMOBEDA (0, 0) (0, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0, 1) (0, 1) (0, 1) (0, 1)

HMOBEDAhype (0, 0) (1, 0) (0, 0) (0, 0) (0, 0) (0, 0) (1, 0) (1, 0) (1, 0) (1, 0)

IGD metric

HMOBEDA (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 0) (0, 1) (0, 1)

HMOBEDAhype (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (0, 0) (1, 0) (1, 0)

First we compare HMOBEDA with HMOBEDAhype, and then, with its off-line
modified versions. The results of the test reveal that the null hypothesis that all the
algorithms have HV− values with no statistically significant difference can be rejected
for all instances. The same hypothesis can be rejected in the case of IGD. In case of
the comparison with the off-line modified versions, a post-hoc analysis is performed
to evaluate which algorithms present statistically significant difference.

Table 3 shows the statistical analysis of pairwise comparisons betweenHMOBEDA
and HMOBEDAhype for each instance with respect to HV− and IGD values. In
Table 4 the numbers in parentheses show the results of pairwise comparisons between
HMOBEDA and off-line algorithms using Dunn-Sidak’s post-hoc test with a signifi-
cance level of α = 0.05. For both tables, the first number shows howmany algorithms
are better than the algorithm listed in the corresponding line, and the second number
shows how many algorithms are worse. The entry related to the algorithm with the
lowest (best) average metric is emphasized (bold).

HMOBEDA presents statistically significant differences in comparison with
HMOBEDAhype for 2–250, 5–100, 8–100 and 8–250, and regarding only IGDmetric,
for 2–100, 3–100, 3–250, 4–100, 4–250 and 5–250 instances.

There is no statistically significant differences between HMOBEDA and
HMOBEDAhype for instances 2–100, 3–100, 3–250, 4–100 and 4–250 for (HV−)
metric. Regarding IGD metric, HMOBEDA’s results present statistically significant
differences for almost all instances, except in 5–250, where HMOBEDAhype presents
the lowest metric value.

We can now analyze the influence of including LS-parameters in the PGMstructure.
HMOBEDA shows statistically significant differences in comparison with its off-line
modified versions for almost all instances, particularly those with high number of
objectives and variables (5–100, 4–250, 8–100 and 8–250), where HMOBEDA is
better than the other three algorithms. There is no statistically significant differences
between HMOBEDA and HMOBEDAirace for instance 4–100 for both HV− and
IGD values. For all instances with 4, 5 and 8 objectives, HMOBEDA is better than
HMOBEDA f −inst and HMOBEDA f .

These results justify, in our opinion, the relevance of adding LS parameters into the
probability model, and we assume that HMOBEDA is better or at least equal to its
modified versions with LS off-line configuration. We also conclude that despite using
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Table 4 Results for pairwise comparisons among HMOBEDA versions using Kruskal-Wallis and Dunn-
Sidak’s post-hoc tests with α = 0.05 for each problem instance

Algorithm 2–100 2–250 3–100 3–250 4–100 4–250 5–100 5–250 8–100 8–250

Hypervolume differences (HV−)

HMOBEDA (0, 3) (1, 2) (0, 3) (0, 3) (0, 2) (0, 3) (0, 3) (0, 3) (0, 3) (0, 3)

HMOBEDA f −inst (1, 0) (3.0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (3.0) (1, 1)

HMOBEDAirace (1, 0) (0,3) (1, 0) (1, 0) (0, 0) (1, 0) (1, 0) (1, 0) (1, 2) (1, 1)

HMOBEDA f (1, 0) (2, 1) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (2, 1) (3, 0)

IGD metric

HMOBEDA (0, 0) (1, 2) (0, 3) (0, 1) (0, 2) (0, 3) (0, 3) (0, 2) (0, 3) (0, 3)

HMOBEDA f −inst (0, 0) (3.0) (1, 0) (0, 0) (1, 0) (1, 0) (1, 0) (2, 0) (3.0) (1, 1)

HMOBEDAirace (0, 0) (0, 3) (1, 0) (1, 0) (0, 0) (1, 0) (1, 0) (0, 2) (2, 1) (1, 1)

HMOBEDA f (0, 0) (2, 1) (1, 0) (0, 0) (1, 0) (1, 0) (1, 0) (2, 0) (1, 2) (3, 0)

Table 5 Results for pairwise comparisons among HMOBEDA and advanced evolutionary methods using
Kruskal-Wallis and Dunn-Sidak’s post-hoc tests with α = 0.05 for each problem instance

Algorithm 2–100 2–250 3–100 3–250 4–100 4–250 5–100 5–250 8–100 8–250

Hypervolume differences (HV−)

HMOBEDA (0, 3) (0, 3) (0, 4) (0, 3) (0, 4) (0, 5) (0, 5) (0, 5) (0, 5) (0, 5)

MBN-EDA (2.0) (2, 1) (1.0) (2, 0) (2, 0) (2, 0) (1, 0) (3, 0) (4, 0) (2, 0)

NSGA-II (2, 0) (4, 0) (1, 0) (3, 0) (2, 0) (1, 0) (1, 0) (1, 0) (3, 0) (3, 0)

S-MOGLS (1, 0) (3, 0) (1, 0) (3, 0) (2, 0) (1, 0) (1, 0) (1, 0) (1, 1) (1, 0)

NSGA-III (0, 2) (1, 2) (0, 0) (0, 2) (0, 4) (1, 1) (1, 0) (1, 1) (1, 2) (1, 2)

MOEA/D (0, 0) (0, 4) (1, 0) (0, 3) (2, 0) (1, 0) (1, 0) (1, 1) (1, 2) (1, 1)

IGD metric

HMOBEDA (0, 0) (0, 3) (0, 4) (0, 3) (0, 3) (0, 5) (0, 5) (0, 5) (0, 5) (0, 5)

MBN-EDA (0, 0) (1, 1) (2, 0) (2, 0) (3, 0) (1, 0) (1, 0) (1, 0) (1, 1) (3, 0)

NSGA-II (0, 0) (3, 0) (2, 0) (2, 0) (3, 0) (1, 0) (1, 0) (1, 0) (4, 0) (3, 0)

S-MOGLS (0, 0) (2, 0) (2, 0) (2, 0) (2, 0) (1, 0) (1, 0) (1, 0) (3, 0) (1, 0)

NSGA-III (0, 0) (2, 0) (0, 4) (0, 3) (0, 4) (1, 0) (1, 0) (1, 0) (1, 2) (1, 2)

MOEA/D (0, 0) (0, 4) (2, 0) (0, 0) (1, 2) (1, 0) (1, 0) (1, 0) (1, 2) (1, 2)

less computational resources, HMOBEDA is competitive with HMOBEDAhype. So,
we define HMOBEDA as our standard version and it will be compared with other
traditional approaches.

Table 5 shows the statistical analysis of the results considering the other approaches.
The same methodology adopted in the comparison HMOBEDA versus its off-line
modified versions is considered here.

The analysis ofTable 5 reveals that the proposed approach shows statistically signifi-
cant differenceswith almost all other algorithms (except for instanceswith 2 objectives
with respect to the IGD metric, where there is no statistically significant differences
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Table 6 Average run time (min) for each algorithm and instance

Algorithm 2–100 2–250 3–100 3–250 4–100 4–250 5–100 5–250 8–100 8–250

HMOBEDA 2.34 5.15 5.45 14.12 9.87 24.23 23.51 52.73 34.45 65.87

HMOBEDA f−inst 2.12 5.23 5.09 14.15 9.86 24.87 21.25 53.12 32.12 66.43

HMOBEDAirace 2.67 5.01 5.17 13.87 9.43 24.64 23.12 52.76 33.21 65.01

HMOBEDA f 2.59 4.91 5.88 13.98 9.51 24.40 23.87 51.42 34.51 65.24

HMOBEDAhype 3.56 6.98 6.78 17.01 12.38 32.45 34.82 65.32 42.43 75.18

MBN-EDA 1.54 5.21 3.87 12.90 6.41 25.76 26.15 55.89 31.81 62.45

NSGA-II 0.87 2.21 1.57 5.87 5.89 20.13 26.51 50.32 35.27 66.18

S-MOGLS 1.76 3.53 4.12 11.10 8.91 22.67 30.67 56.76 37.18 67.03

NSGA-III 2.91 5.18 5.41 14.90 9.41 24.90 22.85 54.23 34.54 67.04

MOEA/D 2.82 5.01 5.44 14.50 9.34 23.70 23.76 52.87 34.61 66.55

between all the algorithms). It also shows that both HV− and IGD present consistent
results.

For instances 3–100 in bothHV− and IGDmetrics, the performances ofMBN-EDA,
NSGA-II, S-MOGLS andMOEA/D do not present statistically significant differences
and all of them are worse than HMOBEDA (which has similar performance to NSGA-
III), indicating that HMOBEDA is better than four other approaches- (0, 4). Also,
for instances 4–100, there is no statistically significant differences between the HV−
performance ofHMOBEDAandNSGA-III (both are better than other four algorithms-
(0, 4)). Considering the IGD performance, HMOBEDA , NSGA-III and MOEA/D are
better thanMBN-EDA, NSGA-II and S-MOGLS.MOEA/D is better than two (MNB-
EDA and NSGA-II) and worse than one (NSGA-III)- (1, 2).

Another example can be seen for instances 3-250, bothHV− and IGDperformances
do not present statistically significant differences between HMOBEDA, NSGA-III
and MOEA/D. Regarding IGD, MOEA/D are not better nor worse than any other
approach- (0, 0). For the remaining instances we can conclude that, based on HV−
and IGD, HMOBEDA has the best performance among the compared approaches.

Therefore, we can affirm that HMOBEDA is a competitive approach for the
instances considered in this work.We have observed that it is better than the compared
approaches, except for instances of small size where there is no statistically significant
difference between HMOBEDA, NSGA-III and MOEA/D. Also, HMOBEDA is bet-
ter than its off-line modified versions, which evidences that the flexibility imposed by
modeling LS parameters as nodes of the PGM model results in benefits to the hybrid
model encompassing variables and objectives. Finally, results show that the use of
hypervolume instead of crowding distance is not beneficial, as it does not improve the
performance and still increases the computational cost of the approach.

The average run time for each algorithm is presented in Table 6.
We can observe in Table 6 that the computational efforts for each algorithm are in

the same time scale, keeping the runtime at practical levels. However, increasing the
number of objectives and variables severely impacts the average computational time
of all approaches. We also include statistical tests in order to compare the run time for
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Table 7 Results for pairwise run time comparisons among HMOBEDA and all other algorithms using
Kruskal-Wallis and Dunn-Sidak’s post-hoc tests with α = 0.05 for each problem instance

Algorithm 2–100 2–250 3–100 3–250 4–100 4–250 5–100 5–250 8–100 8–250

Run time (min)

HMOBEDA (3, 4) (2, 1) (3, 1) (3, 1) (2, 1) (1, 1) (0, 4) (0, 4) (0, 3) (0, 6)

HMOBEDA f −inst (3, 4) (2, 1) (3, 1) (3, 1) (2, 1) (1, 1) (0, 4) (0, 4) (0, 3) (4, 1)

HMOBEDAirace (6, 1) (2, 1) (3, 1) (3, 1) (2, 1) (1, 1) (0, 4) (0, 4) (0, 3) (0, 6)

HMOBEDA f (3, 4) (2, 1) (3, 1) (3, 1) (2, 1) (1, 1) (0, 4) (0, 4) (0, 3) (0, 6)

HMOBEDAhype (9, 0) (9, 0) (9, 0) (9, 0) (9, 0) (9, 0) (9, 0) (9, 0) (9, 0) (9, 0)

MBN-EDA (1, 7) (2, 1) (1, 7) (1, 7) (0, 8) (1, 1) (6, 2) (6, 1) (0, 3) (0, 6)

NSGA-II (0, 9) (0, 9) (0, 9) (0, 9) (0, 8) (0, 9) (6, 2) (0, 4) (7, 1) (4, 1)

S-MOGLS (1, 7) (1, 8) (1, 7) (1, 7) (2, 1) (1, 1) (8, 1) (6, 1) (7, 1) (4, 1)

NSGA-III (7, 0) (2, 1) (3, 1) (3, 1) (2, 1) (1, 1) (0, 4) (6, 1) (0, 3) (4, 1)

MOEA/D (7, 0) (2, 1) (3, 1) (3, 1) (2, 1) (1, 1) (0, 4) (0, 4) (0, 3) (4, 1)

all instances considering the total number of executions. Table 7 shows the results for
pairwise comparisons among HMOBEDA and all other algorithms. The entry with
the lowest average run time is emphasized in bold.

We can observe that HMOBEDA and off-line variations, NSGA-III and MOEA/D
do not present statistically significant differences between its execution times for
almost all instances. HMOBEDAhype has the highest computational time for all
instances due to the intensive calculations necessary to compute hypervolumes. Note
that we are mainly interested in the quality of the solution. Thus, the run time is given
only for guidance.

4.5 PGM structure analysis

In order to discuss the learned PGMstructureswe provide an interpretation of the prob-
abilistic model resulted at the end of evolution for 2–100 and 8–100 instances. These
instances correspond to examples of easy bi-objective and difficult many objective
optimization instances, respectively.

Figure 3 shows the interactions (blue circles) between each decision variable Xq ,
q ∈ {1, . . . , 100}, and the objectives Z1 and Z2, learned by the BN for the 2–100
instance. Each circle has coordinates indicating the number of times an arc (Z1, Xq)

has been captured along the evolutionary process for all executions versus a similar
measure for arc (Z2, Xq). Note that the interaction is quite similar for the two objec-
tives, since most of points are located nearby the +1 slope line. In other words, based
on Fig. 3, we can conclude that variables (specially if the number of interactions for a
given variable is either very low or very high) are equally affected by both objectives.

Figure 4 focuses on the analysis of BN structure concerning the relations between
objectives and LS parameters for the 8–100 instance. The relations between each
objective and the three LS parameters considered in this paper are illustrated by star
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Fig. 3 For 2–100 instance, number of times arc (Z1, Xq ) has been captured in the BN versus a similar
measure for arc (Z2, Xq ). Each circle corresponds to one decision variable Xq , q ∈ {1, . . . , 100}

Fig. 4 Glyph representation of
the three LS parameters (spokes)
for each objective Z1 to Z8 of
8–100 instance

Z1 Z2 Z3 Z4

Z5 Z6 Z7 Z8

glyphs. In such representation, each spoke represents one parameter Pl and it is pro-
portional to the number of times the arc (Zr , Pl), l ∈ {1, 2, 3}, r ∈ {1, . . . , 8}, has
been captured along the evolutionary process for all executions. The glyphs allow us
to visualize which is the relative strength of the relations. For example, it can be seen
in Fig. 4 that objectives Z1 and Z6 have small influence on the way the parameters are
instantiated. On the other hand, Z3 and Z7 have great influence, although Z3 is better
balanced among the parameters than Z7.

In this sectionwehave aimed to illustrate one of themain advantages of usingEDAs:
the possibility of scrutinizing its probabilisticmodelwhich usually encompasses useful
information about the relationship amongvariables.Wehave shownwith two examples
that HMOBEDA model allows a step forward. First, it is possible to estimate the
relevance that the variables have on the objectives, from the analysis of how frequent
objective-variable interactions are. Second, it is possible to determine how sensitive
are the different objectives to the setting of the distinct local search parameters from the
analysis of the frequency of the objective-parameters interactions. Notice that while,
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for sampling purposes, objectives are set as parents of variables and of local search
parameters, the quality of the solutions, i.e., the objective values are the ones sensitive
to the variables and parameters assignments.

5 Conclusions and future work

In this paper we have analyzed a newMOEDA based on Bayesian Network in the con-
text of multi and many objective optimization. The approach named HMOBEDA has
a hill climbing procedure embedded in the probabilistic model as a local optimizer.
We have thus incorporated a local search (LS) procedure to exploit the search space
and a joint probabilistic model of objectives, variables and LS parameters to generate
new individuals through the sample process. The Bayesian network is learned using
the K2 method and since the LS parameters are part of the network, they are adapted
as the algorithm evolves.

The main issue investigated in this paper concerns whether the auto-adaptation of
LS parameters improves the search by allowing the Bayesian network to represent and
set these parameters. We have thus modified the original HMOBEDA to build three
other off-line versions with no LS parameter encoded as a node in the probabilistic
model. The first version (HMOBEDA f ) is based on the best LS parameters found by
HMOBEDA. The second version (HMOBEDA f−ins) is specialized for each instance
by setting the LS parameters to the best ones found by HMOBEDA for that instance.
The third version (HMOBEDAirace) defines the LS parameters through the irace pack-
age. We have also implemented an online configuration of HMOBEDA based on the
hypervolume indicator (HMOBEDAhype) as part of the selection procedure. We have
analyzed the performance of the proposed approaches for ten instances of the multi-
objective knapsack problem, considering two traditionalmetrics:Hypervolume (HV−)
and Inverted Generational Distance (IGD).

Based on the experiments with the MOKP instances addressed in this work, we can
conclude that the inclusion of online configuration of the LS parameters is beneficial
forHMOBEDA. In otherwords, the online parameter setting based on thePGMismore
effective thanfixinggoodparameters alongoptimization.Wehave shown that the better
performance of the proposed approach ismore relatedwith the probabilisticmodel than
with LS: as modified versions of HMOBEDA using different tuned LS parameters did
not provide the same trade-off. Another conclusion is that using hypervolume instead
of crowding distance as a tie-breaker neither improves the solution found nor presents
good computational cost.

We have also concluded that the proposed hybrid EDA is competitive when com-
pared with the other evolutionary algorithms investigated. One possible explanation
points to the fact that since the LS parameters are in the same probabilistic model,
HMOBEDA provides an automatic and informed decision at the time of setting these
parameters. Thus a variety of non-dominated solutions can be found during different
stages of the evolutionary process. This finding is relevant for the development of other
adaptive hybrid MOEAs. Probabilistic modeling arises as a sensible and feasible way
not only to learn and explore dependencies between variables and objectives but also
to automatically control the application of local search operators.
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An analysis of the resulting BN structures has also been carried to evaluate how
the interactions among variables, objectives and local search parameters are captured
by the BNs. As a way to illustrate the types of information that can be extracted from
the models, we have shown how the frequency of arcs in the BNs indicate that the
variables of the 2–100 instance have a similar influence on both objectives. For 8–100
instance, a similar analysis shows that LS parameters are more related to objectives
Z3 and Z7 than to the others. This illustrative analysis can be further extended.

In the future, MOEA techniques other than Pareto-based approaches should be
examined, such as scalarizing functions, for example. These new approaches should
be investigated with more than eight objectives. Beyond that, we intend to relax some
of the current restrictions of our model to represent reacher types of interactions (e.g.,
dependencies between variables). Consequently, other classes of methods to learn the
BN structures, such as constraint based (Aliferis et al. 2010; Tsamardinos et al. 2003)
and hybrid (Tsamardinos et al. 2006) methods could be investigated.

Finally, we intend to compare HMOBEDA with a larger set of traditional
approaches, including a baseline method commonly used in hyperheuristics contexts
which randomly generates LS parameters.
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