
J Heuristics (2017) 23:285–319
DOI 10.1007/s10732-017-9346-9

On branching heuristics for the bi-objective 0/1
unidimensional knapsack problem

Audrey Cerqueus1 · Xavier Gandibleux2 ·
Anthony Przybylski2 · Frédéric Saubion3

Received: 9 November 2016 / Revised: 27 April 2017 / Accepted: 24 June 2017 /
Published online: 30 June 2017
© Springer Science+Business Media, LLC 2017

Abstract This paper focuses on branching strategies that are involved in branch and
bound algorithms when solving multi-objective optimization problems. The choice of
the branching variable at each node of the search tree constitutes indeed an important
component of these algorithms. In this work we focus on multi-objective knapsack
problems. In the literature, branching heuristics used for these problems are static, i.e.,
the order on the variables is determined prior to the execution. This study investigates
the benefit of defining more sophisticated branching strategies. We first analyze and
compare a representative set of classic branching heuristics and conclude that none can
be identified as the best overall heuristic. Using an oracle, we highlight that combining
branching heuristicswithin the same branch and bound algorithm leads to considerably
reduced search trees but induces high computational costs. Based on learning adaptive
techniques, we propose then dynamic adaptive branching strategies that are able to

B Audrey Cerqueus
Audrey.Cerqueus@emse.fr

Xavier Gandibleux
Xavier.Gandibleux@univ-nantes.fr

Anthony Przybylski
Anthony.Przybylski@univ-nantes.fr

Frédéric Saubion
Frederic.Saubion@univ-angers.fr

1 LIMOS UMR 6158, Mines Saint-Étienne, 158 cours Fauriel CS 62362,
42023 Saint-Étienne Cedex 2, France

2 IRCCyN UMR CNRS 6597, Université de Nantes, 2 Rue de la Houssinière BP 92208,
44322 Nantes Cedex 03, France

3 LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-017-9346-9&domain=pdf


286 A. Cerqueus et al.

select the suitable heuristic to apply at each node of the search tree. Experiments are
conducted on the bi-objective 0/1 unidimensional knapsack problem.

Keywords Multiple objective combinatorial optimization · 0/1 unidimensional
knapsack problem · Branch and bound · Branching heuristics · Utilities · Adaptive
strategies

1 Introduction

1.1 Context

Branch and bound are well-knownmethods for solving single-objective combinatorial
optimization problems, since the beginning of the 1950s. These approaches have been
especially studied and used for solving the knapsack problem, which is one of the
seminal problems in discrete optimization (see e.g. Kolesar 1967; Thesen 1975; Shih
1979; Gavish and Pirkul 1985 and the books of Martello and Toth 1990 and Kellerer
et al. 2004).

In a few words, a branch and bound method is an implicit enumeration principle
in which the feasible set (i.e., the set of solutions that satisfy the constraints of the
problem) is progressively partitioned, by fixing the value of one or several variables.
Generally, considering binary variables, the partitioning procedure consists in fixing
a selected variable to 0 or 1. The partitioning of the feasible set can be represented
by a search tree whose root node is the initial problem and each node represents
a subproblem, in which some variables have been fixed. Therefore, the branching
strategy that selects the variable to be assigned at each node of the tree constitutes
a key component of a branch and bound method. Branching strategies are the core
of this study, in the context of multi-objective combinatorial optimization problems
(MOCO), where several criteria have to be optimized simultaneously (see for instance
Ehrgott and Gandibleux 2000; Ehrgott 2005 for a detailed presentation).

1.2 pOKP: formulation, efficient solutions and nondominated points

In this work, we focus on the unidimensional 0/1 knapsack problem with multiple
objectives, which is often used in order to evaluate solving algorithms in MOCO. In
this problem, n items are assigned to profits among p objectives (this profit is denoted
by ckj for an item j ∈ {1, . . . , n} and an objective k ∈ {1, . . . , p}). The items have
also a weight (denoted byw j for an item j ∈ {1, . . . , n}). Hence, solving this problem
consists in selecting a subset of items that maximizes the profit, while respecting the
weight capacity constraint (this capacity is denoted byω). Therefore, this problem can
be formulated as:

max
∑n

j=1 c
k
j x j k = 1, . . . , p

s.t.
∑n

j=1 w j x j ≤ ω

x j ∈ {0, 1} j = 1, . . . , n (pOKP)

123



On branching heuristics for the bi-objective. . . 287

This problem is denoted by pOKPwith p the number of objective functions,KP stands
for the single-objective version. Note that pOKP is NP-hard whatever the value of
p. However, the single-objective case is generally considered as practically easy to
solve, and can be solved in pseudo-polynomial time. X denotes the set of feasible
solutions. zk(x) = ∑n

j=1 c
k
j x j is the objective value of x ∈ X according to the

objective k ∈ {1, . . . , p}. z(x) = (z1(x), . . . , z p(x)) ∈ R
p is the image of x ∈ X in

the objective space. Y = {y = z(x), x ∈ X} is called the outcome set.
In the MOCO context, there does not exist in general a single optimal solution but

rather a set XE of efficient solutions. We assume in the remaining part of the paper
that no feasible solution optimizes all objective functions simultaneously.

Let y1, y2 ∈ R
p be the objective values associated with two feasible solutions x1

and x2. We write y1 � y2 (y1 weakly dominates y2) if y1k ≥ y2k for all k ∈ {1, . . . , p}
and y1 ≥ y2 (y1 dominates y2) if y1 � y2 and y1 �= y2. The non-negative orthant is
defined by R

p
� = {y ∈ R

p : y � 0}.
A feasible solution x∗ is called efficient if there does not exist any other feasible

solution x such that z(x) ≥ z(x∗). z(x∗) is then called a nondominated point. The set of
efficient solutions is the efficient set XE and its image inobjective space is the nondomi-
nated set YN . YN is alternatively defined by YN = {y ∈ Y : �y′ ∈ Y such that y′ ≥ y}.
From this alternative definition,we can define the set of nondominated points relatively
to a set S ⊂ R

p, by SN = {s ∈ S : �s′ ∈ S such that s′ ≥ s}. In the MOCO context,
we generallymake a distinction between supported efficient solutions (that are optimal
solutions of a single-objective problem defined by a weighted sum of the objective
functions with only positive weights) and the non-supported efficient solution (that are
not optimal for any such weighted sum problems). Geometrically, the images of sup-
ported efficient solutions (called supported nondominated points) are located on the
boundary of conv Y − R

p
� and the images of non-supported efficient solutions (called

non-supported nondominated points) are located in the interior of conv Y −R
p
�. A last

distinction can be done between extreme supported efficient solutions, which images
are vertices of conv Y − R

p
�, and non-extreme supported efficient solutions, which

images are located in the relative interior of a face of conv Y − R
p
�.

The exact solution of a MOCO problem consists in determining a complete set of
efficient solutions, i.e., to determine at least one efficient solution for each nondomi-
nated point.

1.3 Review of the relevant literature

As mentioned above, we are interested in the Branch components of branch and
bound methods, i.e. branching strategy that selects variables according to a heuristic
selection rule. Therefore, we need to recall here (1) the exact solving algorithms based
on branch and bound, as well as their classic branching heuristics and (2) other related
approaches.

123



288 A. Cerqueus et al.

Multi-objective branch and bound and pOKP

Several branch and bound methods have been proposed in the literature for multi-
objective knapsack problems: Ulungu and Teghem (1997), Visée et al. (1998) for the
version 2-objectives, Jorge (2010) for the version 3-objectives, and Florios et al. (2010)
for the version 3-objectives and 3-dimensional (i.e. 3 knapsack constraints).

In order to perform an implicit enumeration of all feasible solutions, each subprob-
lem is evaluated. This evaluation aims to prove whether no efficient solutions can be
found in the feasible set of this subproblem. In this case, the node is fathomed, i.e.
the partitioning stops at this branch and another non-fathomed node is selected to
continue the solving process. Otherwise, the partitioning continues from this node.
The fathoming of a node can either result from the infeasibility of the corresponding
subproblem, or from the comparison of lower and upper bounds computed for this
subproblem. Note that, contrary to single-objective optimization, we deal here with
lower and upper bound sets (Ehrgott and Gandibleux 2007), instead of single values.

A lower bound set for the nondominated set YN is generally composed of the points
associated to the feasible points found during the enumeration, filtered by dominance.
In other words, it can be considered as an incumbent list, generalizing the notion of
incumbent used in a single-objective branch and bound.

An upper bound set U for the nondominated set of a subproblem (defined by a
node of the tree) is defined by a set of points (not necessarily feasible) such that there
is no point in this set that dominates another one, and such that all feasible points of
the subproblem are weakly dominated by points of U . It is generally obtained by the
solution of a relaxation of the subproblem. In the following,wewill consider the convex
relaxation, that is the relaxation defined by extending the feasible set X ′ of a given
problem by conv X ′, without modification of the objective functions. Therefore, its
nondominated set (conv Y ′)N (where Y ′ = z(X ′)) defines an upper bound set for Y ′

N .
Finally, (conv Y ′)N is implicitly described by the extremal supported nondominated
points of the problem with feasible set X ′.

This relaxation has in particular been used in Jorge (2010), Delort and Spanjaard
(2010).

The node canbe fathomed if the upper bound setU isweakly dominated by the lower
bound set L , i.e. for all u ∈ U there is l ∈ L such that l � u. This weak dominance test
can be slightly improved under the assumption that objective coefficients and variables
are integer (see Sourd and Spanjaard 2008 for details).

The branching strategy and pOKP

The efficiency of a branch and bound solving algorithm, or dynamic programming
method, is strongly related to the order in which the variables are processed. The
variables canbe selected randomlybut it seemsmore efficient to consider their potential
properties with regards to the instance that is being solved. Therefore, in the general
pOKP context, a common variable selection heuristic consists in computing the utility
of a variable according to its respective profits and weight. For each item, p utilities
can be defined:

ukj = ckj
w j

for k ∈ {1, . . . , p}

123



On branching heuristics for the bi-objective. . . 289

These utilities reflect the benefit of selecting a given item. Obviously, the information
emerging from the utilities of the items is easier to exploit for the single-objective case,
since a single utility per item can be defined. When the number of objective functions
increases, the value of the utilities obtained for a same item can be very different.
Hence, several heuristics can be defined, including combinations of different utility
measures.

Dynamic programming

A number of dynamic programming methods have been proposed for the pOKP:
Captivo et al. (2003), Delort and Spanjaard (2010), Figueira et al. (2013) for the 2OKP,
Klamroth and Wiecek (2000) for the pOKP and other variants of knapsack problems,
Bazgan et al. (2009b) for the pOKP.

The two phase method and pOKP

Introduced in Ulungu and Teghem (1995), the two phase method is designed for
solving MOCO problems for which there exist efficient algorithms for the single
objective variant. The first phase consists in finding the extreme supported efficient
solutions. For this, single-objective weighted sum problems are defined, using the
classical dichotomic algorithm initially proposed in Aneja and Nair (1979) in the
bi-objective case, and one of its extension (Przybylski et al. 2010; Özpeynirci and
Köksalan 2010 in the multi-objective case.

The second phase aims to find all the other nondominated points by executing
an implicit enumeration method. For this, a search area containing all these points
is defined using the points obtained in the first phase. In the bi-objective context,
this search area is composed of triangles defined by two adjacent extreme supported
nondominated points. Let yr and yl be two extreme supported nondominated points
with yl1 < yr1 (and thus yl2 > yr2), y

r and yl are adjacent if there does not exist an
extreme supported nondominated point y such that yl1 < y1 < yr1. We define the
triangle 	(yr , yl) composed of the points yr , yl and (yl1, y

r
2). In most of the proposed

algorithms, each triangle is explored individually. Exploitation of the problemstructure
is a key point of an efficient enumeration. Several strategies have been proposed for
this purpose and applied to 2OKP: branch and bound Visée et al. (1998), dynamic
programming in Delort and Spanjaard (2010), ranking strategy Jorge (2010).

Preprocessing and 2OKP

Preprocessing treatments aim to reduce the size of the instance. Having a reduced
set of variables as input of a branching strategy is indeed valuable. Here, we are
especially interested of these preprocessing treatments.

The first one has been defined in Visée et al. (1998) and also used in Delort and
Spanjaard (2010). It is designed to be applied in a two phase method. It consists first
in defining a lower bound set for YN using the feasible points obtained in the first
phase (and possibly completing it using a local search). Next, before the exploration
of each triangle, each variable is considered and fixed individually to a possible value.
An upper bound set restricted to the considered triangle is computed for the obtained
subproblem (for which x j is fixed to a value v) and compared to the lower bound set
for YN . If the upper bound set is weakly dominated, the variable x j is definitively

123



290 A. Cerqueus et al.

fixed to the value 1− v, for the exploration of the considered triangle. Note that such
a preprocessing could be applied for the whole problem, i.e. without restriction to
a given triangle. However, the conflicting nature of objective functions, implies that
there are very few common variables for all efficient solutions.

The second preprocessing has been defined in Jorge (2010). Contrary to the first one,
it is specific to pOKP. This preprocessing is based on a dominance relation between
items and the bounds on the cardinality of an efficient solution. The dominance relation
between items is defined as follows: an item dominates another if it has greater or equal
objective values and lower or equalweight. The bounds on the cardinality of an optimal
solutionwere introduced forKP inGlover (1965) and extended for an efficient solution
to the pOKP in Gandibleux and Fréville (2000). The cardinality of an efficient solution
is the number of items selected into it. The upper bound UB(ω) and the lower bound
LB(ω) on this cardinality define a minimum and maximum number of items selected
simultaneously. The preprocessing treatment of Jorge (2010) specifies that an item is
never selected in an efficient solution if it is dominated by a number of items greater
or equal thanUB(ω) or if the capacity constraint does not allow to select this item and
all items dominating it. Symmetric properties state when items are always selected in
an efficient solutions. The dominance relations can also be exploited in a branch and
bound algorithm: when a variable is fixed to 0, all variables dominated by it are also
fixed to 0; and symmetrically when a variable is fixed to 1, all variables dominating it
are fixed to 1.

1.4 Objectives and contributions

In the literature, only static (i.e. fixed for the whole search process) branching strate-
gies have been considered for solving knapsack problems. Nevertheless, due to the
restricted information that is generally taken into account, a fixed branching strategy
may reveal inefficient to compute the set XE .

Therefore, it seems interesting to consider alternative branching mechanisms that
could be able to adapt to various parameters such as (1) the subset of YN currently
explored and (2) the current depth of the search tree. To our knowledge, we did not
find any such mechanism in the literature. Of course, dynamic mechanisms are used
for the choice of the branching variable in the implementation of branch and cut
algorithms of MIP solvers, and are therefore implicitly used in ε-constraint methods
(see for exampleMavrotas and Florios 2013; Zhang andReimann 2014). However, our
purpose is concerns here the branching strategy of multi-objective branch and bound
algorithms. Finally, our aim is to better understand the strengths and weaknesses of
existing branching strategies and to study if more flexible and adaptive branching
strategies could help branch and bound methods to reduce their search effort. A new
branching strategy should be

– Adaptive : according to the current state of the search, it should be able to select
themost suitable branching variable and thus activate the corresponding branching
heuristic,

– Autonomous : information collected during the solving process should be sufficient
to control the branching process without external interaction,

123



On branching heuristics for the bi-objective. . . 291

– Computationally reasonable : the cost of the dynamic control of the branching
process should not drastically increase the overall solving time in order to ensure
improved performances with regards to classical solving algorithms.

Starting from a complete panel of known branching heuristics from the literature,
the purpose of this study is thus to devise an autonomous branching component that
could be able to identify the most suitable heuristics for selecting next variable in
the branch and bound method. In this context, several questions arise : does such a
technique reduce the size of the search tree that is explored? Does such a technique
reduce the overall computational time?

Our contribution can be summarized as follows.

– We provide here a complete study of branching heuristics for branch and bound
methods for the 2OK P , which allows us to better understand their behavior and to
identify a subset of efficient heuristics. Hence, this study can be useful for devising
more efficient algorithms and choose the most suitable branching components.

– We highlight that combining heuristics within the same branch and bound method
reduces the search tree. Nevertheless, finding efficient combinations may induce
a high computational cost.

– We propose to use learning techniques in order to devise adaptive heuristics selec-
tion mechanisms, which are able to dynamically adapt the branching heuristics
according to feedback received from the solving process. Our experiments show
that these mechanisms can be competitive.

1.5 Organization of the paper

The paper is organized as follows. Branching strategies are fully described in Sect. 2.
The experimental evaluation of the branching strategies is then presented in Sect. 2.5,
showing that there does not exist a strategy that obtains the best result on all instances.
In the second part of this paper, we aim at elaborating an adaptive branching strategy
combining several static branching strategies. Section 3 shows that the number of
subproblems generated in the solving process can be considerably reduced by such
combinations of strategies. The performance obtained by different adaptive methods
is then presented in Sect. 4.

2 Branching strategies for the 2OK P

2.1 Variable ordering and branching strategies

Our purpose is to determine the impact of the order in which the variables are set in
a branch and bound method. We can remark that a branching strategy can be defined
by any order of variables. Thus, we do not present only the strategies introduced for
branch and bound methods, but also the orders defined for dynamic programming
methods, since they can be adapted to define a branching strategy.

123



292 A. Cerqueus et al.

The branching strategies presented below are based on the notion of utility and
more precisely on aggregations of the utilities. They use either the numerical value of
the utilities or the ranking they induce.

The orders Ok for each objective function k = 1, . . . , p have been initially intro-
duced in Ulungu and Teghem (1997) for 2OKP and extended in Bazgan et al. (2009a)
to pOKP. In Ok , the variables j ∈ {1, . . . , n} are sorted in decreasing order of the
utilities ukj , for k = 1, . . . , p. The rank rkj of an item j ∈ {1, . . . , n} is the position
of the item j in the orderOk , k = 1, . . . , p. Several orders have been designed based
on the notion of rank, using aggregations in order to find a compromise between the
ranks.

In Ulungu and Teghem (1997), Bazgan et al. (2009a), Jorge (2010), an order sorts
the items in increasing order of the sum of the ranks (i.e.

∑p
k=1 r

k
j ).

In Bazgan et al. (2009a), Jorge (2010), Delort (2011), another strategy sorts the
items in increasing order of the maximum of the ranks defined for this item. In case of
equality, the sum of the ranks is used to break ties. The value associated to each item
j = 1, . . . , n, and used to sort the items, is:

max{rkj : k = 1, . . . , p} +
∑p

k=1 r
k
j

p n
.

The items are thus sorted according to their worst rank.
Bazgan et al. (2009a), Jorge (2010) also define a strategy symmetric to the previous

one. The value associated to each item j = 1, . . . , n is its best rank, i.e.

min
{
rkj : k = 1, . . . , p

}
+

∑p
k=1 r

k
j

p n
.

The items are then sorted in increasing order of their best rank and the equalities are
broken by the average rank in Ok, k = 1, . . . , p.

In Visée et al. (1998), an order to use specifically for the exploration of a triangle
in the two phase method, has been defined. When investigating the triangle 	(yr , yl),
the search direction λ = (yl2 − yr2, y

r
1 − yl1) is used to weight the utilities u

1 and u2.
The items are considered in decreasing order of their weighted average. This order
has also been used in Delort (2011).

Finally, we present some orders proposed for multi-dimensional knapsack prob-
lems, that can be easily adapted next to the single-dimensional case. The orders
presented in Florios et al. (2010) (on the knapsack problem with three constraints
and three objective functions) and in Gandibleux and Perederieieva (2011) (on the
knapsack problem with two constraints and two objective functions) use directly the
numerical value of the utilities. In the context of knapsack problem considering sev-
eral constraints and several objective functions, a utility is then defined for each pair
objective function/dimension.

In Florios et al. (2010), three orders are tested. The first one considers only the
maximum of all defined utility and the items are sorted in decreasing order of this
value. The second one deals with the average value of the utilities, again the items

123



On branching heuristics for the bi-objective. . . 293

are sorted in decreasing order of this value. In the last one, the variables are sorted
according a lexicographic order of the utilities, in decreasing order.

In Gandibleux and Perederieieva (2011), two branching strategies are used. The
first one is the branching strategy based on the average of the utilities presented in
Florios et al. (2010). The second one is based on the maximum of the utilities of an
item, similarly to the one presented in Florios et al. (2010), except that in case of
equality, the average of the utilities is used to break the ties.

The orders considering the value of the utilities can be sensitive to the range of
the coefficients. For example, an objective function can have bigger coefficients than
another and would then impact the ordering more that another objective function. The
orders based on the direction defined by triangles are less sensitive to this phenomenon
and the ones based on the notion of rank avoid it.

We can remark that in all the presented orders, the “best” variable (the most promis-
ing variable) is selected first. This paradigm aims to increase the chances of obtaining
efficient solutions or at least solutions of good quality early in the execution of the
algorithm, thus allowing to prune nodes or states earlier in the remaining of the exe-
cution.

Each of the previous works compares a restricted number of branching strategies,
usually few new branching strategies with one or two branching strategies from the
literature assessed as given the best performance. In all the studies, no order leads to
a better practical efficiency than the others on all instances, even on a same series of
instances, but some are better in average.

2.2 Selection of branching strategies

In this section, we detail a set of 23 branching strategies for 2OKP that will be used all
along this paper, they are also called branching heuristics. We will consider strategies
defined in Sect. 2.1, but also new ones. In particular, we do not consider only the “best
variable first” paradigm but also the “worst variable first” paradigm. This second
paradigm aims to determine early in the solution method the variables that will never
be selected in efficient solutions. The name of a branching strategy will be composed
of the criterion used to sort the items, followed by “best” if it follows the “best variable
first” paradigm, “worst” otherwise.

The first branching strategy is the (deterministic) random branching strategy Rand,
used as a baseline for the comparisons. Since our instances (described in Sect. 2.4)
are generated randomly, the random order corresponds to the order of the variables in
the instance file.

Table 1 presents the 22 other strategies. The best variable first strategies are pre-
sented in the columns (2) to (4) and the worst variable first strategies are in columns
(5) and (7). The column (1) indicates the criterion according to which the variables
are sorted and columns (4) and (7) the order used for the strategy on this criterion.
The identifiers and names of the strategies are given respectively in columns (2) and
(5) and in columns (3) and (6).

The simplest branching strategies (1–4 of Table 1) order the items only according
to their value on the objective functions, without taking into account their weight. On

123



294 A. Cerqueus et al.

Table 1 Branching strategies of the study. λ = (yl2 − yr2, y
r
1 − yl1) for the investigated triangle 	(yr , yl )

Best variable first strategies Worst variable first strategies
(1) (2) (3) (4) (5) (6) (7)
Criterion for
j = 1, . . . , n

Id Name Order Id Name Order

c1j 1 Z1-best Decreasing 2 Z1-worst Increasing

c2j 3 Z2-best Decreasing 4 Z2-worst Increasing

u1j 5 U1-best Decreasing 6 U1-worst Increasing

u2j 7 U2-best Decreasing 8 U2-worst Increasing

min(u1j , u
2
j ) 9 Min-best Decreasing 10 Min-worst Increasing

max(u1j , u
2
j ) 11 Max-best Decreasing 12 Max-worst Increasing

u1j+u2j
2 13 Avg-best Decreasing 14 Avg-worst Increasing

λ1 u
1
j+λ2,u

2
j

λ1+λ2
15 Triang-best Decreasing 16 Triang-worst Increasing

r1j + r2j 17 SumRank-best Increasing 18 SumRank-worst Decreasing

min(r1j , r
2
j ) + r1j +r2j

2 n 19 MinRank-best Increasing 20 MinRank-worst Decreasing

max(r1j , r
2
j ) + r1j +r2j

2 n 21 MaxRank-best Increasing 22 MaxRank-worst Decreasing

the same idea of considering only one of the two objective functions, four branching
strategies (5–8) are defined using either the utility u1 either u2. The utilities u1 and
u2 can also be aggregated by a minimum, maximum, average or weighted average
function (9–16). The last branching strategies are based on the rank of the variables
on O1 and O2 (17–22).

We can remark that the strategy presented in Ulungu and Teghem (1997) is
SumRank-best. Visée et al. (1998) considers the strategy Triang-best. Bazgan et al.
(2009a), Jorge (2010) use strategies SumRank-best, MinRank-best and MaxRank-
best. Jorge (2010) also considers strategies equivalent to U1-best and U2-best.
Delort (2011) uses Triang-best, MaxRank-best. Florios et al. (2010) uses Avg-
best and Max-best and an order which can be associated to U1-best and U2-best.
Gandibleux and Perederieieva (2011) compares Avg-best and a modified version of
Max-best.

2.3 Algorithm framework designed for conducting the analysis

A two phase method is used here, with a branch and bound method applied to explore
each triangle in the second phase. The used lower bound set for YN is as usually an
incumbent list, and we use the convex relaxation to obtain an upper bound set for
the nondominated points of any subproblem. This last bound set requires an intensive
use of a single-objective solver. For this, we use the KP solver Combo Martello et al.
(1999), available on Pisinger (2002). Finally, the search tree is explored following

123



On branching heuristics for the bi-objective. . . 295

a depth-first search strategy, that is almost always used in multi-objective branch-
and-bound methods (Przybylski and Gandibleux 2017). The branching strategy is the
same during all the execution (one of the strategies defined in Sect. 2.2). Each selected
variable is fixed to 1 first and next to 0.

The triangles are explored in the lexicographic order, i.e.	(yr1, yl1) is investigated
before 	(yr2, yl2) if yr11 > yr21 (then yr11 < yr21 by definition of the triangles).

We want to study the influence of the preprocessing treatments defined in Jorge
(2010) andDelort andSpanjaard (2010) on the performance of the branching strategies.
Thus, two versions are considered depending on whether preprocessings are applied
or not.

2.4 Dataset used as benchmark

We consider 230 instances from the literature. The number of variables in the
instance, i.e. the size of the instance, is denoted by n. Table 2 presents the source,
the size of the instances, the generation of the objective and constraint coefficient and
correlations existing between these coefficients. It is generally claimed that instances
with a negative correlation between objectives are more difficult to solve. The notation
a j ∈ U [l, u] means that the coefficients a j , j ∈ {1, . . . , n} is generated according to
a uniform distribution in {l, . . . , u}.

The ratio
∑n

j=1 w j/ω is of 0.5 for all instances, except 2KP50-11 for which it is
0.11.

The instances F_n_U1, F_n_U2, F_n_W1 and F_n_W2 were initially generated
for the knapsack problem with two objectives and two constraints. In this article, we
deleted the second constraint to obtain 2OKP instances.

For the experiments, we determine four groups of instances G1, G2, G3 and G4
(with G1 ⊂ G2 ⊂ G3 ⊂ G4). G1, G2 and G3 are training benchmarks used during
the comparison of the static branching heuristics and the configuration settings of the
dynamic methods. G4 is used as a validation benchmark, to evaluate the performance
of the dynamic branching strategies leading to the best performance.

G1, G2 and G3 are composed exclusively of instances extracted from Visée et al.
(1998), Gandibleux and Fréville (2000), Degoutin andGandibleux (2002) and Captivo
et al. (2003), so that the computational times of the instances are smaller in G1 and
larger in G3. These groups are defined based on the size of the instances. However,
the instances of the category 4WnW1 being in general more time consuming, they will
constitute exceptions in this definition. The composition of the groups of instances is
the following:

– G1 = {2KP50-11, 2KP50-50, 2KP100-50} ∪ { 2KPn-1A, 2KPn-1B,2KPn-
1C,2KPn-1D, n ∈ {50, 100, 150}} ∪ {4WnW1, n ∈ {50, 100}}

– G2 = G1 ∪ {2KP200-1A, 2KP200-1B,2KP200-1C,2KP200-1D} ∪ {4W150W1}
– G3 = G2∪{2KPn-1A, 2KPn-1B,2KPn-1C,2KPn-1D,n ∈ {250, 300}}∪{4WnW1,
n ∈ {200, 250, 300}}

– G4 is the set of all presented instances.

123



296 A. Cerqueus et al.

Ta
bl

e
2

So
ur
ce
,s
iz
e,
na
m
e,
ge
ne
ra
tio

n
of

th
e
ob
je
ct
iv
e
an
d
co
ns
tr
ai
nt

co
ef
fic
ie
nt
s
an
d
co
rr
el
at
io
ns

ex
is
tin

g
be
tw
ee
n
th
es
e
co
ef
fic
ie
nt
s
fo
r
ea
ch

in
st
an
ce

of
2O

K
P

So
ur
ce

Si
ze

N
am

e
G
en
er
at
io
n
pr
oc
es
s

C
or
re
la
tio

n
ty
pe

V
is
ée

et
al
.(
19

98
)

n
∈{

50
,
10

0,
15

0,
20

0,
25

0,
30

0,
35

0,
40

0,
45

0,
50

0}
2K

P
n-
1A

c1
j,
c2
j,

w
j
∈U

[1,
10

0]
U
nc
or
re
la
te
d

G
an
di
bl
eu
x
an
d

Fr
év
ill
e
(2
00

0)
50

2K
P
50

-1
1

c1
j,
c2
j
∈U

[30
,
10

0]
U
nc
or
re
la
te
d

50
2K

P
50

-5
0

w
j
∈U

[20
,
50

0]
10

0
2K

P
10

0-
50

D
eg
ou
tin

an
d

G
an
di
bl
eu
x
(2
00

2)
n

∈{
50

,
10

0,
15

0,
20

0,
25

0,
30

0,
35

0,
40

0,
2K

P
n-
1B

c1
j,

w
j
∈U

[1,
10

0],
c2
j
=

c1 n−
j

U
nc
or
re
la
te
d

45
0,

50
0}

2K
P
n-
1C

w
j
∈U

[1,
10

0]
c1
j,
c2
j
∈U

[1,
10

0]
re
pe
at
ed

ov
er

U
[1,

�0
.1
n�

]ti
m
es

2K
P
n-
1D

Sa
m
e
as

2K
P
n-
1C

,e
xc
ep
tc

1 j
=

c2 n−
j

C
ap
tiv

o
et
al
.(
20

03
)

n
∈{

50
,
10

0,
15

0,
20

0,
25

0,
30

0,
35

0,
40

0,
4W

nW
1

w
j
∈U

[1,
10

00
],

c2
j
∈U

[11
1,
10

00
]

Po
si
tiv

e
co
rr
el
at
io
n

be
tw
ee
n
c1
j
an
d
c2
j

45
0,

50
0,

60
0}

c1
j
∈U

[c2 j
−

10
0,

c2
j
+

10
0]

C
ap
tiv

o
et
al
.(
20

03
)

50
F
50

50
W
s
s

∈
{01

,
..

.,
10

}
c1
j,
c2
j,

w
j
∈U

[1,
30

0]
U
nc
or
re
la
te
d

K
50

50
W
s
s

∈
{01

,
..

.,
10

}
c1
j,
c2
j,

w
j
∈U

[1,
10

00
]

M
av
ro
ta
s
an
d
Fl
or
io
s

(2
01

3)
n

∈{
10

0,
25

0,
50

0,
75

0}
F
_n

_U
1

w
j
∈U

[10
,
10

0]
c1
j,
c2
j
∈U

[10
,
10

0]
U
nc
or
re
la
te
d

F
_n

_U
2

w
j
∈U

[10
,
10

0]
c1
j,
c2
j
∈U

[10
0,

10
00

]

123



On branching heuristics for the bi-objective. . . 297

Ta
bl

e
2

co
nt
in
ue
d

So
ur
ce

Si
ze

N
am

e
G
en
er
at
io
n
pr
oc
es
s

C
or
re
la
tio

n
ty
pe

F
_n

_W
1
F
_n

_W
2

w
j
∈U

[10
,
10

0]
c1
j
∈U

[w
j
−

10
,
w

j
+

10
]s
am

e

fo
r
c2
j
w
ith

a
se
co
nd

co
ns
tr
ai
nt
,t
ha
t

is
de
le
te
d

Po
si
tiv

e
co
rr
el
at
io
n

be
tw
ee
n
c1
j
an
d

w
j

B
az
ga
n
et
al
.(
20

09
b)

n
∈{

10
0,

20
0,

30
0,

40
0,

50
0}

A
_n

_s
s

∈{
0,

..
.,
9}

c1
j,
c2
j,

w
j
∈U

[1,
10

00
]

U
nc
or
re
la
te
d

n
∈{

60
0,

70
0,

80
0,

90
0,

10
00

}
B
_n

_s
w

j
∈U

[1,
10

00
]c

1 j
∈U

[11
1,
10

00
]

Po
si
tiv

e
co
rr
el
at
io
n

be
tw
ee
n
c1
j
an
d
c2
j

s
∈{

0,
..

.,
9}

c2
j
∈U

[c1 j
−

10
0,

c1
j
+

10
0]

n
∈{

10
0,

20
0}

C
_n

_s
w

j,
c1
j
∈U

[1,
10

00
]

N
eg
at
iv
e
co
rr
el
at
io
n

be
tw
ee
n
c1
j
an
d
c2
j

s
∈{

0,
..

.,
9}

c2
j
∈U

[m
ax

(9
00

−
c1
j,
1)

,
m
in

(1
10

0
−

c1
j,
10

00
)]

n
∈{

10
0,

15
0}

D
_n

_s
c1
j
∈U

[1,
10

00
]

Po
si
tiv

e
co
rr
el
at
io
n

be
tw
ee
n

w
j
an
d

c1
j
+

c2
j

s
∈{

0,
..

.,
9}

c2
j
∈U

[m
ax

(9
00

−
c1
j,
1)

,
m
in

(1
10

0
−

c1
j,
10

00
)]

w
j
∈U

[c1 j+
c2
j−

20
0,

c1
j+

c2
j+

20
0]

123



298 A. Cerqueus et al.

For the experiments presented in this paper, we use a machine equipped with a
Intel Core i7 2.60 GHz processor with 15.5 GB of RAM and running under Linux.
All algorithms are implemented in C++.

2.5 Comparison of the branching heuristics

In this section, the performance of the branching heuristics presented in Sect. 2.2 are
assessed on the benchmark G3 of instances presented above.

Obviously, the preprocessing treatments of Jorge (2010) and Delort and Span-
jaard (2010) reduce the number of variables and thus the size of the search
tree (i.e. the number of sub-problem generated) and the execution time of the
algorithm. While the version of the algorithm using the preprocessing treatment
can handle all instances of the benchmark group G3, the version without the
preprocessing treatments cannot solve four of them in less than an hour: 2KP300-
1A, 2KP300-1C, 4W250W1 and 4W300W1. The comparisons of the heuristics
when no preprocessing treatment is used do not take these four instances into
account.

The time required to compute the order of the variables is negligible in the algorithm
and is more or less the same for all the branching heuristics. The computational time is
thus essentially proportional to the size of the search tree obtained during the algorithm.
Therefore, the size of the resulting search tree is the only criteria used to assess the
branching heuristics, it is a reliable measure. Two criteria are considered in order to
evaluate the average performance of a branching heuristic:

– For the first criterion, an order of the branching heuristic is defined for every
instance. The branching heuristics are sorted by increasing order of the size of
the search tree obtained. A score is associated to each branching strategy for each
instance and is inversely proportional to the rank of the heuristic in the order
defined according to the instance. The score equals 22 if the heuristic leads to
the smallest search tree, 21 if it leads to the second smallest, etc. Figure 1 shows
for each branching heuristic the sum of the scores obtained on all the instances.
A high sum of scores corresponds to a branching heuristic having good average
performance.

– The second evaluation criterion measures for each instance the relative difference
between the size of the search tree obtained when using the branching heuristics
and the size of the smallest search tree obtained. This measure will be called the
improvement ratio of the size of the search tree (IRS). For a given instance, we
note st the size of the search tree obtained by the tested heuristic and sr the size of
the smallest search tree obtained (used as a reference), we define IRS = sr−st

sr .
A high value of IRS indicates a good performance of the branching heuristic. On
the contrary, a negative value indicates a degradation of the size of the search tree.
If IRS is equal to−2, then the size of the search tree is twice the size of the search
tree obtained for the reference. The comparison is done with the smallest search
tree for all instances, so it is no possible to have a positive value of IRS here.

123



On branching heuristics for the bi-objective. . . 299

0

500

1000

1500

2000

R
an

d
Z
1-

b
es

t
Z
1-

w
or

st
Z
2-

b
es

t
Z
2-

w
or

st
U

1-
b
es

t
U

1-
w

or
st

U
2-

b
es

t
U

2-
w

or
st

M
in

-b
es

t
M

in
-w

or
st

M
ax

-b
es

t
M

ax
-w

or
st

A
vg

-b
es

t
A

vg
-w

or
st

T
ri

an
g-

b
es

t
T

ri
an

g-
w

or
st

S
u
m

R
an

k-
b
es

t
S
u
m

R
an

k-
w

or
st

M
in

R
an

k-
b
es

t
M

in
R

an
k-

w
or

st
M

ax
R

an
k-

b
es

t
M

ax
R

an
k-

w
or

st

S
u
m

 o
f 
sc

or
es

Branching heuristics

0

500

1000

1500

2000

R
an

d
Z
1-

b
es

t
Z
1-

w
or

st
Z
2-

b
es

t
Z
2-

w
or

st
U

1-
b
es

t
U

1-
w

or
st

U
2-

b
es

t
U

2-
w

or
st

M
in

-b
es

t
M

in
-w

or
st

M
ax

-b
es

t
M

ax
-w

or
st

A
vg

-b
es

t
A

vg
-w

or
st

T
ri

an
g-

b
es

t
T

ri
an

g-
w

or
st

S
u
m

R
an

k-
b
es

t
S
u
m

R
an

k-
w

or
st

M
in

R
an

k-
b
es

t
M

in
R

an
k-

w
or

st
M

ax
R

an
k-

b
es

t
M

ax
R

an
k-

w
or

st

S
u
m

 o
f 
sc

or
es

Branching heuristics

 (a) (b)
Fig. 1 Sum of the scores obtained on the instances, for each branching heuristic. a Without preprocessing
treatments. b With preprocessing treatments

-7

-6

-5

-4

-3

-2

-1

0

1

R
an

d
Z
1-

b
es

t
Z
1-

w
or

st
Z
2-

b
es

t
Z
2-

w
or

st
U

1-
b
es

t
U

1-
w

or
st

U
2-

b
es

t
U

2-
w

or
st

M
in

-b
es

t
M

in
-w

or
st

M
ax

-b
es

t
M

ax
-w

or
st

A
vg

-b
es

t
A

vg
-w

or
st

T
ri

an
g-

b
es

t
T

ri
an

g-
w

or
st

S
u
m

R
an

k-
b
es

t
S
u
m

R
an

k-
w

or
st

M
in

R
an

k-
b
es

t
M

in
R

an
k-

w
or

st
M

ax
R

an
k-

b
es

t
M

ax
R

an
k-

w
or

st

IR
S

Branching heuristics

-7

-6

-5

-4

-3

-2

-1

0

1

R
an

d
Z
1-

b
es

t
Z
1-

w
or

st
Z
2-

b
es

t
Z
2-

w
or

st
U

1-
b
es

t
U

1-
w

or
st

U
2-

b
es

t
U

2-
w

or
st

M
in

-b
es

t
M

in
-w

or
st

M
ax

-b
es

t
M

ax
-w

or
st

A
vg

-b
es

t
A

vg
-w

or
st

T
ri

an
g-

b
es

t
T

ri
an

g-
w

or
st

S
u
m

R
an

k-
b
es

t
S
u
m

R
an

k-
w

or
st

M
in

R
an

k-
b
es

t
M

in
R

an
k-

w
or

st
M

ax
R

an
k-

b
es

t
M

ax
R

an
k-

w
or

st

IR
S

Branching heuristics

(a) (b)
Fig. 2 Average and standard deviation of IRS for each branching heuristic. a Without preprocessing
treatments. b With preprocessing treatments

Figure 2 shows for each branching heuristic the average and standard deviation of
IRS over all instances.

When no preprocessing is used (Figs. 1 and 2a), we observe a significant difference
between the performance of the branching heuristics. The branching heuristic Triang-
worst has a significantly higher score and IRS than other strategies.

When using the preprocessing treatments (Figs. 1 and 2b), the difference of perfor-
mance between the branching heuristics is less important.

123



300 A. Cerqueus et al.

Table 3 Branching heuristics ordered according to the evaluation criteria

According to Without preprocessing treatments With preprocessing treatments

Sum of scores IRS Sum of scores IRS

1 Triang-worst Triang-worst Triang-best Min-worst

2 Triang-best Triang-best Min-worst Triang-best

3 SumRank-worst SumRank-worst MaxRank-worst Triang-worst

4 SumRank-best Avg-worst Triang-worst MaxRank-worst

5 Avg-worst Min-worst Max-best Max-best

6 Avg-best MaxRank-worst U2-worst U2-worst

7 MaxRank-worst SumRank-best U1-worst MinRank-best

8 MinRank-best Avg-best Z1-best SumRank-worst

9 Max-best MinRank-best U1-best Z1-best

10 Min-worst U2-worst MinRank-best U1-worst

11 U2-worst Max-best SumRank-worst U1-best

12 Max-worst U1-worst Z2-best Avg-worst

13 U1-best U1-best Avg-best Avg-best

14 MinRank-worst Max-worst Avg-worst Z2-best

15 U1-worst MinRank-worst U2-best U2-best

16 U2-best U2-best SumRank-best SumRank-best

17 Min-best Z1-best Z1-worst Z1-worst

18 Z1-best Min-best Z2-worst Max-worst

19 MaxRank-best Z2-best Max-worst Z2-worst

20 Z2-best MaxRank-best MinRank-worst MinRank-worst

21 Rand Z1-worst Rand Rand

22 Z2-worst Z2-worst Min-best Min-best

23 Z1-worst Rand MaxRank-best MaxRank-best

Figures 1 and 2 also show that no branching heuristic is the best for all instances.
Table 3 provides the ordering of the branching strategies according to these two eval-
uation criteria.

For a given version of the algorithm, the orders defined by the two evaluation criteria
are similar. However, the orders on the heuristics (Table 3) are very different depending
on whether preprocessing is applied or not. In particular, Min-worst is ranked 1 or 2
when the preprocessing treatments are activated but a rank 5 or 10 when they are
inactive.

Usually, branching strategies use “best variable first” paradigm. However, this
paradigm is not necessarily better than the opposite paradigm. For example, Min-
worst show better performance thanMin-best. According to Table 3, the “best variable
first” paradigm is better than the “worst variable first” paradigm in only half of the
cases.

The branching heuristic Rand has poor performance, which varies from an execu-
tion to another, thus it will not be considered in the remaining of this study.

123



On branching heuristics for the bi-objective. . . 301

3 Combinations of heuristics

Section 2 highlighted that no branching heuristic outperforms all heuristics on all
instances, even if some heuristics provide good average performance. The efficiency
of branching heuristics may indeed depend on problem instances, whose character-
istics may vary, even during the search process within a branch and bound method.
Unfortunately, no clear relationships between instances and the most suitable branch-
ing strategies for these instances has been found, with regards to their size, correlation
of objectives, etc.

A remainingpossibility to improve the performanceof the branch andboundmethod
is to use different branching heuristics within the same search tree (at different nodes).
Within this scope, an ideal methodwould be able to always select the best combination
of heuristics for any instance. However, according to the number of possible heuristics
and the size of the search trees, an exhaustive exploration of the possible combinations
is not tractable.

Hence, we propose to evaluate possible combination of heuristics by means of
an oracle method. This oracle is simply a branch and bound method that applies a
heuristics selection rule at each node of the search tree. At each separation procedure,
the 22 branching heuristics presented in Sect. 2 are evaluated and the current best
(according to a criterion to define) is selected. This oracle can be thus considered as a
myopic oracle, i.e., one step forward. In order to select the best branching heuristic, the
quality of the resulting nodes should be carefully evaluated. The purpose of this oracle
is definitely not to provide an efficient solving algorithm, since the computational
cost induced by the heuristics selection process is prohibitive, but rather to assess that
combining heuristics can be beneficial.

In Sect. 3.1, we define three criteria to evaluate a separation. The performances of
these criteria are then evaluated within the previously described oracle approach.

3.1 Selection of branching heuristics

Concerning selection criteria, the quality of a separation can be assessed by several
characteristics of the two child nodes, based on the variation of the upper bound set
or lower bound set.

3.1.1 Selection criteria

Since the coefficients of the objective functions and the variables are non-negative
in a 2OKP, the feasible solutions are in R

2
�. Next, upper and lower bound sets can

be used to define areas, from which their variation will be measured. We will in
particular use the following notation:A(V ) is the area of the polyhedron V ∩R

2
�, with

V ⊂ R
2.

– Upper Bound (UB) : given an upper bound setU , feasible solutions are located in
(U − R

2
�) ∩ R

2
�, called the feasibility zone. Remark that the feasibility zones of

child nodes are included in the parent node’s zone. The reduction the feasibility

123



302 A. Cerqueus et al.

zones by a branching heuristic is expected to have an impact on the size of the
search tree.

Definition 1 Let us consider U 0 the upper bound set of the parent node and U 1, U 2

the corresponding sets for the two children nodes. The relative reduction of the feasible
zone of the child node l ∈ {1, 2} compared to the parent node is defined as :

A
(
U 0 − R

2
�

)
− A

(
Ul − R

2
�

)

A
(
U 0 − R

2
�

)

This criterion measure the quality of a separation by considering the average ofU 1

and U 2. The higher the value, the better is the quality of a branching.

– Lower Bound (LB) : a common lower bound set is computed for the entire search
tree, and is potentially updated with the computation of any upper bound set. Note
that the area A(L − R

2
�) may increase if new potentially efficient solutions are

found (i.e. solutions which are not dominated by solutions of the lower bound set).
The probability of fathoming a node by dominance increases with the quality of
the lower bound set. Thus a large variation ofA(L − R

2
�) indicates a good choice

of the branching variable.
– Other :when computing an upper bound set, potentially efficient solutions, located
in another triangle than the one currently investigated, can be found. These solu-
tions do not have any impact on currently investigated triangle, but they are likely
to speed-up the overall solving process. Indeed, at the beginning of the investiga-
tion of the triangle where they are located, introducing these solutions in the lower
bound set might lead to earlier pruning in the considered triangle. Hence, the size
of the search tree is likely to be reduced.

3.1.2 Comparison of selection rules

Roughly speaking, a selection rule is efficient if the corresponding oracle leads to
smaller search trees. Therefore, the comparisons of the different oracles will be
achieved using the IRS measure presented in Sect. 2.5.

The reference sr is the same as in Fig. 2, i.e. the smallest search tree obtained for
each instance. In the following, we call this referenceBest-heur, since it corresponds to
a method applying the best branching heuristic for each instance. Note that compared
to the oracle, this method applies only one heuristic for a given instance. Best-heur
is not realistic since it requires to know a priori which of the 22 branching heuristics
would lead the smallest search tree.

Several selection rules based on the three criteria have been evaluated. Due
to the difference of scale and measurement unit, a weighted sum on the crite-
ria is not easy to define and might be dependent on the range of the coefficients
in the considered instance. Thus, we consider the criteria in lexicographic order-
ing (when necessary ties are broken randomly). For instance, UB-Other orders the
branching heuristics according to the criterion UB, the equalities on this criteria

123



On branching heuristics for the bi-objective. . . 303

-2

-1.5

-1

-0.5

0

0.5

1

U
B

L
B

O
th

er

U
B

-L
B

U
B

-O
th

er

L
B

-U
B

L
B

-O
th

er

O
th

er
-U

B

O
th

er
-L

B

U
B

-L
B

-O
th

er

U
B

-O
th

er
-L

B

L
B

-U
B

-O
th

er

L
B

-O
th

er
-U

B

O
th

er
-U

B
-L

B

O
th

er
-L

B
-U

B

IR
S

Selection rule

Without preprocessing

With preprocessing

Fig. 3 Average and standard deviation ofIRS obtained for the oraclemethods using the different selection
rules

are broken thanks to the criterion Other. For this measure, the criterion LB is not
considered.

Figure 3 shows the average and standard deviation of IRS for oracle methods
corresponding to the different selection rules. “With preprocessing” (resp. “Without
preprocessing”) corresponds to the results obtained for the version of the branch and
bound method using (resp. not using) the preprocessing treatments (see Sect. 1.3).
Since the oracle considers 22 branching heuristics at each separation, the method is
time consuming. Thus the biggest instances presented in Sect. 2.4 are not considered
here. For the version using the preprocessing treatments, the benchmark used is G1.
The set of benchmark is evenmore restricted when no preprocessing treatment is used:
the 28 instances of 50 variables or less, 2KP100-1B and 2KP100-1D composed this
benchmark.

Using or not preprocessing treatments does not impact the evaluation of the criteria,
even if the difference is larger when no preprocessing treatment is used. Figure 3 high-
lights that the criterionUB is essential in the selection process. Indeed, if not used, the
performance degrades. The best performance is obtained whenUB is the first criterion
in the lexicographic order. No significant difference exists between the average IRS
of these measures when we use preprocessing treatments (they differ from less than
0.02). However, when no preprocessing treatment is applied, the measure presenting
the best performance in average is obtained by UB-Other-LB, which will be used for
the oracle in the following.

123



304 A. Cerqueus et al.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

50 100 150 200 250 300

IR
S

Size of the instances

Without preprocessing

With preprocessing

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

50 100 150 200 250 300

IR
T

Size of the instances

Without preprocessing

With preprocessing

(a) (b)
Fig. 4 Comparison of the oraclemethod andBest-heur, with respect to the size of the instances. aAccording
to the size of the search tree. b According to the computational time

3.2 Evaluation of the Oracle

In this section, the oracle is more deeply investigated, taking into consideration not
only the size of the search tree, but also the computational time.

The measure relative to the computational time is based on the same idea as IRS.
Let tm be the computational time spent by the evaluated method on a given instance
and tr the computational time spent by the reference method on the same instance.
IRT = tr−tm

tr is called the improvement ratio on the computational time. Similarly
to IRS, a positive value of IRT indicates that the evaluated method leads to a
smaller computational time than the reference method, thus the evaluated method is
better regarding the computational time.

Figure 4 aims to highlight the impact of the size of the instances on the oracle
method. The reference method taken is Best-heur. The set of benchmark instances
used is G3 when the preprocessing treatments are applied and G2 otherwise.

On Fig. 4, we observe that the behavior of the oracle method varies according to the
size of the instances. This variation is observed whether the preprocessing treatments
are used or not.

Figure 4a shows that the average IRS increases with the size of the instance
(between 50 and 200 variables). IRS seems to stagnate when the size of the instances
is between 200 and 300, for the version of the algorithm using the preprocessing
treatments. When the preprocessing treatments are used, the average IRS is between
30 and 43% for all size of instances.

The size of the instances has an opposite effect on the computational time (Fig. 4b).
IRT seems to decrease when the size of the instances increases (between 50 and 200)
and then stagnates. As expected, the computational time is largely more important for
the oracle method than for Best-heur (at each separation the oracle method tries 22

123



On branching heuristics for the bi-objective. . . 305

0

0.2

0.4

0.6

0.8

M
in

-w
or

st

T
ri

an
g-

b
es

t

B
es

t-
h
eu

r

IR
S

Reference

Without preprocessing

With preprocessing

-70

-60

-50

-40

-30

-20

-10

0

10

20

M
in

-w
or

st

T
ri

an
g-

b
es

t

B
es

t-
h
eu

r

IR
T

Reference

Without preprocessing

With preprocessing

(a) (b)
Fig. 5 Comparison of the oracle method and the use of one heuristic. a According to the size of the search
tree. b According to the computational time

branching heuristics, compute the upper and lower bound sets for the two child nodes,
before choosing only the best heuristic).

However, the reference method is not a realistic method since it supposes to know
which of the branching heuristics is the best for every instance. Figure 5 shows the
performances obtained by the oracle method compared to Best-heur and the two
branching heuristics presenting the best performance in Table 3, i.e. Min-worst and
Triang-best. The three reference methods apply the same branching heuristic all along
the execution.

Figure 5a presents the average and standard deviation of the measure IRS. It
shows that the size of the search tree is reduced on average by 34% compared to
Best-heur and by 44% compared the branching heuristicsMin-worst and Triang-best,
when preprocessing treatments are used. Thus there exist combinations of branching
heuristics leading to smaller search tree than when the same branching heuristic is
applied all along the branch and bound method.

Figure 5b shows that the computational time for the oracle method is 14–16 times
larger than for the references, when the preprocessing treatments are applied. The
difference of computational time is even larger when no preprocessing treatment is
used.

Even if the oracle allows to reduce significantly the size of the search tree compared
to the use of one single branching heuristic, the computational time largely exceeds
the one obtained by the use of one branching heuristics. Because of the computational
cost, the oracle method cannot be used in practice to solve a 2OKP.

123



306 A. Cerqueus et al.

3.3 Selection of a subset of branching heuristics

In this section, we aim to find a reduced subset of branching heuristics in order to
decrease the computational time, without compromising the quality of the separations.
This subset will serve as basis for our adaptive branch and bound method.

The subset must thus be composed of the branching heuristics that often provide
good performances. In order to determine this subset, we apply an incrementalmethod,
on each instance.

Let us denote H the set of the branching heuristics (the 22 used in the oracle
method presented above), H ′ the target subset of branching heuristics. S is the set of
all branchings performed by the oracle method on a given instance. The incremental
method assigns Bh,s to 1 if h has the best quality measure during the branching s, 0
otherwise, for h ∈ H and s ∈ S. Note that it is possible to have Bh,s = 1 for several
h ∈ H for a given branching s ∈ S, since several branching heuristics can lead to the
same branching variable.

Then the method incrementally builds the set H ′ by executing the following steps:

1. Let h′ be the branching heuristic with the maximum value for
∑

s∈S Bh,s then h′
is included in H ′.

2. All branchings for which h′ had the best measures are deleted from S and h′ is no
longer considered in the remaining of the execution.

3. If S �= ∅, go to Step 1.

The aim of this approach is to find a small subset of heuristics H ′ containing at
least one of the heuristics with best quality measure for each branching.

By definition of the incremental method, the first branching heuristic added in H ′
is more interesting for the oracle method, on the given instance, than the last one. In
order to reflect this relative importance of the branching heuristics, a score is assigned
to each branching heuristic for each instance. The score is 22 for the first branching
heuristic added in H ′, 21 for the second, etc. If a branching heuristic is not added in
H ′, its score is 0.

During Step 1, several branching heuristics may have the same
∑

s∈S Bh,s . Thus
h′ may be chosen among several branching heuristics. In order to be fair, when this
situation occurs one set is created for every possible choice of h′ and the method
continues independently on each one of these sets. At the end of the method, the score
assigned to each branching heuristic is the average of the score obtained for each set
built.

When thismethod is executed on each instance of a set of benchmarks, the branching
heuristics can be sorted according to the decreasing average score. The branching
heuristics are sorted for both versions of the oracle method presented in Sect. 3.2
(using or not preprocessing treatments). The orders obtained are presented in Table 4.
Using or not the preprocessing treatments leads to very similar orders.

We now define a reduced oracle method using the order given in column (2) of
Table 4 to select a subset of the c best evaluated heuristics.

123



On branching heuristics for the bi-objective. . . 307

Table 4 Orders obtained by analyzing the performance of the branching heuristics during the oracle
method, for the two versions of the method

Rank (1) (2)
Without preprocessing treatment With preprocessing treatments

1 Z2-best Z1-best

2 Z1-best Z2-best

3 Triang-worst Triang-worst

4 U1-best U1-worst

5 U1-worst U1-best

6 U2-best U2-best

7 U2-worst U2-worst

8 Z1-worst Triang-best

9 MaxRank-best Max-worst

10 Triang-best MaxRank-best

11 Max-worst SumRank-best

12 Z2-worst MinRank-worst

13 MinRank-worst Avg-worst

14 SumRank-best Z1-worst

15 Avg-worst Min-best

16 Min-best Z2-worst

17 SumRank-worst SumRank-worst

18 Avg-best Avg-best

19 Min-worst MaxRank-worst

20 Max-best Min-worst

21 MinRank-best Max-best

22 MaxRank-worst MinRank-best

The number of considered heuristics c is a parameter of the method.1 In case
of equalities regarding the quality measure, the reduced oracle method favors the
branching heuristics with a better rank in the order presented in Table 4.

Figure 6 presents the performances of the reduced oraclemethod for different values
of c, for the two versions of the algorithm. The reduced oracle methods are evaluated
according to two aspects: the size of the search tree (measured by IRS) and the
computational time (measured by IRT ). The reference method used in the measures
IRS and IRT is Best-heur.

The evolution of the reduced oracle method regarding the number of considered
branching heuristics is similar whether preprocessing treatments are used or not. IRS
increases following a logarithmic curve when the number of branching heuristics
used increases. The growth of IRS seems to stagnate when more than 5 branching

1 The reduced oraclemethod using c = 22 heuristics is the oraclemethod, at the exception that the equalities
on the quality measure are broken by giving the advantage to the branching heuristic with the best rank in
the reduced oracle method.

123



308 A. Cerqueus et al.

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 5 10 15 20

IR
S

Number of branching heuristics used

Without preprocessing

With preprocessing
-70

-60

-50

-40

-30

-20

-10

0

0 5 10 15 20

IR
T

Number of branching heuristics used

Without preprocessing

With preprocessing

(a) (b)
Fig. 6 Impact of the number of branching heuristics used in the reduced oracle method. a According to
the size of the search tree. b According to the computational time

heuristics are used. When the preprocessing treatments are used, the reduced oracle
using 5 branching heuristics has an average IRS only 0.05 less than for the reduced
oracle method using the 22 branching heuristics. When no preprocessing treatment is
used, the difference on the average IRS of the reduced oracle method compared to the
oracle method using the 22 branching heuristics is 0.13 when 5 branching heuristics
are used and 0.05 when 9 branching heuristics are used.

IRT decreases linearly when the number of heuristics considered in the reduced
oraclemethod increases. This evolutionwas expected since the number of upper bound
sets computed (which is the most expensive component) is linear in the number of
branching heuristics considered by the reduced oracle method.

The combination of the 5 first heuristics in the order given in Table 4 (with prepro-
cessing treatments) allows to reduce the average size of the search tree compared to
a method using the same branching heuristic all along the execution. Moreover this
improvement is relatively close from the one obtained by the oracle method (using
22 branching heuristics). However, the computational time required to execute this
reduced oracle method is 3 times more important than when using only one branching
heuristic when preprocessing treatments are used and 11 times more important when
no preprocessing treatments are considered.

These results concerning the reduced oracle method allow us to conclude that using
the 5 branching heuristics Z1-best, Z2-best, Triang-worst, U1-worst and U1-best can
reduce significantly the size of the search tree (with an IRS of 0.26 compared to
Best-heur when using preprocessing treatments). However, the oracle method is not
suitable since the computational time is still significantly more important.

The analysis of the oracle method did not allow to determine any correlation
between features of the instances and combination of branching heuristics with good
performance. Thus we did not succeed to elaborate static combinations of branch-
ing heuristics with satisfying performance. The following section aims to elaborate a
dynamic branching strategy, based on adaptive methods, for 2OKP.

123



On branching heuristics for the bi-objective. . . 309

4 Adaptive combinations of branching heuristics

In Sect. 3, we have investigated that combining several branching heuristics within a
same algorithm may lead to reduced search trees. Nevertheless, the selection of the
branching heuristics at each node in the tree may be highly time-consuming.

This heuristic selection problem is indeed fully related to the adaptive selection of
operators (or parameters values) in search algorithms. This problem has been widely
studied in the context of evolutionary algorithms (Da Costa et al. 2008a; Maturana
et al. 2012). More recently, such techniques have been applied to search tree based
constraint solvers (Loth et al. 2013; Balafrej et al. 2015).

These approaches use reinforcement learning techniques in order to choose themost
suitable next solving step (in our case the choice of a separation heuristic) with regards
to the current observed state of the search. Since the performances of the heuristics are
likely to vary during the search, adaptivemethods aim to use previously collected infor-
mation in order to empirically evaluate expected performances at a given search state.

4.1 Adaptive methods for heuristics selection

Adaptive methods aim to evaluate the quality of the applied heuristics. A reward is
assigned to the heuristic and the quality of a heuristic is thus assessed by an aggregation
of its successive rewards (for instance, its average reward).

In Sect. 3, the quality of the branching heuristics was computed by a lexicographic
ordering on three different criteria. Nevertheless, these criteria do not use similar
ranges of values and their aggregation may be complex. Based on Fig. 3, the most
important evaluation criterion is the upper bound setUB. Moreover, the oracle method
using only this criterion provides performances close to the best one (the difference
on IRS is less than 0.03 when no preprocessing treatment is applied and less than
0.005 when the preprocessing treatments are applied). Therefore, in the following we
use only UB to compute the rewards of the heuristics.

We consider different adaptive methods for branching heuristics selection in both
versions of the branch and boundmethod (with andwithout preprocessing treatments).

4.1.1 Uniform wheel

As baseline for comparing selection mechanism, we use a uniform wheel that assigns
to each branching heuristic the same probability to be selected at each node.

4.1.2 Probability matching

Probability matching Goldberg (1990) is a wheel-like process. Let us consider H =
{1, . . . , k} a set of k branching heuristics. The probability Ph(t) of a heuristic h ∈ H
to be chosen at iteration t ∈ N is proportional to its previous performances, evaluated
by means of rewards. Rh(t) is the reward obtained by strategy h at iteration t if it has
been applied (the reward is 0 otherwise). The reward Rh(t) is computed using UB
(see Section 3). Let us denote Qh(t) the estimated quality of h up to the iteration t ,

123



310 A. Cerqueus et al.

computed as Qh(t) =
∑t

l=1 Rh(l)
nh(t)

, where nh(t) is the number of times the heuristic h
has been applied up to iteration t .

At the beginning of the algorithm, the probability is 1
h for each h. At each iteration,

a heuristic is randomly chosen according to the probabilities Ph(t), h ∈ H . At a given
iteration t + 1, t ∈ N, the probability of the strategy h is updated by the formula:

Ph(t + 1) = Pmin + (1 + k Pmin)
Qh(t)

∑k
h′=1 Qh′(t)

Theminimumprobability Pmin ensures that no strategy can have a probability lower
than Pmin . Note that Pmin is the only parameter of this method.

4.1.3 Upper confidence bound

The selection of the next heuristic can also be considered as a multi-armed bandit
problem (see Cesa-Bianchi and Lugosi (2006) for instance), where a player has to find
an optimal sequence of actions in order to maximize its gain. The upper confidence
bound [UCB, Auer et al. (2002)] allows to achieve an optimal regret for this problem.
In an UCB based algorithm, at each iteration, the heuristic h with the highest value
for the following formula (using the notations presented in Sect. 4.1.2) is selected:

Qh(t) + α

√
2 log

∑k
h′=1 nh′(t)

nh(t)

Note that, in this formula a tradeoff between exploration and exploitation of heuris-
tics is ensured by the two terms of the sum.Thefirst term tends to favor the best strategy,
while the second term ensures that each strategy is taken infinitely many times as t
increases. α ∈ R is the scaling factor balancing exploration and exploitation.

UCBhasmany variants (seeDaCosta et al. (2008b) for further details). The dynamic
multi-armed bandit (DMAB) method has been introduced to take into account the
dynamicity of the performance of the heuristics during the search. A Page-Hinkley
test Page (1954) is used in the DMAB method to detect changes in the reward. The
Page-Hinkley test measures the difference between the reward obtained at an iteration
with the average reward obtained for the same strategy in the previous executions. If
this difference exceeds a given threshold γ then the method interprets it as a change in
the quality obtained by the strategies and the UCB method is restarted from scratch.
This restart makes it possible to find quickly the new best strategy.When the value of γ
is small then themethod is really sensitive to changes andmight restart very frequently.
On the contrary when the value of γ is high, the method does not restart frequently.
The DMAB considers thus two parameters: the threshold γ and the scaling factor α.

Another variant ofUCBconsists in considering a sliding timewindow.The numbers
of iterations, on which the empirical quality is computed, takes only into account the
last iterations. The size of the considered window is a parameter of this method. In
the experiments, the size of the window depends on the number of variables in the
considered instances.

123



On branching heuristics for the bi-objective. . . 311

4.2 Selection by vote

As alreadymentioned, different branching heuristics may select the same variable.We
may thus assume that a variable selected by several branching heuristics constitutes a
good choice.Based on this assumption,we propose a votemethod,where the branching
variable is selected when it has been chosen by the majority of heuristics (ties are
broken randomly). Note that this method does not have any parameter.

A drawback of this vote method is that there are frequently ties and the selection
of heuristics is thus a random choice between these winning variables. We propose
a hybrid method mixing vote method and a reduced oracle method (see Sect. 3). At
each separation, if there exist only one heuristic winning the vote then this heuristic
is chosen for the branching, otherwise the oracle method is used to break equalities.
Again no parameter is required.

At last, we define a weighted vote method. The selection of the variable is similar
to the previous hybrid vote, except that the votes are weighted. At the beginning of the
execution all the heuristics have the same weight. When the reduced oracle method
is executed (when they are equalities), the weight of branching heuristics selected by
the reduced oracle method increases (by one). The underlying idea is to give more
importance to the branching heuristics that have been chosen by the oracle part.

4.3 Evaluation of the adaptive selection methods

4.3.1 Experimental setup

The evaluation of the performances of the previously described selection methods will
be assessed according to (1) the size of the search tree evaluated by IRS and (2) the
computational time evaluated by IRT (see Sect. 3).

As baseline, we consider three reference methods that apply the same heuristics
during the search: Min-worst, Triang-best and Best-heur.

We consider the benchmark G1 (the smallest instances) to highlight the best value
of the parameters for each method and the method leading to the best performance.
Since somemethods include stochastic choices, all the results presented here are mean
values using 10 executions of the algorithm.

Concerning the set of heuristics, we may consider the full set of 22 branching
heuristics or a restricted set (as in the reduced oracle method). In particular, we have
observed that the set of five branching heuristics Z1-best, Z2-best, Triang-worst, U1-
worst and U1-best leads to good performances in the reduced oracle method, when
considering the size of the search trees.

4.3.2 Parameters setting

Uniform wheel The suffix 22-heur stands for the uniform wheel using the set of 22
branching heuristics and 5-heur for the one composed of five branching heuristics.

According to experimental results, we consider only the reduced set of five branch-
ing heuristics for the following selection methods.

123



312 A. Cerqueus et al.

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

U
n
iW

h
ee

l-
22

h
eu

r

U
n
iW

h
ee

l-
5h

eu
r

P
ro

b
-m

at
ch

U
C

B

D
M

A
B

S
li
d
in

gU
C

B

V
ot

e

H
yb

ri
d
-v

ot
e-

or
ac

le

W
ei

gh
te

d
-v

ot
e

IR
S

Method

Min-worst

Triang-best

Best-heur
-8

-7

-6

-5

-4

-3

-2

-1

0

1

U
n
iW

h
ee

l-
22

h
eu

r

U
n
iW

h
ee

l-
5h

eu
r

P
ro

b
-m

at
ch

U
C

B

D
M

A
B

S
li
d
in

gU
C

B

V
ot

e

H
yb

ri
d
-v

ot
e-

or
ac

le

W
ei

gh
te

d
-v

ot
e

IR
T

Method

Min-worst

Triang-best

Best-heur

(a) (b)
Fig. 7 Performance of the adaptive methods as branching strategies when no preprocessing treatment is
applied. a According to the size of the search tree. b According to the computational time

Probability matching We set Pmin = 0.05, which corresponds to the best setting
(obtained by experimentally testing different value Pmin).

UCB For UCB and DMAB we have α = 0.2 and γ = 0.8. Sliding is UCB using a
sliding window for reward computation.

VoteVotedenotes thefirst simple votemethod,Hybrid-vote-oracle is the hybridmethod
mixing the vote method and the reduced oracle method and weighted vote is the last
proposed method (see Sect. 4.1).

4.4 Experimental results

Figures 7 and 8 summarize the performances obtained by all the adaptive methods
presented in this section, for the instances of the group G2.

4.4.1 Detailed comments

Uniform Wheel In Fig. 8, we can observe that the performances of the versions using
the restricted set of branching heuristics offer better performances than the one using
the set of 22 branching heuristics. The observation concerning the reduced oracle
method seems to be confirmed here: the set of branching heuristics Z1-best, Z2-best,
Triang-worst, U1-worst and U1-best are enough to bring diversity and using the 22
branching heuristics is not necessary.

Probability matching Probability matching does not allow to improve the results
obtained for Best-heur, neither regarding the computational time nor the size of the
search tree, for both versions of the algorithm (using or not preprocessing treatments).

123



On branching heuristics for the bi-objective. . . 313

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

U
n
iW

h
ee

l-
22

h
eu

r

U
n
iW

h
ee

l-
5h

eu
r

P
ro

b
-m

at
ch

U
C

B

D
M

A
B

S
li
d
in

gU
C

B

V
ot

e

H
yb

ri
d
-v

ot
e-

or
ac

le

W
ei

gh
te

d
-v

ot
e

IR
S

Method

Min-worst

Triang-best

Best-heur
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

U
n
iW

h
ee

l-
22

h
eu

r

U
n
iW

h
ee

l-
5h

eu
r

P
ro

b
-m

at
ch

U
C

B

D
M

A
B

S
li
d
in

gU
C

B

V
ot

e

H
yb

ri
d
-v

ot
e-

or
ac

le

W
ei

gh
te

d
-v

ot
e

IR
T

Method

Min-worst

Triang-best

Best-heur

(a) (b)
Fig. 8 Performance of the adaptive methods as branching strategies when the preprocessing treatments are
applied. a According to the size of the search tree. b According to the computational time

However, this method presents smaller search tree and computational time in average
than Min-worst and Triang-best.

UCB We can observe that UCB allows to reduce in average the size of the search
tree and the computational time, compared toMin-worst and Triang-best. The perfor-
mances obtained for DMAB and sliding UCB are worse than for the classical UCB.
In this case, it appears that these additional mechanisms (i.e., dynamic restart of the
learning mechanism and time window for computing rewards) are not necessary.

Vote The hybrid vote allows to reduce significantly the size of the search tree. However
the computational time is muchmore important (in average four timemore important).
Indeed this method applies the reduced oracle method when the vote does not allow to
select one branching heuristic. The performances obtained for the hybrid method are
actually similar to those obtained for the reduced oracle method (important reduction
of the search tree and increase of the computational time).

Thanks to the dynamic adaptation of the weights in the weighted vote method, less
iterations of the reduced oracle method are performed. This method presents better
results than both the hybrid method and the vote method, in terms of computational
time and size of the search tree.

4.4.2 Overview of the best adaptive methods

We can notice that the use of adaptive methods makes it possible to reduce the com-
putational time more significantly when the preprocessing treatments are used. Two
methods are distinctly worse than the others: the uniform wheel based on the 22
branching heuristics and the hybrid method. However, only three adaptive methods
have a positive IRT with respect to one of the reference method (Min-worst): the
probability matching, the UCB and the weighted vote methods.

123



314 A. Cerqueus et al.

Table 5 Percentage of instances for which the adaptive methods UCB and weighted vote give a smaller
computational time than the reference methods Min-worst and Triang-best, regarding the class of the
instances

Reference Class UCB WeightedVote

Time nbNodes Time nbNodes

Min-worst 2KPn-1A 70.00 100.00 0.00 70.00

2KPn-r 66.67 33.33 0.00 100.00

2KPn-1B 70.00 90.00 10.00 60.00

2KPn-1C 50.00 90.00 30.00 50.00

2KPn-1D 50.00 100.00 10.00 40.00

4WnW1 72.73 100.00 18.18 81.82

F5050Ws 70.00 30.00 0.00 60.00

K5050Ws 60.00 40.00 10.00 50.00

F_n_Ui 12.50 87.50 0.00 50.00

F_n_Wi 62.50 87.50 25.00 75.00

A_n_s 46.00 96.00 0.00 60.00

B_n_s 22.00 80.00 8.00 34.00

C_n_s 85.00 100.00 40.00 65.00

D_n_s 100.00 100.00 75.00 75.00

Global 53.91 86.52 16.09 56.52

Triang-best 2KPn-1A 40.00 100.00 0.00 30.00

2KPn-r 100.00 100.00 33.33 100.00

2KPn-1B 20.00 90.00 0.00 20.00

2KPn-1C 30.00 90.00 10.00 10.00

2KPn-1D 30.00 100.00 20.00 30.00

4WnW1 18.18 100.00 9.09 9.09

F5050Ws 60.00 50.00 10.00 70.00

K5050Ws 50.00 60.00 10.00 70.00

F_n_Ui 12.50 87.50 0.00 12.50

F_n_Wi 0.00 87.50 12.50 12.50

A_n_s 14.00 100.00 0.00 6.00

B_n_s 22.00 82.00 10.00 32.00

C_n_s 90.00 100.00 50.00 75.00

D_n_s 85.00 100.00 60.00 65.00

Global 35.65 90.43 15.22 33.04

When the preprocessing treatments are used, the difference on IRS are more
important. Except for the uniform wheel with 22 heuristics and the hybrid method, the
adaptive methods allow to obtain a positive value of IRT regarding at least one refer-
ence. The adaptive method leading to the best performance in terms of computational
time, over the three reference methods, is the method UCB. Since the computational

123



On branching heuristics for the bi-objective. . . 315

Table 6 Percentage of instances forwhich the adaptivemethodsUCBandweighted vote give a smaller com-
putational time than the reference methods Min-worst and Triang-best, regarding the size of the instances

Reference n UCB WeightedVote

Time nbNodes Time nbNodes

Min-worst 50 70.37 44.44 7.41 59.26

100 67.50 90.00 32.50 60.00

150 80.00 100.00 40.00 66.67

200 68.00 100.00 28.00 64.00

250 33.33 100.00 11.11 44.44

300 46.67 100.00 6.67 46.67

350 40.00 100.00 0.00 40.00

400 66.67 100.00 6.67 80.00

450 40.00 100.00 0.00 60.00

500 63.16 100.00 5.26 89.47

600 45.45 72.73 18.18 36.36

700 10.00 50.00 10.00 30.00

750 25.00 50.00 0.00 25.00

800 10.00 90.00 10.00 0.00

900 10.00 90.00 10.00 50.00

1000 40.00 100.00 0.00 60.00

Global 53.91 86.52 16.09 56.52

Triang-best 50 59.26 59.26 11.11 62.96

100 67.50 100.00 30.00 52.50

150 66.67 100.00 40.00 60.00

200 44.00 100.00 28.00 40.00

250 0.00 100.00 0.00 0.00

300 26.67 100.00 0.00 6.67

350 20.00 100.00 0.00 0.00

400 6.67 100.00 0.00 0.00

450 0.00 100.00 0.00 0.00

500 0.00 100.00 5.26 5.26

600 18.18 72.73 18.18 45.45

700 30.00 70.00 10.00 30.00

750 0.00 50.00 0.00 0.00

800 10.00 90.00 10.00 0.00

900 20.00 90.00 10.00 50.00

1000 40.00 90.00 10.00 40.00

Global 35.65 90.43 15.22 33.04

123



316 A. Cerqueus et al.

time is lower when the preprocessing treatments are executed, in this paragraph, we
only consider the version of the algorithm using these treatments.

In Tables 5 and 6, the performance of the UCB method and of the weighted vote is
compared toMin-worst, Triang-best. Since Best-heur is not a realistic method, we do
not consider it. The methods are compared on the setG4 of instances (i.e. all presented
instances). Tables 5 and 6 present the percentage of instances for which the adaptive
methods give smaller computational time or smaller search tree, according to, respec-
tively, the class and the size of the instances. Values are in bold if the computational
time is reduced more than half of the instances.

The tables show that the UCBmethod is significantly better than the weighted vote.
The UCB method leads to a reduction of the search tree for 86.5% of the instances
when compared toMin-worst and 90.43% when compared to Triang-best.

Table 5 shows that the performance of UCB method depends on the class of
instances. It can be noted that the UCB method performs particularly well on the
class D_n_s. Moreover the UCB method allows to solve 5 instances that the two
reference methods could not solve in less than 30 min.

In Table 6, we can see that for large instances, even if the search-tree is reduced in
most of the cases, the computational time is reduced only in less than half of them.
This can mean either than the subproblems obtained for the UCB method are more
expensive to bound (the computation of the upper bound set is themost expensive phase
of the algorithm), or that the adaptive mechanism (computation of scores, selection of
the branching strategy) is expensive.

5 Conclusion and perspectives

The first purpose of our work was to better understand the behavior of branch-
ing heuristics and to compare their respective performances. We have evaluated a
sufficiently large set of possible heuristics for the 2OKP and we have highlighted
that, depending on the instances of the problem, there does not exist a dominant
heuristic. Moreover, the performance of the heuristics may depend on preprocess-
ing treatments that are often used to simplify the instances and that change their
structures.

From this first observation, we have tried to combine different heuristics within
the same search process. An oracle, which selects at each node the most promising
heuristic according to a quality measure, allows us to highlight that, given an instance,
some combinations of heuristics may perform better than the best single heuristic.
Unfortunately, this oracle requires a huge amount of computational time in order to
estimate the best heuristic at each node. Hence, from this observation, our purpose is
to provide a less costly mechanism for this heuristics selection problem.

Inspired by works that have been conducted in the context of adaptive search algo-
rithmsHamadi et al. (2012), we have proposed different adaptive selection techniques,
which aim at selecting heuristics according to their previously observed performances,
using machine learning techniques. We also propose a simplified oracle that uses
weighted votes. Using an initial set of heuristics, these adaptive methods provide
interesting results by reducing the size of search trees.

123



On branching heuristics for the bi-objective. . . 317

We have conducted many experiments in order to highlight our different observa-
tions as well as to evaluate our proposals. Even if we have not been able to devise
an adaptive branching mechanism that improve branch and bound methods on all
instances (which could be deceptive), the proposed approaches are able to reduce the
sizes of the search trees but their cost is sometimes still too expensive.

Nevertheless, as previously mentioned, our main purpose is not to enter a solv-
ing competition but rather to better understand how solving algorithms work and to
precisely study their components. In particular, we have observed that only a few
branching heuristics were really useful for solving the proposed problem and we have
highlighted the importance of the pre-treatment process in branch and bound algo-
rithms. From these conclusions, adaptive mechanisms can still be improved, one way
could be to use more information collected during the search.

Acknowledgements Thiswork is supported by the following projects:ANR-09-BLAN-0361 “GUaranteed
Efficiency for PAReto optimal solutions Determination (GUEPARD)”, the project LigeRO, and the project
ANR/DFG-14-CE35-0034-01 “Exact Efficient Solution of Mixed Integer Programming Problems with
Multiple Objective Functions (vOpt)”.

References

Aneja, Y.P., Nair, K.P.K.: Bicriteria transportation problem. Manag. Sci. 25(1), 73–78 (1979)
Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem.Mach. Learn.

47(2–3), 235–256 (2002)
Balafrej, A., Bessière, C., Paparrizou, A.: Multi-armed bandits for adaptive constraint propagation. In:

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25–31, 2015, pp. 290–296. AAAI Press (2015)

Bazgan, C., Hugot, H., Vanderpooten, D.: Implementing an efficient FPTAS for the 0–1 multi-objective
knapsack problem. Eur. J. Oper. Res. 198(1), 47–56 (2009a)

Bazgan, C., Hugot, H., Vanderpooten, D.: Solving efficiently the 0–1 multi-objective knapsack problem.
Comput. Oper. Res. 36, 260–279 (2009b)

Captivo, M.E., Clímaco, Ja, Figueira, J.R., Martins, E., Santos, J.L.: Solving bicriteria 0–1 knapsack prob-
lems using a labeling algorithm. Comput. Oper. Res. 30(12), 1865–1886 (2003)

Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, Cambridge
(2006)

DaCosta, L., Fialho, Á., Schoenauer,M., Sebag,M.: Adaptive operator selection with dynamicmulti-armed
bandits. In: Genetic and Evolutionary Computation Conference, GECCO 2008, Proceedings, Atlanta,
GA, USA, July 12–16, 2008, pp. 913–920. ACM (2008)

DaCosta, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection with dynamic multi-armed
bandits. In: Proceedings of the 10th annual conference on genetic and evolutionary computation, vol.
5199, pp. 913–920 (2008)

Degoutin, F., Gandibleux, X.: Un retour d’expérience sur la résolution de problèmes combinatoires bi-
objectifs. In 5e journée du groupe de travail Programmation Mathématique MultiObjectif (PM20),
pp. 74–80 (2002)

Delort, C.: Algorithmes d’énumération implicite pour l’optimisation multi-objectifs exacte : exploration
d’ensembles bornant et application aux problèmes de sac à dos et d’affectation. Ph.D. thesis, Université
Pierre et Marie Curie Paris VI (2011)

Delort, C., Spanjaard, O.: Using bound sets in multiobjective optimization: Application to the biobjective
binary knapsack problem. In: Festa, P., (ed.), SEA, volume 6049 of LectureNotes inComputer Science,
pp. 253–265. Springer (2010)

Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005)
Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial opti-

mization. OR Spectr. 22(4), 425–460 (2000)

123



318 A. Cerqueus et al.

Ehrgott, M., Gandibleux, X.: Bound sets for biobjective combinatorial optimization problems. Comput.
Oper. Res. 34(9), 2674–2694 (2007)

Figueira, J.R., Paquete, L., Simões, M., Vanderpooten, D.: Algorithmic improvements on dynamic pro-
gramming for the bi-objective 0,1 knapsack problem. Comput. Optim. Appl. 56(1), 97–111 (2013)

Florios, K., Mavrotas, G., Diakoulaki, D.: Solving multiobjective, multiconstraint knapsack problems using
mathematical programming and evolutionary algorithms. Eur. J. Oper. Res. 203(1), 14–21 (2010)

Gandibleux, X., Fréville, A.: Tabu search based procedure for solving the 0–1 multiobjective knapsack
problem: The two objectives case. J. Heuristics 6, 361–383 (2000)

Gandibleux, X., Perederieieva, O.: Some observations on the bi-objective 01 bi-dimensional knapsack
problem. In: IFORS 2011 (19th Triennial Conference of the International Federation of Operational
Research Societies). 10–15 July 2011, Melbourne, Australia (2011)

Gavish, B., Pirkul, H.: Efficient algorithms for solving multiconstraint zero-one knapsack problems to
optimality. Math. Program. 31, 78–105 (1985)

Glover, F.: A multiphase-dual algorithm for the zero-one integer programming problem. Oper. Res. 13(6),
879–919 (1965)

Goldberg, D.E.: Probabilitymatching, themagnitude of reinforcement, and classifier system bidding.Mach.
Learn. 5(4), 407–425 (1990)

Hamadi, Y., Monfroy, E., Saubion, F.: Autonomous Search. Springer, Berlin (2012)
Jorge, J.: Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en

variables binaires. Ph.D. thesis, Université de Nantes (2010)
Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)
Klamroth, K.,Wiecek,M.M.: Dynamic programming approaches to themultiple criteria knapsack problem.

Naval Res. Logistics, pp. 57–76 (2000)
Kolesar, P.J.: A branch and bound algorithm for the knapsack problem. Manag. Sci. 13(9), 723–735 (1967)
Loth, M., Sebag, M., Hamadi, Y., Schoenauer, M.: Bandit-based search for constraint programming. In:

Principles and Practice of Constraint Programming—19th International Conference, CP 2013, Upp-
sala, Sweden, September 16–20, 2013. Proceedings, volume 8124 of Lecture Notes in Computer
Science, pp. 464–480. Springer (2013)

Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for the 0–1 knapsack problem.
Manag. Sci. 45(3), 414–424 (1999)

Martello, S., Toth, P.: Knapsack Problems : Algorithms and Computer Implementations. Wiley, New York
(1990)

Maturana, J., Fialho, A., Saubion, F., Schoenauer, M., Lardeux, F., Sebag, M.: Adaptive operator selection
and management in evolutionary algorithms. In: Autonomous Search, pp. 161–189. Springer (2012)

Mavrotas, G., Florios, K.: An improved version of the augmented ε-constraint method (augmecon2) for
finding the exact pareto set in multi-objective integer programming problems. Appl. Math. Comput.
219(18), 9652–9669 (2013)

Özpeynirci, Ö., Köksalan, M.: An exact algorithm for finding extreme supported nondominated points of
multiobjective mixed integer programs. Manag. Sci. 56(12), 2302–2315 (2010)

Page, E.: Continuous inspection schemes. Biometrika 41, 100–115 (1954)
Pisinger, D.: Implementation of Combo. (2002) http://www.diku.dk/~pisinger/combo.c
Przybylski, A., Gandibleux, X.: Multi-objective branch and bound. Eur. J. Oper. Res. 260(3), 856–872

(2017)
Przybylski, A., Gandibleux, X., Ehrgott, M.: A two phase method for multi-objective integer programming

and its application to the assignment problem with three objectives. Discrete Optim. 7(3), 149–165
(2010)

Shih, W.: A branch and bound method for the multiconstraint zero-one knapsack problem. J. Oper. Res.
Soc. 30(4), 369–378 (1979)

Sourd, F., Spanjaard, O.: A multiobjective branch-and-bound framework: application to the biobjective
spanning tree problem. INFORMS J. Comput. 20, 472–484 (2008)

Thesen, A.: A recursive branch and bound algorithm for the multidimensional knapsack problem. Naval
Res. Logistics Quart. 22(2), 341–353 (1975)

Ulungu, E.L., Teghem, J.: The two phasesmethod: an efficient procedure to solve bi-objective combinatorial
optimization problems. Found. Comput. Decis. Sci. 20(2), 149–165 (1995)

Ulungu, E. L., Teghem, J.: Solving multi-objective knapsack problem by a branch-and-bound procedure.
In: Multicriteria Analysis: Proceedings of the XIth International Conference on MCDM, 1–6 August
1994, Coimbra, Portugal, pp. 269–278 (1997)

123

http://www.diku.dk/~pisinger/combo.c


On branching heuristics for the bi-objective. . . 319

Visée, M., Teghem, J., Pirlot, M., Ulungu, E.L.: Two-phases method and branch and bound procedures to
solve the bi-objective knapsack problem. J. Global Optim. 12, 139–155 (1998)

Zhang,W., Reimann,M.: A simple augmented ε-constraintmethod formulti-objectivemathematical integer
programming problems. Eur. J. Oper. Res. 234(1), 15–24 (2014)

123


	On branching heuristics for the bi-objective 0/1 unidimensional knapsack problem
	Abstract
	1 Introduction
	1.1 Context
	1.2 pOKP: formulation, efficient solutions and nondominated points
	1.3 Review of the relevant literature
	1.4 Objectives and contributions
	1.5 Organization of the paper

	2 Branching strategies for the 2OKP
	2.1 Variable ordering and branching strategies
	2.2 Selection of branching strategies
	2.3 Algorithm framework designed for conducting the analysis
	2.4 Dataset used as benchmark
	2.5 Comparison of the branching heuristics

	3 Combinations of heuristics
	3.1 Selection of branching heuristics
	3.1.1 Selection criteria
	3.1.2 Comparison of selection rules

	3.2 Evaluation of the Oracle
	3.3 Selection of a subset of branching heuristics

	4 Adaptive combinations of branching heuristics
	4.1 Adaptive methods for heuristics selection
	4.1.1 Uniform wheel
	4.1.2 Probability matching
	4.1.3 Upper confidence bound

	4.2 Selection by vote
	4.3 Evaluation of the adaptive selection methods
	4.3.1 Experimental setup
	4.3.2 Parameters setting

	4.4 Experimental results
	4.4.1 Detailed comments
	4.4.2 Overview of the best adaptive methods


	5 Conclusion and perspectives
	Acknowledgements
	References




